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1. Introduction
Currently, 37 isotopes of iodine are known. Among them, the greatest attention is paid to iodine-129: it is one of the seven 
long-lived fission products of uranium and plutonium and in significant quantities entered the atmosphere as a result of 
nuclear tests in the 1950s and 1960s [1]. At the same time, it also poses a danger to humans, as a more rapidly decaying 
iodine-131, since, due to its nature, it can accumulate in the body.

To bind various isotopes of iodine, including iodine-129, many approaches have been proposed [2, 3]:
• mercurex-process, implying receipt of its mercury compounds,
• iodox-process, allowing to fix iodine in the form of solid precipitate HI3O8,
• use of sorbents based on titanium oxide, copper, silver.
In a number of works [4–6], it was proposed to use a matrix with the structure of the mineral apatite for binding 

isotopes of iodine, in particular, long-lived iodine-129 (T1/2 = 1.57(4)⋅107 years).
The structural type of apatite is known for its high isomorphic capacity, due to which it can undergo substitutions in 

the structure by almost all atoms of the periodic table and within wide quantitative limits [7, 8]. It should also be noted 
that, unlike the structural types traditionally used as the basis of matrices for binding radionuclides (garnet, pervoskite, 
hollandite, monazite, etc. [9, 10]), apatites are able to bind not only cations but also anions; therefore, the attention directed 
at them in the context of radioactive iodine binding is quite justified.

The general formula of apatites can be described as follows: M4f
2M

6h
3(AO4)3L, where M stands for cations of different 

oxidation states, located in two crystallographically different positions of the structure, A refers to the most often atoms 
prone to the formation of tetrahedral coordination polyhedra (for example, P, V, Si, S), and L is for halogens or OH-
groups, as well as O2-, CO3

2- and other ions. The content of cations in the structure is rather high; therefore, geoceramics, 
including apatites, are studied to bind strontium-90 [11, 12]. Taking into account the crystal-chemical similarity of apatite 
to the mineral part of the native bone of mammals, similar processes can be observed in the human body: at this limit of 
strontium accumulation in bone tissue, thermodynamic modeling is possible [13].

Attempts to theoretically predict the possibility of binding iodine by the apatite structure were undertaken earlier [14], 
but a more detailed result was obtained in [15], where, based on machine learning, density functional theory, DFT (density 
functional theory), and experimental data 18 new thermodynamically stable compounds with the apatite structure containing 
iodine anions were predicted. Since the attention to the issue of the efficiency of the binding of iodine by the apatite matrix does 
not decrease [16, 17], an attempt is made in this work to partially reproduce and expand the results of theoretical modeling.
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2. Materials and methods
2.1. Synthesis
To obtain iodine-apatites, two approaches were considered, namely wet and solid-state approaches. 
In the solution method of synthesis, 0.5 M solutions of nitrate of the corresponding divalent cation, ammonium hydrogen 
phosphate, and a solution containing a 2-fold excess of potassium iodide were used. The general scheme of the reaction 
can be represented as follows:

5MII(NO3)2∙nH2O + 3(NH4)2HPO4 + KI → MII
5(PO4)3I + 6NH4NO3 + KNO3 + 3HNO3 + 5nH2O (1)

The resulting precipitates were kept in the mother liquor for a day, then centrifuged with rinsing with bidistilled hot 
water and dried in air.

Solid-phase synthesis implied the preparation of a stoichiometric mixture of ammonium hydrogen phosphate, as well 
as nitrate and iodide of a divalent cation. The reaction mixture was calcined sequentially at temperatures of 300°C, 500°C, 
and 800°C. The calcination time was 4 h at each stage with the dispersion of the mixture in an agate mortar during the 
transition to each next stage.

4.5MII(NO3)2·nH2O + 0.5MIII2·mH2O + 3(NH4)2HPO4 → MII
5(PO4)3I + 9NO2 + 2.25O2 + 6NH3 + (4.5 + 4.5n + 0.5m)

H2O (2)
Both approaches are simpler in terms of hardware design than the microwave synthesis proposed in [18], the 

mechanochemically activated method in [19], or the synthesis using electro-pulse plasma sintering in [4]. The particular 
amounts of used compounds are given in Table 1.  

We used reagents manufactured by the Vekton company of analytical grade and chemically pure grade, except for 
lead (II) iodide, which was synthesized by the solution method by the reaction of saturated solutions of lead nitrate and 
potassium iodide and characterized by X-ray diffraction.
2.2. Research methods
The phase individuality of the obtained compounds was monitored using a Shimadzu XRD 6000 powder diffractometer. 
Powder X-ray diffraction patterns were taken in the 2θ angle range of 10–60 °, on an X-ray tube with a copper cathode (λ 
(CuKα) = 1.5406 Å) at a voltage of 30 kV and a current 30mA.

