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1. Introduction 
Organic substances in wastewater are an important environmental problem. These pollutants adversely affect the ecosystem 
and human health [1]. Organic pollutants must be removed from wastewater before they are released into the natural 
environment. Paint is an important environmental pollutant affecting the eco-environment. The presence of dyes in 
wastewater reduces light transmission in the water environment and adversely affects photosynthetic activity. It also causes 
the formation of toxic and carcinogenic products [2].

Textile dyes have an important place among chemical pollutants and once mixed with water. They are difficult to remove 
from water due to their synthetic origin and complex molecular structure. It is thought that approximately one hundred 
thousand commercial paints are produced between 7.105–106 tons per year [3].

Some physical and chemical methods are widely used in the removal of dyes from wastewater [4–6]. These methods 
show some disadvantages in removing azo dyes. The most important of these is that the waste problem occurs during the 
treatment of dyes from aqueous solutions [7].

In this context, in biological treatment processes where no secondary waste problem is experienced, the treatment 
level is very low and insufficient due to the bio-carcinogenic and toxic nature of the dyestuffs [8]. Treatment of waste 
water containing dyes in recent years focused on advanced oxidation processes (IOP) [9]. The heterogeneous photocatalytic 
oxidation method included in the IOP enables the transformation of pollutants into harmless and/or less harmful components 
by degradation of pollutants in the presence of UV light and semiconductor metal oxides (ZnO, TiO2, CeO2) [10–12]. 
Recently there has been wider attention towards undoped and single oxide semiconductors which are nontoxic, stable, 
visible light active, and equally efficient photocatalysts. Among these materials, Bi2O3 and ZnO are the best candidates as 
photocatalytic materials because of their nontoxic nature, simple, and easy routes of synthesis, suitable band gap, and high 
photoluminescent properties. Additionally, surfactants have been often used for increase the photodegradation efficiency 
in UV–TiO2 systems [13–14]. In this study, photodegradation of dyes with Bi2O3-CTAB and ZnO-CTAB catalysts was 
examined. The effects of surfactant additive and different light sources on the removal of hazardous dyes from wastewater 
were investigated.  Moreover, the relationships between the catalyst morphologies and the photocatalytic activities were 
also investigated by using varied characterization methods such as scanning electron microscope (SEM), diffuse reflectance 
spectroscopy (DRS), Brunauer, Emmet and Teller (BET), fourier transform infrared (FTIR), and X-ray diffraction (XRD).
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2. Experimental and methods
2.1. Materials
In this experimental study, essential materials were supplied commercially and utilized without additional purification 
process. These materials are bismuth (III) nitrate pentahydrate (98%; Alfa Aesar Company), zinc nitrate hexahydrate, 
cetyltrimethyl-ammonium bromide, CTAB, Victoria blue (VB), and Malachite green (MG) (>= 99%, Sigma Aldrich).  
2.2. Catalyst synthesis methods
Bi2O3 nanopowder was prepared by co-precipitation method. Bismuth nitrate pentahydrate (0.97 g) was dissolved in 
nitric acid-water solution. Sodium hydroxide solution (0.8 g) was prepared with 100 mL of distilled water. The prepared 
solutions were kept in ultrasonic water bath for 15 min. Sodium hydroxide solution was slowly added dropwise into the 
bismuth nitrate pentahydrate solution until pH 11 under continuous stirring. After adjusting the pH of the solution, it was 
heated in a magnetic stirrer until the temperature reached 75 °C. The solution reaching the desired temperature was stirred 
under continuous stirring for 2 h without changing the temperature. Bi2O3 particles formed as precipitate were filtered and 
washed first with distilled water, then with absolute ethanol. It was dried in the oven at 80 °C for 2 h. The particles obtained 
were calcined in the calcination oven at a temperature of 450 °C for 2 h by heating at 10 °C/min. Particles formed after 
calcination were ground and Bi2O3 catalyst was obtained.

