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1. Introduction
Staphylococcus aureus as a Gram-positive bacterium causes several infections including nosocomial infections. S. aureus 
infections have been shown to be highly variable. For instance, S. aureus causes acute diseases, like bacteremia and severe 
chronic infections [1]. In recent years, S. aureus has represented a serious challenge because of its ability for developing 
resistance against currently available antibiotics. This resistance is generally linked to the capability of the bacteria to 
form biofilm. S. aureus strains that are isolated from mastitis in ruminants, for example, produce slime in vivo, resulting 
in a remarkably higher capacity of colonization in comparison with nonslime producing variants. As a result of biofilm 
formation in mastitis isolates, susceptibility to antibiotics is reduced, which is the consequence of the reduced antibiotic 
diffusion through the biofilm matrix and a reduction of the metabolic activity of bacteria inside the biofilm [2]. Thus, a 
new generation of antibacterial agents is urgently needed to fight S. aureus.

Ursolic acid (UA, 3β-hydroxyurs-12-en-28-oic acid,) as a natural pentacyclic triterpenoid carboxylic acid is found in 
various plants. This agent is highly potential to provide defense against certain pathogens such as E. coli and S. aureus [3,4]. 
UA has been indicated to have various effects on some microorganisms, characterizing it as an antibiotic drug. Kozai et 
al. [5] demonstrated that UA managed to inhibit insoluble glucan synthesis in Streptococcus mutans. Moreover, UA has 
been shown to fight against S. sobrinus and S. mutans, with a minimum inhibitory concentration (MIC) of 2.0 μg/mL [6]. 
Furthermore, the antibacterial properties of UA have been discovered on other human bacterial pathogens, including 
S. pneumonia, methicillin-sensitive, and methicillin-resistant Bacillus cereus, Staphylococcus aureus, and Pseudomonas 
aeruginosa [7]. 

Despite its ability to kill bacteria, UA has low water solubility which limits its clinical applications. Therefore, different 
methods were proposed for improving UA antibacterial activity. Some nano-drug delivery systems have been used for 
increasing drug solubility [8, 9]. In this regard, some natural water-soluble polymers, like alginate, chitosan, or poly(lactic-
co-glycolic acid) have been widely employed in drug delivery systems owing to their biodegradability and biocompatibility 
features [10–13]. 

Chitosan (Ch) is a natural polysaccharide polymer; it is a deacetylated chitin derivative. Thanks to its low toxicity 
and high biocompatibility, this biological material has been widely used in many biomedical applications [14,15]. Ch 
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has potency for drug delivery through the paracellular pathway. Jin et al. [10] loaded UA in Ch nanoparticles to study 
their antiangiogenesis activity in tumors through in vitro and in vivo investigations. Although synthesis of UA-loaded 
Ch nanoparticles and their antitumor properties have been reported, to the best of authors’ knowledge, there is no study 
concentrating on the antiinfective properties of the UA-loaded Ch nanoparticles. Therefore, this study aims to investigate 
the antiinfective properties of ursolic acid-loaded chitosan nanoparticles (UA-Ch-NPs) against S. aureus. It was assumed 
that UA-Ch-NPs could overcome the solubility of UA and improve its efficacy. The biological applications, such as growth-
inhibitory effects and biofilm formation prevention activity of this agent were evaluated as well.