Table 1. Amounts of compounds used in two synthetic approaches.

Wet synthesis
Target 
compound 
composition

V
(M(NO3)2∙4H2O, 0.5 M)
(ml)

V
((NH4)2HPO4, 0.5 M) 
(ml)

V
(KI, 0.5 M) 
(ml)

m (apatite) 
(g)

Ca5(PO4)3I 42.3 25.4 16.9 not apatite
Sr5(PO4)3I 47.3 28.4 18.9 not apatite
Ba5(PO4)3I 38.3 23.0 15.3 not apatite
Cd5(PO4)3I 32.4 19.5 13.0 not apatite
Pb5(PO4)3I 30.2 18.1 12.1 3.5974
Solid-state synthesis

Target 
compound 
composition

m
(M(NO3)2∙4H2O) 
(g)

m
((NH4)2HPO4) 
(g)

m (MI2∙nH2O) 
(g)

m (apatite) 
(g)

Ca5(PO4)3I 5.0000 1.6776 1.2445 not apatite
Sr5(PO4)3I 5.0000 1.8720 1.6133 not apatite
Ba5(PO4)3I 5.0000 1.5159 1.6345 4.11911

Cd5(PO4)3I 5.0000 1.2843 1.1872 not apatite
Pb5(PO4)3I 5.0000 1.1961 1.3919 3.69362

1with barium phosphate (comments in text).
2after losing of the greater part of PbI2 (comments in text).
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Chemical purity and composition of the obtained sample were studied with Shimadzu XRF-1800 spectrometer using 
fundamental parameters (FP) method with using standard example. BaKα, CaKα, PbKα, IKα, PKα lines intensities were 
measured three times at 40 kV, 50 mA on Rh anode with FPC detector for P, and SC detector for Ca,Ba,Pb,I (Table 
1). Investigation of the chemical composition of the samples was also performed on method energy dispersive X-ray 
microanalysis (EDXMA) with Oxford Instruments X-MaxN 20 detector.

To refine the crystal structure, the method of full-profile X-ray analysis (the Rietveld method) was used [20]. The 
X-ray diffraction patterns were taken on the same diffractometer in the 2θ angle range of 10–120°, the X-ray tube voltage 
of 40 kV and the current strength of 40 mA, the exposure at a point was 11 s. The structures of known apatites with large 
halogens Sr5(PO4)3Br [21], Cd5(VO4)3I [22], and Pb5(VO4)3I [19] were considered as primary models. The pseudo-Voight 
function (PV_TCHZ) was used to describe the peak profile. The crystal structure was refined using the Topas 3.0 software 
package.

To estimate the particle size, we used both the data on the refinement of the crystal structure of the Topas 3.0 program 
and calculations using the Scherrer formula:

𝑑𝑑 =
𝑘𝑘𝑘𝑘

𝛽𝛽 cos 𝜃𝜃  (3)

where d is the average crystal size, K is the dimensionless particle shape factor (Scherrer’s constant, for spherical particles 
is considered equal to 0.9), λ is the wavelength of X-ray radiation, β is the width of the reflection at half height, θ is the 
diffraction angle [23].

Microscopic studies by high-resolution transmission electron microscopy were performed on a JOEL JEM2100F 
transmission microscope at a voltage of 200 kV, and by atomic scanning microscopy on an AURIGA CrossBeam 
Workstation (Carl Zeiss).

3. Results
In this work, an attempt was made to obtain iodide-trisphosphates of a number of divalent cations (Ca, Sr, Ba, Cd, Pb) 
with an apatite structure.

X-ray phase analysis of precipitates obtained in the course of solution synthesis, as well as polycrystalline samples 
obtained by the solid-phase method, showed that, in the overwhelming majority of cases, orthophosphates of the 
corresponding divalent cations were obtained. The exceptions were solution synthesis with lead (hereinafter PbPI (w)) 
and solid-phase syntheses with barium and lead (BaPI and PbPI (ss), respectively): their diffraction patterns were similar 
to the X-ray diffraction patterns of compounds with apatite structure presented in the inorganic crystal structure database 
(ICSD).

X-ray fluorescence analysis showed (Table 2) that the amount of bound iodine in the resulting precipitates is significantly 
less than expected from the theoretical stoichiometry of the compounds (especially in the case of barium compound).

A full-profile X-ray analysis of the obtained compounds showed that their crystal structure corresponds to the type of 
apatite with the space group P63/m of the hexagonal system. In addition, the quantitative phase analysis of the obtained 

Table 2. X-ray fluorescence analysis data for synthesized1 compounds.