ZnO nanopowder was prepared by co-precipitation method. Zinc nitrate hexahydrate (8.93 g) was dissolved in 50 mL 
of distilled water and kept in an ultrasonic water bath at 50 °C for 10 min. The prepared solution was heated to 65 °C in 
a magnetic stirrer. When the temperature was stabilized, it was adjusted to pH = 10 with ammonia solution (25%). The 
solution, the pH of which was adjusted, was left to stir for 2 h at 65 °C in a magnetic stirrer. Precipitated ZnO particles 
were filtered and washed with distilled water for 2 h  It was dried in an oven at 100 °C for 20 h. The particles obtained were 
calcined at 500 °C for 5 h by heating at 10 °C/min in the calcination oven. The calcined product was ground in the ball mill 
for approximately 10 min.

Preparation of surfactant loaded catalysts was used cetyltrimethyl-ammonium bromide (CTAB) as surfactant. CTAB 
was added over Bi2O3 and ZnO by the solid state dispersion method (SSD). This method is based on physical mixing of 
solid materials.

In the solid state dispersion method, catalysts (Bi2O3, ZnO) and the surfactant (CTAB) were weighed 1: 1 by weight 
and put into the ceramic mortar. They were thoroughly crushed with the help of ceramic drumsticks and mixed together. 
This process was continued until the particles of both substances became indistinguishable from each other. The mixing 
process was continued by adding a few drops of absolute ethanol to the desired substances with the help of dropper. A few 
more drops of absolute ethanol were added to the mixture, which reached the consistency of cake, and put into the oven 
to dry. The drying process was carried out for 90 min at 110 °C.

The particles obtained at the end of the drying process were calcined at 150 °C for 5 h by heating at 10 °C/min in the 
calcination oven. The calcination temperature was determined to be suitable for the decomposition temperature of CTAB. 
The calcined product was ground in the ball mill for approximately 10 min.
2.3. Catalyst characterization 
Total catalyst surface area of the catalyst was measured  by nitrogen adsorption/desorption using a Quantachrome 
instrument. All catalysts were degassed under vacuum at 200 °C for 4 h. Crystallographic structure of catalyst were 
determined by X-ray powder diffraction using CuKα radiation (λ = 1.54056 Ε) with a Rigaku D/Max-2200 powder x-ray 
diffractometer. Before the analysis was run, the samples were gently granulated in an agate mortar to reduce the required 
orientation. Patterns were recorded at scan speed 2 degree of 2θ in the range of 10–90 °. The average crystallite size (Davg) 
was computed using the Debye–Scherrer equation. The powders were examined with a high resolution scanning electron 
microscope (SEM) (JEOL/JSM-a6335F) for possible differences in morphologies and size distributions of the powders.  

FT-IR spectra were examined by FT-IR spectroscopy (Perkin Elmer Precisely Spectrum One). KBr powder was used 
to prepare KBr pellets for samples. The samples were acquired as 100 scans with 4 cm−1 resolutions. Optical energy gap of 
nanopowders were carried out by a double–beam UV-Shimadzu 3600 UV-Vis-NIR spectrophotometer equipped a diffuse 
reflectance (DR) accessory.

The energy of band gap for the catalyst was evaluated by using the Kubelka–Munk formula with Tauc’s relation (Eq. 
(1)), which derived from DRS measurement.

(hnF (Ra))1/n = A (hn - Eg). (1)
In this expression, hν is the energy of a single proton, α is the optical absorption co-efficiency, and Eg is the optical 

band gap energy, A is constant for direct band gap transitions, the value of exponent parameter n denotes the nature of 
sample transition (n = ½ is used for the catalyst). R is the absolute reflectance value; F(R) is proportional to the absorption 
coefficient (α).
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2.4. Studies on photocatalytic activity 
In this study, photocatalytic degradation reactions of azo dyes (Victoria blue, Malachite green) were carried out in a single 
neck reactor made of quartz material with a volume of 100 mL. The reactions were carried out under UV-B, UV-C, visible 
light, and natural sunlight. The reactions were carried out carried out under natural sunlight The photoreactor was placed 
on the magnetic stirrer and continuous mixing was performed. We compared the photcatalytic activities for different light 
source (UV-B, UV-C, and visible lamp) in a photoreactor system. 