2. Materials and methods
2.1. Materials
Chitosan (Mn = 1600 determined by the supplier) and ursolic acid (98.6%) were purchased from Sigma-Aldrich Co., 
Germany. Ethyl-(3-3-dimethylaminopropyl) and N-hydroxy-succinimide (NHS) were purchased from Beyotime Institute 
of Biotechnology, China. S. aureus ATCC 25923 was supplied by Pasteur Institute, Iran. Penicillin and Ciprofloxacin 
were obtained from Jaber Ebne Hayyan Pharmaceutical Co., Iran. Ceftiofur, erythromycin, tetracycline, trimethoprim, 
ampicillin, chloramphenicol, and gentamicin were obtained from Pharmacia & Upjohn, Belgium.
2.2. Synthesis of UA-Ch-NPs
UA-Ch-NPs were synthesized as described previously [10]. In brief, 32 mg of Ch was dissolved in 5 mL 1% glacial acetic 
acid. Then, 10 mg UA, 30 mg ethyl-3-(3-dimethylaminopropyl), and 8 mg N-hydroxysuccinimide (NHS) were mixed with 
the obtained solution. It was then vortexed overnight at ambient temperature. Then, the sample was centrifuged for 20 min 
at 11,000 rpm. The harvested pellets were UA-Ch-NPs that were lyophilized for prolonged storage.
2.3. Characterization of UA-Ch-NPs
To confirm the successful production of UA-Ch-NPs, Fourier transform infrared (FTIR) analysis was conducted using a 
FTIR spectrophotometer (Perkin Elmer Spectrum RXI). This experiment was carried out for UA, Ch, and UA-Ch-NPs 
samples. Transmission electron microscopy (TEM; Zeiss, Oberkochen, Germany) was used to study the morphology of 
the prepared samples and Digimizer image analysis software (version 5.3.4) was used to measure the mean size of the 
nanoparticles. The X-ray diffraction (XRD) analysis was also performed using an INEL Equinox 3000 diffractometer with 
the CuKα (λ = 1.5406 Å) radiation. The size and surface charge of the produced UA-Ch-NPs were analyzed using DLS-
zeta potential analyzer (NanoPlus-Micromeritics, USA). The surface zeta potential of UA-Ch-NPs was calculated using a 
dynamic light scattering (DLS) instrument (Brookhaven 90 Plus/BI-MAS). 
2.4. Antibiotic susceptibility testing 
S. aureus ATCC 25923 was purchased from Pasteur Institute of Iran. A total of 21 S. aureus isolates obtained from bovine 
mastitis were used in this study; the isolation was carried out in the pharmaceutical laboratory, Shahid Beheshti University 
of Medical Sciences, Tehran, Iran. The disc diffusion approach was used to carry out antibiotic sensitivity testing (AST) 
against ceftiofur, erythromycin, tetracycline, trimethoprim, penicillin, ampicillin, chloramphenicol, gentamicin, and 
ciprofloxacin. Firstly, inoculation of the Mueller–Hinton agar Petri dishes with half-McFarland of bacteria was done, 
followed by the placement of antibiotic discs right onto the agar. The diameters around the discs were determined after 24 
h of incubation. The sensitivity to UA-Ch-NPs was assessed based on the inhibition zone diameter, based on the Clinical 
and Laboratory Standards Institute (CLSI) protocol [16].
2.5. Minimum inhibitory concentration (MIC) 
The MIC value of all pharmaceutical agents was measured by microdilution assay in 96-well plates. Accordingly, 100 µL 
of sterilized Mueller–Hinton broth (MHB) was added to each well, followed by treating each well separately with serial 
dilutions of UA and UA-Ch-NPs. The microbial cultures were then adjusted to the turbidity of a 0.5 McFarland standard. 
The 0.2 mg/mL p-iodonitrotetrazolium chloride (INT) was mixed with each sample. Finally, following incubation at 37 °C 
for 24 h, the lowest concentration before the color change was determined as the MIC value. 
2.6. Bacterial adhesion to hydrocarbons test
The bacterial adhesion to hydrocarbons test was used for measuring the relative hydrophobicity of various bacterial strains 
following the work by Subbiahdoss et al. [17]. In short, bacterial suspension was mixed with n-decane (hydrocarbon 
phase) at a 1:1.2 ratio, followed by vortexing for 2 h. After the separation of the obtained emulsion, the optical density 
of the aqueous phase was measured at 600 nm (OD600). The bacteria adhesion to the oil phase was quantified through 
calculation of the ratio between the optical density prior to and after mixing. Finally, the hydrophobicity degree was 
categorized into three classes: > 70%, 30%–70%, and < 30% for strong, moderate, and low hydrophobicity, respectively. 
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2.7. Biofilm formation assay 
To evaluate the biofilm formation ability of the samples, bacterial suspension was initially added to sterile tryptic soy broth 
(TSB) supplemented with 1% glucose and then seeded into 96-well flat-bottom sterile polystyrene microplate. The broth 
without bacteria and the inoculated broth without the nanoparticles were considered as negative and positive controls, 
respectively. The samples were incubated at 37 °C for 24 h. Biofilm stains and the culture medium were removed and 
washed with phosphate buffered saline (PBS). Afterward, 100 μL gentian violet, 1%, was added and incubated at room 
temperature for 5 min. The samples were then washed with distilled water to wipe up the excess gentian violet. Eventually, 
200 μL glacial acetic acid (33% (w/v)) was added to each well. After 20 min, the ELISA reader (BioTek, Citation3) was used 
to read the absorbance of each sample at 640 nm [18]. 