Target compound
composition

BaO (wt%) P2O5 (wt%) BaI2 (wt%)

calc found2 found3 calc found2 found3 calc found2 found3

Ba5(PO4)3I 62.82 75.76 75.74 19.38 23.38 23.42 17.80 0.86 0.84
PbO (wt%) P2O5 (wt%) PbI2 (wt%)
calc found2 found3 calc found2 found3 calc found2 found3

Pb5(PO4)3I 69.37 14.71 15.92
solid-state 80.56 80.54 17.08 17.08 2.36 2.38
wet 80.02 80.02 16.96 17.00 3.02 2.98

1Standard uncertainties u are u(wt) = 0.02%.
2Shimadzu XRF-1800.
3JEOL JSM-IT300LV with Oxford Instruments X-MaxN 20 detector.
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samples showed that the BaPI sample contains a significant impurity of barium phosphate, the structure of which was 
taken from [24]. The phase analysis of the lead-containing samples showed the absence of any secondary phases in the final 
product (Figure 1a–1c, Table 3). In the case of PbPI-ss, it can be explained by the absorption of most of the melt of lead 
iodide by the material of the alundum crucible (Tm (PbI2) = 412°C).

As you can see from the Table 4, all three obtained apatites are characterized by a high defectiveness of the positions 
occupied by halogen, which indicates the low efficiency of the structural type of apatite in relation to the binding of iodine 
ions, despite the rather optimistic forecast in [15]. In this case, iodine ions are located in the crystallographic position 2b 
(0; 0; 0), which is located on one side in the hexahedral tunnel of the structure formed by three-cap trigonal prisms M4fO9 
(Figure 2a), on the other hand, between quasi-layers formed by phosphate tetrahedra and polyhedra M6hO6I2 (Figure 2b), 
which is typical for halogens larger than fluorine in the apatite structure [25–27].

The significantly broader diffraction maxima of PbPI (w) as compared to other obtained apatites indicate the nanoscale 
of the sample particles. According to calculations using the Scherrer formula and when refining the structure using the 
Rietveld method, the particle size is 19.6 and 27.6 nm, respectively. The particle size was also confirmed by a direct method 
- atomic scanning microscopy (Figure 3).

The abnormal values of the crystal structure distortion index of the obtained apatites are presumably related to the 
particle size. In a number of works by T. White and colleagues [7, 28], the angle φ is the angle of rotation of the bases of 
three-point trigonal prisms M4fO9 relative to each other - is considered as such an indicator (Figure 4). As you can see from 
the Table 5, the value of this index for the PbPI (w) sample is as close to 0° as possible, while BaPI and PbPI (ss) have the 
values of the angle φ typical for apatites with large divalent cations [7].

BaPI-apatite 81.05%
Ba3(PO4)2 18.95%

a

b

c

2θ (deg)
10 20 30 40 50 60 70 80 90 100 120110

Figure 1. Experimental (blue), calculated (red), difference 
(gray), and stroke X-ray diffraction patterns of the obtained 
compounds: BaPI - a, PbPI (ss) - b, PbPI (w) - c.
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Table 3. Parameters and results of full-profile X-ray analysis of the crystal structures of the synthesized iodine-apatites.

BaPI PbPI(ss) PbPI(w)

Space group P63/m
a (Å) 10.18609(34) 9.87882(18) 9.87058(48)
c (Å) 7.71113(30) 7.43222(16) 7.41255(46)
V (Å3) 692.889(54) 628.144(26) 625.437(72)
М (g·mol-1) 910.7(96) 1246.7(60) 1255.0(81)
Crystal size (nm) 331(64) 203.1(85) 27.58(63)
Density (g·cm-3) 4.365(23) 6.591(16) 6.664(21)
Coefficients of pseudo-Voight function
U 1.014(55) –0.205(10) 0.133(38)
V –0.7411(25) 0.1424(72) 0.008(32)
Q 0.1300(14) –0.0229(12) –0.0187(66)
Z 0 0 0
X 0.000(12) 0.0542(56) 0.000(17)
Y 0 0 0
Scale factor 0.00013737(86) 0.0003990(11) 0.00013517(44)
R-Bragg (%) 5.448 8.533 5.433

Table 4. Atomic coordinates and occupancies of positions of synthesized iodine apatites.