After 100 mg of catalyst was added to the photoreactor, 50 mL of 25 ppm aqueous dye solution was slowly added and 
the mixture was kept in an ultrasonic bath for 2–3 min. All reactions were subjected to mixing without light (in the dark) 
for 30 min. At the end of the dark phase, samples were taken by giving light. This process was continued for 2 h. Samples 
were taken into centrifuge tubes at certain time intervals and centrifuged to separate the solid/liquid phase from each 
other. After centrifugation, the clear liquid remaining in the upper part of the tubes was taken to be analyzed in the UV-vis 
device. 
2.5. Adsorption process
The experimental studies were carried out on the removal of azo dyes (victoria blue and malachite green) using all the 
synthesized catalysts (Bi2O3, ZnO, CTAB-Bi2O3, and CTAB–ZnO). Adsorption studies were tested for varied temperatures 
(25 °C, 40 °C, 55 °C) and different initial concentrations (25 ppm, 50 ppm, 75 ppm, 100 ppm) for isotherm studies.

The stock solution for the each of dyes was prepared as 250 ppm. The 0.01 g catalyst samples (Bi2O3 and Bi2O3-
CTAB) were interacted with 10 mL of VB solutions for 60 min at 25, 40, 55 °C and aliquots were taken every 15 min for 
spectrophotometric analysis. The same procedure was performed for the MG solution. However, the adsorption isotherm 
times of MG dye on ZnO and ZnO-CTAB catalysts were determined as 90 min. Adsorption studies were performed in 
brown glass bottles in a shaker water bath at 250 rpm. During the adsorption process, samples were taken at certain time 
intervals and put into centrifuge tubes. It was centrifuged to separate the solid/liquid phase formed. The clear liquid 
remaining on the upper part of the tubes was taken and the absorbance values   were measured in the UV-vis device. The 
concentrations corresponding to the measured absorbance values   were calculated using the standard graphs. In addition, 
the adsorption isotherms were tested by using Langmuir and Freundlich and Dubinin–Radushkevich (D-R) models.
2.6. Isotherms of adsorption
Freundlich, Langmuir and Dubinin–Radushkevich (D-R) isotherm methods were applied for the results of adsorption 
of VB and MG dyes. The adsorption capacity of the sorbent (qd mg g–1) was calculated [15]. Adsorption isotherm type 
graphics of VB were drawn qdvs cd at different temperatures. The Giles isotherm lines of Bi2O3 appear to be the same as L3, 
L2, and L2 types at 25, 40, and 55 °C respectively as seen in Figure 1. However, Giles isotherm types of Bi2O3-CTAB were 
found L4, L2, and L3 types at 25, 40, and 55 °C. respectively as shown in Figure 1. 

Adsorption isotherm type graphics of MG were drawn qdvs cd at different temperatures.  While the Giles isotherm lines 
of ZnO are appearing L4 both 25 °C and 55 °C this line is the same as L2 for 40 °C as seen in Figure 2. However, Giles 
isotherm types of Bi2O3/CTAB were found L2, L5, and L2 types at 25, 40 and 55 °C, respectively as shown in Figure 2 [16]. 

These L type explain that the first monolayer line occurs and then multilayer line during adsorption process. L curves 
were described by Langmuir isotherms. The first curve is indicated molecules adsorbed plain on the surface, the second 
curve is shown in the perpendicular oriented adsorbed ions with particularly strong intermolecular attraction. These cases 
suggest that the adsorbed ions may imply united into very large stacks before adsorption happen. The L curve occurs in 
probably the plurality of conditions of adsorption at dilute solution.

Langmuir isotherm: The Langmuir equation is represented as follows (2): 
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Here, qmax (mg g–1) and b (L mg–1) expressions have the same meaning as those used in Equation 2 in the study of Duran 
et al. [13] 1/qd versus 1/cd with slope b and intercept 1/qmax is obtained (Tables 1–2).  

Freundlich isotherm: The Freundlich isotherm model was applied by the following 
qd = KF cd

n. (3)
The linear equation of the Freundlich isotherm was fitted as given below.
logqd = log KF + n log cd, (4)

where qd is the amount adsorbed (mg g–1). Cd the equilibrium concentration in aqueous phase (mg L–1). KF and n are 
adsorption capacity and adsorption intensity, respectively.