The OD640 values were employed for comparative analysis and semi-quantitative classification of the biofilms produced 
by the bacterial strains based on the approach presented by Stepanovic et al. [19]. Briefly, the cut-off OD (ODc) was set as 
three standard deviations above the mean OD of the negative control, and classification of strains was as follows: OD > 4 
× ODc = strong biofilm producer; 2 × ODc < OD < 4 × ODc = moderate biofilm producer; ODc < OD < 2 × ODc = weak 
biofilm producer; and OD < ODc = poor biofilm producer.

Atomic force microscopy (AFM, Thero-microscopes, CP Research, USA) was used to study the biofilm formation in a 
contact mode of 10 × 10 µm2. The silicon nitride tips used in the measurements were irradiated with UV for 15 min in the 
air to remove any organic contaminants. The tip curvature radius was less than 10 nm. The force constant and oscillation 
frequency were 0.03 N/m and 255 kHz, respectively.
2.8. Determination of bacterial growth curves
OD measurements for the development of bacterial growth curves were performed by determining the absorbance at a 
wavelength of 620 nm. Bacteria were cultured in Costar 96-well flat-bottom plate and treated with different concentrations 
of UA and UA-Ch-NPs (i.e., MIC, 0.5 MIC, and 2 MIC). The OD620 values of bacterial cultures were measured at 15 min 
intervals for 24 h and each one was read 3 times. 
2.9. Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR)
Total RNA was extracted from treated and untreated S. aureus using commercial RNA extraction kits (Qiagen, Germany) 
according to manufacturer instructions. The equal quantity of RNA extracted from each group of bacteria was treated by 5 
μL of DNase 1 (Qiagen, Germany) for the probable presence of contaminating DNA. The RNA samples were then checked 
for the 16S rRNA gene as an internal standard using below 16S primers. According to the manufacturing protocol (TaKaRa, 
Japan), total RNA (2 μg) was used for cDNA synthesis. The reaction was carried out under the following conditions: 
one cycle at 37 °C for 15 min for reverse transcription, 94 °C for 30 s for the inactivation of enzymes up to 10 μL, and 
without hot commencement [20]. The RT-qPCR reactions were performed using SYBR Green PCR Master Mix (Qiagen, 
Germany) and ABI 7000 instrument (Applied Biosystems, Italy). The used primers were as follows: icaA Forward; 5-ACA 
CTT GCT GGC GCA GTC AA-3, icaA Reverse; 5-TCT GGA ACC AAC ATC CAA CA-3, icaD Forward; 5-ATG GTC 
AAG CCC AGA CAG AG-3, icaD Reverse; 5-TGA ACT TAT TCC ACC GCC TTT A-3, Bap Forward; 5- ATA CTG ATG 
GCG ATG GTA-3, Bap Reverse; 5-ACT GTG TCT TCT GTT GTA AT-3, 16S forward; 5-ACT GGG ATA ACT TCG GGA 
AA-3 and 16s reverse; 5-CGT TGC CTT GGT AAG CC-3. The PCR mixture’s final volume was 25 μL with 12.5 μL of the 
master mix, 1 μL each of forward primer and reverse primer, 1 μL of cDNA, and 9.5 μL of free water. The cycling conditions 
were: 1 cycle at 95 °C for 10 min, and then 40 cycles at 95 °C for 20 s, and 60 °C for 40 s. Finally, to draw the melting curve, 
the samples were incubated at 95 °C for 15 s, 60 °C for 30 s, and 95 °C for 15 s.
2.10. Data analysis
One-way ANOVA was used for the statistical analysis of the experimental data, and results were presented as means ± 
SD. Also, p < 0.05 was considered statistically significant to verify the variations in the results due to the effect of different 
treatments. 