Atom Wycoff position x y z Occ

BaPI
Ba1 4f 1/3 2/3 -0.0001(13) 0.8871(43)
Ba2 6h 0.24113(50) –0.01859(52) 1/4 0.9152(29)
P 6h 0.3974(19) 0.3632(21) 1/4 1
O1 6h 0.3446(40) 0.4772(35) 1/4 1
O2 6h 0.5808(38) 0.4778(36) 1/4 1
O3 12i 0.3579(19) 0.2752(20) 0.0698(25) 1
I 2b 0 0 0 0.040(24)
PbPI(ss)
Pb1 4f 1/3 2/3 0.0020(14) 0.9090(22)
Pb2 6h 0.24605(35) –0.00024(57) 1/4 0.9152(16)
P 6h 0.3911(12) 0.3603(15) 1/4 1
O1 6h 0.3446(28) 0.5118(24) 1/4 1
O2 6h 0.5792(26) 0.4796(28) 1/4 1
O3 12i 0.3508(15) 0.2670(17) 0.0716(18) 1
I 2b 0 0 0 0.127(13)
PbPI(w)
Pb1 4f 1/3 2/3 0.01250(74) 0.9498(30)
Pb2 6h 0.24646(37) –0.00620(59) 1/4 0.8940(21)
P 6h 0.3859(16) 0.3412(21) 1/4 1
O1 6h 0.3942(38) 0.4796(26) 1/4 1
O2 6h 0.6095(44) 0.4803(33) 1/4 1
O3 12i 0.3337(17) 0.2403(18) 0.0672(24) 1
I 2b 0 0 0 0.163(18)
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Figure 2. Schematic representation of the crystal structure of the obtained iodine 
apatites. All positions of iodine atoms are indicated by white spheres in the figure.

Figure 3. AFM image of PbPI(w) nanospheres. The average particle size is 25–30 nm.
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It should also be noted that, according to high-resolution transmission electron microscopy data, during the synthesis 
of PbPI (ss), whiskers were formed in the sample - one-dimensional dislocation-free crystals 50–100 nm long and 5–10 
nm wide (Figure 5a). Figures 5b and 5c also show the crystal structures of agglomerated whiskers. Such whiskers can play 
the role of a native reinforcing agent when creating a ceramic material based on this compound.

Figure 4. General view of M4fO9 polyhedra in projections onto 
different crystallographic planes and the “twist angle” φ, which 
serves as a criterion for the distortion of the crystal structure of 
apatites.

Table 5. Parameters of the coordination polyhedrons of cations in the 
crystal structure of the synthesized iodine-apatites.

BaPI PbPI(ss) PbPI(w)

М4f-O1×3 2.771(30) 2.433(20) 2.651(30)
М4f-O2×3 2.817(33) 2.755(25) 2.824(28)
М4f-O3×3 2.944(21) 2.902(15) 2.996(17)
φ (deg) 18.8 18.3 2.1

М6h-O2 2.487(31) 2.376(22) 2.335(28)
М6h-O3×2 2.618(19) 2.571(14) 2.494(18)
М6h-O1 2.929(32) 3.087(21) 2.531(18)
М6h-O3×2 2.956(19) 2.658(16) 3.168(27)
М6h-I×2 3.190(18) 3.060(26) 3.083(12)

P-O1 1.504(45) 1.628(23) 1.327(37)
P-O3×2 1.593(21) 1.549(15) 1.607(20)
P-O2 1.634(31) 1.772(34) 1.930(37)
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4. Conclusion
Despite the theoretical prediction of the possibility of obtaining various iodine-apatites, in particular, only one iodide 
triphosphates, solution and solid-phase methods were able to obtain two individual compounds, the compositions of 
which can be described by the following formulas Ba4f

1.78(2)Ba6h
2.75(2)(PO4)3I0.04(2), Pb4f

1.82(2)Pb6h
2.75(2)(PO4)3I0.13(2) (ss), Pb4f

1.90(2)
Pb6h

2.68(2)(PO4)3I0.16(2) (w), and pentalead iodide triphosphate was not considered as possible. Despite the low iodine content 
in the obtained phases, such nonstoichiometric compounds, nevertheless, proved to be quite stable, but only for the largest 
cations of the studied series, barium and lead. This can be explained by the fact that iodine cations are located between the 
layers of the structure formed by phosphate tetrahedra, while the interlayer distance is precisely determined by the size 
of the cation at the 4f crystallographic position. In addition, phosphate phases with completely vacant halogen positions 
(for example, Pb9(PO)6□ [29]) are known, which have an apatite structure despite the absence of a halogen. This can be 
attributed to the stability of the obtained phases, which have a largely similar composition and structure and differ only 
in the presence of a small amount of halogen and an additional amount of cation necessary to maintain electroneutrality.

An analysis of the crystal structure of the obtained compounds showed that these phases bind about 80% less 
iodine ions from the theoretically expected amount, which cannot speak in their favor as a promising basis for creating 
a matrix for binding radioactive iodine. However, it should be noted that, during the solid-phase synthesis of PbPI-
apatite, nanowhiskers are formed directly in the polycrystalline sample, which can have a favorable effect on the strength 
characteristics of ceramic materials based on it. Moreover, phosphates with the apatite structure are characterized by 
higher melting points and polymorphic transformations [30], which makes them more preferable as a chemical base of 
ceramics for binding radioactive isotopes of iodine.
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Figure 5. HRTEM image of the microstructure of a PbPI (ss) sample: a - general view of whiskers, b, c - atomic structure of whiskers.
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