The D-R isotherm is an experimental adsorption model applied with Gaussian energy distribution to express the 
adsorption mechanism to heterogeneous surfaces. This isotherm was specifically designed to separate the physical and 
chemical adsorption of adsorbate ions.
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The D-R isotherm is stated as follows:
lnXe = lnXm-KDR ε

2 (5)      
ε = RT ln(1+1/Ce), (6)
where Ce (mg L–1) is dyes concentration at equilibrium, e is Polanyi potential,                                                                                        Xm 

(mg g–1) is the highest capacity of the adsorbent, the constant KDR is concerned to the mean free energy of adsorption per 
mole of adsorbate. This energy is calculated the following equation (7);
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Figure 1. Adsorption isotherm curves of Victoria blue dye in the presence of Bi2O3 and Bi2O3-CTAB catalysts at different temperature 
a) 25 °C, b) 40 °C, and c) 55 °C.

Figure 2. Adsorption isotherm curves of Malachite green dye in the presence of ZnO and ZnO-CTAB catalysts at different temperature 
a) 25 °C, b) 40 °C, and c) 55 °C.
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Adsorption energy (E) value gives information about the mechanism of adsorption. 8 < E > 16 is kJ.mol–1 the mechanism 
is ion exchange. E < 8 kJ.mol–1 is physical adsorption and E > 16 kJ.mol–1 is chemical adsorption.

3. Result and discussion
3.1. Characterization results
The surface areas of the samples were determined through adsorption of inert gas such as N2 for the purpose of observing 
the impact of surfactant addition on physical properties of the catalysts. The results were listed as given in Table 1. The 
surface area of pure Bi2O3 and ZnO are 15 and 28 m2/g, respectively. With the addition of surfactant, the surface areas of 
ZnO and Bi2O3 catalysts decreased. The reason for this change in surface area is thought to be related to the structure and 
size of the CTAB molecule participating in pure oxide structures.

XRD diagrams of the catalysts are given in Figures 3–4. It was understood that there was no change in the structure of 
the catalyst with the addition of surfactant, and the phases formed were compatible with the crystal structure of monoclinic 
Bi2O3 (JCPDS 41-1449) and hexagonal ZnO (JCPDS 36-1451).

The band gap energies of the oxide structures were determined by diffuse reflectance spectroscopy (DRS) and the 
results are shown in Figure 5. According the DRS results, it was seen that there was a red shift, that is, a shift to higher 
wavelengths by adding CTAB to Bi2O3 and ZnO catalysts. It is noteworthy that this shift in wavelength is more in the 
Bi2O3 structure. This result indicates that there is a shift towards the visible region. Bi2O3-CTAB has a lower transmission 
band that increases its absorption ability in sunlight. The band gap energy values decreased with the addition of the CTAB 
addition to Bi2O3 and ZnO structure.

FTIR-ATR analysis was carried out in order to prove the bonds and stresses in the structure of the prepared catalysts, 
to determine the existing functional groups and to determine the hydroxyl group that is important in photocatalytic 
reactions. The ATR spectra obtained as a function of wavelength are shown in Figure 6.

In the pure Bi2O3 catalyst, the Bi-O-Bi vibration peak around 1260 cm−1 and a C-H peak around 1360 cm−1 were seen. 
It was observed that these two peaks disappeared and some new peaks were formed with the addition of CTAB to the 

Table 1. The crystallite size, specific surface area, band gap, and morphology of 
materials.

Catalyst Crystallite size SBET Band gap Morphology

nm (m2g–1) (nm)
ZnO 65 28 2.93 Hexagonal
Bi2O3 42 15 2.83 Monoclinic
ZnO-CTAB 33 8 2.87 Hexagonal
Bi2O3-CTAB 23 9 2.59 Monoclinic

Table 2. Adsorption isotherm parameters of Victoria blue dye.