3. Results 
3.1. Characterization of UA-Ch-NPs
The TEM image of the synthesized UA-Ch-NPs is shown in Figure 1a. As shown, spherical nanoparticles with an almost 
uniform particle size of 75 nm were obtained. The FTIR spectra of UA, Ch, and UA-Ch-NPs are presented in Figure 1b. A 
unique characteristic peak in the FTIR spectrum of UA at 3520 cm–1 is observed, which is identified as the O–H stretching 
vibration. The peak at 2940 cm–1 corresponds to the C-H stretching vibrations in methylene groups. The bands at 1720, 1380, 
1463, and 1090 cm–1 are related to the C=O stretching vibrations in the carboxylic acid group, C-H groups, C=C stretching 
vibrations, and C-O stretching vibrations in secondary alcohols, respectively [21]. Ch also showed some characteristic 
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peaks in the FTIR analysis. The presence of O-H, N-H, and intramolecular hydrogen bonds in Ch was confirmed by 
stretching vibrations around 3200–3600 cm–1. The peaks at 2920 and 2870 cm–1 are related to symmetric and asymmetric 
stretching vibrations of C-H groups, respectively. The bands at 1650, 1590, and 1350 cm–1 are associated with the C=O 
stretching vibrations in type I amide, the N-H bending vibrations in type II amide, and the C-N stretching vibrations in 
type III amide, respectively. The peaks at 1450 and 1360 cm–1 are attributed to the C-H bending and symmetrical vibrations 
in CH2 and CH3. The absorption bands at 1150 and 1000 cm–1 are related to asymmetric vibrations of C-O-C bridges and 
C-O stretches, respectively [22,23]. The changes in the intensity of these peaks and the formation of new peaks in the FTIR 
spectrum of UA-Ch-NPs suggest the functional interaction between UA and Ch. Two small peaks at 1600 and 1700 cm–1 
in the spectrum of UA-Ch-NPs are related to the stretching vibrations of C=O and C-N carbonyl groups associated with 
the formation of an amide bond between carboxylic acid, ursolic acid, and chitosan amine [22]. The peak at 1550 cm–1 is 
attributed to the N-H bending vibrations and the wide peak around 3400 cm–1 is related to the O-H stretching vibrations 
at the Ch surface. The emergence of these peaks in the spectrum of UA-Ch-NPs and the absence of the characteristic peaks 
of UA confirm the binding interaction between Ch and UA through the formation of amide bonds.

The results of DLS and zeta potential analysis of UA-Ch-NPs are presented in Figure 1c. Accordingly, the average 
particle size of UA-Ch-NPs is 258 nm, and its polydispersity index (PDI) is 0.409. Based on the results, the zeta potential of 
UA-Ch-NPs is +40.1 mV, which is associated with positively charged amine groups on the Ch surface. The XRD patterns 
of UA and UA-Ch-NPs are shown in Figure 1d. The characteristics peaks associated with UA were observed at 2θ values 
of 5.15, 8.81, 10.30, 14.50, 16.43, 21.40, and 27.22. These characteristic peaks were also observed in the diffraction pattern 
of the UA-Ch-NPs indicating the loading of UA on Ch nanoparticles. Ch usually shows a broad diffraction peak at 2θ 
= 22.6 ° which is also seen in the UA-Ch-NPs diffraction along with some peaks related to UA. The presence of similar 
characteristic peaks related to UA and UA-Ch-NPs was reported in a previous research [24].