25 °C Langmiur Isotherm Freundlich Isotherm D-R Isotherm
qmax (mg.g–1) b   (L.mg–1) R2 n Kf (L.mg–1) R2 qmax (mg.g–1) Kdr (L.mg–1) E  (kJ.mol–1) R2

Bi2O3 69 0.07 0.92 0.41 10.8 0.81 48 5.96 0.43 0.91
Bi2O3-CTAB 94 0.2 0.98 0.54 17.8 0.99 66 0.75 1.21 0.84
40      °C Langmiur Isotherm Freundlich Isotherm D-R Isotherm

qmax (mg.g–1) b     (L.mg–1) R2 n Kf (L.mg–1) R2 qmax (mg.g–1) Kdr (L.mg–1) E  (kJ.mol–1) R2

Bi2O3 73 0.47 0.99 0.29 27 0.90 61 0.35 1.76 0.96
Bi2O3-CTAB 105 0.40 1 0.46 28 0.96 74 0.34 1.79 0.93
55 °C LangmiurIsotherm Freundlich Isotherm D-R Isotherm

qmax (mg.g–1) b     (L.mg–1) R2 n Kf (L.mg–1) R2 qmax (mg.g–1) Kdr (L.mg–1) E  (kJ.mol–1) R2

Bi2O3 111 0,30 0.98 0.45 28.5 0.93 76 0.37 1.72 0.96
Bi2O3-CTAB 625 0,027 0.98 0.89 17.3 0.99 88 0,83 1.15 0.94
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Figure 3. XRD patterns of Bi2O3 and Bi2O3-CTAB catalysts.

Figure 4. XRD patterns of ZnO and ZnO-CTAB catalysts.

Figure 5. DRS spectra of Bi2O3, ZnO, Bi2O3-CTAB and ZnO-
CTAB catalysts.



1438

ALTUN et al. / Turk J Chem

structure. The stress ν (C–N) at peak values of 912–962 cm−1 indicates the CH2 group belonging to the CTAB structure 
at 1460 cm−1, and the CH3 structure at 2838 and 2922 cm−1 values. The occurrence of these stresses in the CTAB added 
catalyst indicates that the added surfactant does not degrade after calcination and is added to the Bi2O3 structure. In FTIR-
ATR analysis, similar peaks were observed after CTAB was added to the pure ZnO catalyst.

The surface morphology of the ZnO catalyst was illuminated in detail by SEM analysis. SEM images of pure ZnO 
and Bi2O3 are given in Figure 7. The clusters in cubic form were observed in the pure ZnO structure. However, rod-like 
structures of different lengths and thicknesses draw attention in the SEM image of Bi2O3 structure.

After addition of surfactant (Figure 8), it is understood that the spherical structure of the pure ZnO catalyst has not 
changed, but has an inhomogeneous particle distribution. In addition, it is observed that large and small mixed grains are 
together and the grain size is reduced. This change had a positive effect on photocatalytic activity. This situation confirms 
that CTAB has entered the structure as mentioned in the FTIR analysis. As seen in the XRD results, surfactants have a 
structure that reduces the particle size and thus affects the particle morphology.

Unlike the ZnO-CTAB structure, it was observed that by adding surfactant to the Bi2O3 structure, the rod-like structures 
came together and formed a pile (Figure 8). In addition, the agglomeration of small particles and a small number of rod-
like structures draw attention. The reduction of the grain structure and the surface appearance in the form of layers is 
due to the aggregation tendency of the surfactant adsorbed on the crystal surface. Van der Waals interaction between 
molecules caused agglomeration. As a result, with the addition of CTAB, the Bi2O3 surface has changed considerably and 
smaller structures have been formed. This change had a positive effect on photocatalytic activity.
3.2. The results of adsorption studies
Adsorption intensities of VB on Bi2O3 and Bi2O3/CTAB at each of temperatures were found n < 1 as seen in Table 2. 
This result shows that the binding energy decreased with increasing the surface concentration and the adsorption was 
occurred. It seems that the adsorption capacities (KF) increased with increasing temperatures for Bi2O3 catalyst. However, 
the adsorption capacities of Bi2O3-CTAB catalyst did not changed with increasing temperatures. For Freundlich isotherm 
correlation coefficients average of adsorption of VB on Bi2O3 and Bi2O3-CTAB are 88%, 98% respectively. Table 1 appears 
that the maximum amount of substance adsorbed in the single layer (qmax) is 50 oC > 40 o C >25 oC for the Langmuir and 
D-R isotherms. The best correlation coefficients average of adsorption of VB on Bi2O3 and Bi2O3/CTAB were found for 
Langmuir isotherm as 97% and 99% respectively. According to Langmuir model, the highest values of qmax from adsorbed 
VB on 0.01 g Bi2O3 and Bi2O3/CTAB were found to be at 50 °C temperature as 111 mg g–1, 625 mg g–1, respectively as seen 
in Table 2. According to D-R adsorption isotherm, the adsorption energy of VB on Bi2O3 and Bi2O3/CTAB were found to 
be E < 8 kJ.mol–1 for each of temperatures. This result indicates that the adsorption mechanism is described to be physical 
adsorption.

Adsorption intensities of MG on ZnO and ZnO-CTAB at each of temperatures were found n < 1 as seen in Table 3. It 
seems that the adsorption capacities (KF) varied irregular with increasing temperatures for ZnO and ZnO/CTAB catalysts. 
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catalysts.
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While the maximum amount of substance adsorbed in the single layer (qmax) is changing 25 °C > 40 °C > 55 °C for the 
Langmuir, but this value changed (Xm) 50 °C > 40 °C >25 °C for D-R isotherms. Both Freundlich and Langmuir correlation 
coefficient average of adsorption of MG on ZnO and ZnO/CTAB were found to be 87% and 98%, respectively. The best 
correlation coefficients average of adsorption of MG on ZnO and ZnO-CTAB found for Langmuir isotherm. According 
to Langmuir model, the highest values at monolayer coverage (qmax) of adsorbed MG on 0.01 g ZnO and ZnO-CTAB were 
found to be at 25 °C as 73 mg g−1 and 60 mg g–1, respectively as seen in Table 3. According to D-R adsorption isotherm, the 
adsorption energy of MG on ZnO and ZnO-CTAB were found to be E < 8 kJ.mol–1 at different temperatures. It means that 
the adsorption mechanism is found to be physical adsorption as shown in Table 3.
3.3. Photocatalytic activity results
In photocatalytic reactions, before the light is turned on, the catalyst and the dye to be decomposed are stirred for 30 min 
without light in order to ensure adsorption. The dark phase period continues until the adsorption equilibrium is reached 
[17]. In this study, the activities of the surfactant added catalysts were tested in the photocatalytic degradation reactions 
of the dyestuffs. We based our experiments on the Langmuir–Hinshelwood (L-H) kinetic model [18]. It can be expressed 
by Equation 8 below: 

ln(Co/C) = kobst. (8)
Assuming that C = Co at t = 0 with low initial BPA concentration, where t is the given irradiation time and kobs is the 

rate constant of the observed pseudo-first order reaction.  After experiments, we calculated the photocatalytic degradation 
efficiencies and reaction rates for the different photocatalysts and the numerical values of gain are presented in Table 1.

The degradation efficiency (R%) of BPA was calculated by Equation (9):

Bi2O3

ZnO

Figure 7. SEM images of Bi2O3and ZnO catalysts.
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Within the scope of this study, in the presence of ZnO, Bi2O3, ZnO-CTAB, and Bi2O3-CTAB catalysts, which were 

prepared and characterized, UV-B, UV-C, Victoria blue (VB), and Malachite green (MG) textile dyes under visible light 
and sunlight degradation reactions were carried out.

Figure 9 shows the photocatalytic degradation of Victoria blue in the different catalysts under UV-C illumination at 
different irradiation time. When the color removals of VB dyestuff at the end of 120 min, the photocatalytic efficiencies 
are sorted in descending order: Bi2O3-CTAB (95.04%) > ZnO-CTAB (94.36%) > ZnO (84.76%) > Bi2O3 (72.20%). Since 
the highest activity was achieved in the presence of Bi2O3-CTAB catalyst, reactions were also carried out under visible light 
and sunlight. The photodegradation results of VB on Bi2O3-CTAB catalyst with different irradiation source are shown in 
Figure 10. As a result of these reactions, 99.68% color removal was achieved in 120 min under visible light, and complete 
degradation (100% color removal) within 60 min under sunlight. 