500 1000 1500 2000 2500 3000 3500 4000

0

100

200
UA-Ch-NPs

Ch

UA

Tr
an

sm
itt

an
ce

(%
)

Wavenumber(cm-1)

10 20 30 40 50 60 70 80

UA-Ch-NPs

UAIn
te

ns
ity

 (a
.u

.)

2θ (degree)

a

c

b

d

Figure 1. Characterization of UA-Ch NPs. (a) TEM images of the prepared UA-Ch-NPs, (b) FTIR spectra of UA, Ch, and UA-Ch-NPs, 
(c) size distribution and zeta potential of UA-Ch-NPs, and d) XRD patterns of UA and UA-Ch-NPs.
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3.2. Antibacterial potency of UA-Ch-NPs
Antibiotic sensitivity of 21 S. aureus strains, isolated from bovine mastitis, showed different levels of antimicrobial 
susceptibility patterns. The antimicrobial resistance (AMR) of S. aureus isolates is shown in Figure 2a. Generally, the 
high resistance or low susceptibility to antibiotics was observed with penicillin and ciprofloxacin where 66.2% and 76.2% 
of the isolates were resistant, respectively. Gentamicin revealed the most effective antibiotic effect, and all the S. aureus 
strains were sensitive to this antibiotic (100% sensitive). The MIC value for UA and UA-Ch-NPs were 64 and 32 µg/mL, 
respectively (Figure 2b), revealing that the growth-inhibitory effects of UA-Ch-NPs were more than those of UA. Results 
also showed that S. aureus was sensitive to UA and UA-Ch-NPs at MIC, 0.5 MIC, and 2 MIC concentrations (Figure 2c). 
3.3. Antibiofilm effects of UA-Ch-NPs
To determine the effects of UA and UA-Ch-NPs on biofilm formation by S. aureus, 21 strains isolated from bovine mastitis 
were cultured. As determined by microtiter plate assay (OD640), among the 21 isolates, biofilm-producing bacteria were 
classified as moderate (5 isolates) and strong (16 isolates). After 24 h of incubation of the bacteria with UA and UA-Ch-
NPs, biofilm formation reduced drastically (Figure 3a). A number of studies have indicated a potential effect of bacterial 
hydrophobicity on bacterial adhesion to host tissues and biofilm formation. Therefore, cell surface hydrophobicity (CSH) 
and biofilm formation are significantly correlated [24,25]. Three types of hydrophobicity were identified: weak (< 30%, 
hydrophilic), moderate (> 30%–70%), and strong (> 70%). In this study, among the 21 isolates of bacterial strains, 62% had 
strong CSH, and the rest exhibited moderate hydrophobicity. As summarized in Table, among the S. aureus isolates, most 
strains were strongly hydrophobic. To further study the antibiofilm characteristics of UA-Ch-NPs, AFM analysis was used 
for the investigation of the interaction between the bacterial cells and the nanoparticles. AFM images of S. aureus showed 
a significant difference between biofilm formation of the control sample (S. aureus without treatment) and UA-Ch-NPs 
treatment (Figure 3b). Several research studies showed that the icaD and icaA genes of S. aureus have a key role in the 
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Figure 2. The antibacterial effects of UA-Ch-NPs. (a) antibiotic susceptibility analysis of all isolates, (b) MIC determination for UA and 
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synthesis of polysaccharide intercellular adhesion from poly-N-acetylglucosamine contributing to biofilm formation [26]. 
Our data also showed that UA-Ch-NPs led to a dramatic reduction in both icaA and icaD genes (Figure 3c). The statistical 
analysis showed that the results were statistically significant (p < 0.05).