Pare et al. studied the degradation of Victoria blue dye B in aqueous suspension of zinc oxide. In the study, they realized 
that the total mineralization of VBB (9.0 x 10−4 moldm−3) was completed in 8 h of irradiation at the optimum reaction 
conditions [19]. The color removals of MG dyestuff were performed under UV-C radiation in the presence of prepared 
catalysts. The efficiencies were calculated as Bi2O3-CTAB (100%)>ZnO (97.27%)> Bi2O3 (67.26%)>ZnO-CTAB (64.37%). 
As a result in Figure 11, the complete decomposition was achieved within 120 min under UV-C irradiation with Bi2O3-
CTAB catalyst.

ZnO-CTAB

Bi2O3-CTAB

Figure 8. SEM images of Bi2O3-CTAB and ZnO-CTAB catalysts.
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Chen et al. prepared Bi2WO6 nanostructure and investigated photocatalytic degradation of MG dye. The activity results 
showed the degradation efficiency with Bi2WO6 photocatalyst in the dark for 90 min is only 13.6%.

4. Conclusion
The effect of surfactant additive with Bi2O3 and ZnO nanoparticles on the photocatalytic degradation of dyes (VB, MG) 
were investigated. The photocatalytic activities of catalysts were compared for different light sources. Considering the 
prepared catalysts and all the reactions, it is understood that sunlight provides more effective degradation than UV light 
sources.

It was seen that the addition of CTAB to the pure Bi2O3 catalyst enhanced the photocatalytic activity and increased 
color removal. However, it has been observed that CTAB addition to ZnO catalyst does not have an activity improving 
effect. With the addition of CTAB surfactant on Bi2O3, the degradation efficiency of VB under sunlight was improved, 
complete degradation was achieved within 60 min. In the presence of the surfactant added Bi2O3-CTAB catalyst, the 
Malachite green was decomposed 100% under UV-C irradiation within 120 min.

Different adsorption isotherms were examined. It was seen that the adsorption mechanism was physical adsorption for 
all adsorption trials according to the D-R isotherm.  According to Freundlich isotherm data, for all adsorption experiments, 
the bonding energy decreased with increasing surface concentration. This showed that adsorption is a preferred adsorption. 

The adsorption of VB and MG dyes on the catalysts was observed in which correlation coefficient best suited the 
Langmuir model. The adsorption of VB on Bi2O3-CTAB was the highest. The maximum adsorption capacity (qmax) was 

Table 3. Adsorption isotherm parameters of Malachite green dye.

t/ 5 oC Langmiur Isotherm Freundlich Isotherm D-R Isotherm
qmax (mg.g–1) b     (L.mg–1) R2 n Kf (L.mg–1) R2 Xm    (mg.g–1) Kdr (L.mg–1) E  (kJ.mol–1) R2

ZnO 73 0.025 0.95 0.74 2.5 0.93 39 18 0.28 0.75
ZnO-CTAB 60 0.134 1 0.35 14 0.93 47 2.66 0.72 0.96
t / 40 oC Langmiur Isotherm Freundlich Isotherm D-R Isotherm

qmax (mg.g–1) b     (L.mg–1) R2 n Kf (L.mg–1) R2 Xm    (mg.g–1) Kdr (L.mg–1) E  (kJ.mol–1) R2

ZnO 70 0.046 0.99 0.49 7.5 0.93 44 9.6 0.38 0.98
ZnO-CTAB 59 0.67 0.96 0.21 27 0.70 53 0.29 2.17 0.91
t/55 oC Langmiur Isotherm Freundlich Isotherm D-R Isotherm

qmax (mg.g–1) b     (L.mg–1) R2 n Kf (L.mg–1) R2 Xm    (mg.g–1) Kdr (L.mg–1) E  (kJ.mol–1) R2

ZnO 64 0.054 0.99 0.47 7.2 0.91 43 8.5 0.40 0.93
ZnO-CTAB 58 0.17 0.99 0.34 15.2 0.95 58 1.96  0.84 0.94
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Figure 9. The photocatalytic degradation of Victoria Blue in Bi2O3, 
Bi2O3-CTAB, ZnO, ZnO-CTAB catalysts. 
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found to be 625 mg g−1 at 50 °C temperature. The maximum adsorption capacity of MG on ZnO was found to be 73 mg g−1 
at 25 °C temperature. The results of adsorption energy under these working conditions showed that the whole adsorption 
process is physical adsorption.
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