4. Discussion
In the present study, UA-Ch-NPs were synthesized, and their antiinfective properties were investigated. Several analytical 
techniques were used to characterize the developed UA-containing nanoparticles to evaluate their suitability for the 

Table. Interpretation of biofilm formation by S. aureus in response 
to UA and UA-Ch-NPs.

SD Mean ODC

0.1410 0.1046 0.0121

Average OD value

OD ≤ 0.141
0.141 < OD ≤ 0.282
0.282 < OD ≤ 0.562
0.562 < OD

Strong Moderate Weak Negative
0

20

40

60

80

Bio�lm formation

Bi
o�

lm
pe

rc
en

ta
ge

(%
)

0.5MIC (UA-Ch-NPs)
MIC (UA-Ch-NPs)

2MIC (UA-Ch-NPs)

U
A

-C
h-

N
Ps

Co
nt

ro
l

Sl
ow

[µ
m

]
Sl

ow
[µ

m
]

Control UA UA-Ch-NPs Ch 
0

10

20

30

40

ic
aD

Ex
pr

es
sio

n
Le

ve
l

p=0.0052

p=0.043

p=0.0001

Control UA UA-Ch-NPs Ch
0

10

20

30

40

ic
aA

Ex
pr

es
sio

n
Le

ve
l

p=0.001

p=0.0001

p=0.021

a

c

b
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intended purpose. The TEM analysis showed that the synthesized UA-Ch-NPs had a good monodispersity with spherical 
morphology. The XRD analysis results confirmed the presence of UA on the Ch nanoparticles and from the FTIR results, 
the successful interaction of UA with the Ch nanoparticles surface was deduced. The DLS analysis of UA-Ch-NPs showed 
an average particle size of around 258 nm with a PDI of 0.409. The PDI is a value between 0 and 1. The closer this value 
is to zero, the greater is the uniformity of the particle size. The best value is around 0 to 0.2 for polymeric nanoparticles; 
for drug release purposes, this index should be below 0.4, and for other purposes, up to 0.7 is acceptable and shows the 
uniformity of the particle size [27]. Accordingly, the developed nanoparticles with a PDI of around 0.41 were suitable for 
the drug delivery purpose. The hydrodynamic diameter obtained from the DLS analysis was 258 nm, which was different 
from that obtained from the TEM analysis in a dry state (vacuum). This difference in particle size between DLS (258 nm) 
and TEM (75 nm) is attributed to the positive zeta potential of these nanoparticles that are strongly covered by the water 
molecules while being dispersed in aqueous solution for DLS analysis and show a large hydrodynamic diameter compared 
to that obtained from TEM analysis in dry state. The obtained diameter for the synthesized UA-Ch-NPs in this study is in 
the middle range compared to the other studies on UA-loaded nanocarriers. For instance, an average particle size of 330 
nm was reported for UA-loaded Ch/poly (lactic acid) (PLA) nanoparticles [28], while another study reported a particle 
size of around 100–200 nm (an average of 120 nm) for UA-loaded Ch nanoparticles [10]. There is not a consensus among 
researchers about the suitable particle size to be absorbed by the intestinal mucosa. Some investigations have reported that 
particles with the size 130–950 nm are suitable to be absorbed by intestinal M cells [29]. The oversized pores of tumor 
microvessels varies from 100–1200 nm [30], hence, nanoparticles with a size of about 250 nm size could enter the broad 
fenestrations of the tumor tissues, while they are not able to enter the vessels of the normal endothelium which are narrow, 
approximately 5–10 nm [23]. Hence, the particle size obtained in this study has a relatively suitable size for drug delivery 
applications.

The zeta potential of the prepared nanoparticles was +40.1 mV demonstrating their high stability and the positive 
charge of the particles, which provide an effective system for drug delivery due to being taken up by proliferating cells. 
This effect was confirmed by previous studies [31]. The binding of nanoparticles to the cell membrane is affected by the 
charge of the NPs. Since cellular surfaces are dominated by negatively charged sulphated proteoglycans molecules that are 
highly anionic, the interaction between the proteoglycan and the nanoparticle shell (positively charged) is ionic, so the 
higher surface charge of the nanoparticles results in a stronger attachment of the nanoparticles to the cell membrane and 
higher adsorption of the nanoparticles [32]. Antonio et al. [28] also reported that by the incorporation of Ch to the surface 
of UA-loaded PLA nanoparticles, the zeta potential increased from –25 to +28 mV because of the amino groups of the Ch 
molecules, which facilitated the interaction of the nanoparticles with biological membranes.

In vitro studies demonstrated the antiinfection activity induced by UA-Ch-NPs. The antimicrobial effects of UA-Ch-
NPs on the growth of S. aureus and its biofilm formation ability were observed. While S. aureus was resistant to antibiotics, 
it showed high susceptibility to UA and UA-Ch-NPs. In a study by Wu et al. [33], the stable antibacterial effect of triterpene 
derivatives such as UA was also demonstrated. In addition, the reduction of the MIC value for UA-Ch-NPs compared 
to UA is an indication of the higher growth-inhibitory effects of UA-Ch-NPs, which is confidently associated with the 
presence of Ch. It has been reported that Ch derivatives can interact with microbial cell membranes and ultimately decrease 
membrane integrity [34]. Qi et al. [35] also reported that Ch-NPs act against S. aureus by inhibiting their growth through 
membrane disruption and leakage of metabolites.

This study mainly aimed to produce a nanoformulation to combat S. aureus infection. Our findings also indicated 
that UA-Ch-NPs were able to inhibit bacterial growth in a concentration-dependent manner. According to Figure 2c, the 
developed UA-Ch-NPs prolonged the lag phase of S. aureus and also reduced the OD. Generally, during the lag phase, 
cells are depleted of metabolites and enzymes because they are adapting to their new growth conditions. In this phase, 
intermediates, enzymes, RNA, and other molecules are made to resume the growth. In this situation, the occurrence of 
a long lag phase is probable, which represents the period required for sufficient multiplication of a few mutants in the 
inoculum for an apparent rise in cell number [36]. 

In addition, our findings also showed that UA-Ch-NPs reduced the biofilm formation by the S. aureus isolates. 
Emerging data is trying to characterize genes engaged in biofilm formation. For example, the icaA and icaD genes have 
been extremely characterized before being engaged in S. aureus biofilm formation [36]. These genes contribute to the 
intercellular attachment of bacteria and biofilm formation. Our data also clearly indicated that the treatment of bacterial 
cells with UA-Ch-NPs significantly reduced icaA and icaD, and consequently, biofilm formation. Qian et al. [37] also 
reported that UA disrupted the cell membrane integrity of carbapenem-resistant Klebsiella pneumoniae, and strong 
inhibitory influences against the expression of biofilm-related genes and biofilm formation were reported.
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5. Conclusions 
The current study managed to produce UA-Ch-NPs successfully. According to the TEM analysis, the synthesized 
nanoparticles were uniform in size with a good monodispersity. Moreover, the FTIR analysis results showed the interaction 
between functional groups of UA and Ch and thereby the successful loading of UA on the nanoparticles. The XRD results 
also showed the characteristic peaks associated with UA in UA-Ch-NPs. According to the results, a decrease in the MIC 
value of UA-Ch-NPs in comparison with UA against S. aureus revealed the enhanced inhibitory effect of the UA-loaded 
nanoparticles due to the presence of Ch nanoparticles. This pharmaceutical agent reduced the growth of S. aureus and 
its biofilm formation, which was also confirmed by the AFM analysis. The treatment of bacterial cells with UA-Ch-NPs 
significantly decreased the expression of icaA and icaD genes which are engaged in biofilm formation. The results of 
this study indicated that UA-Ch-NPs could serve as an antibiotic agent, however, this needs to be confirmed by further 
research in the future. 
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