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1. Introduction
The inter- and intra- molecular interactions of polymers determine their physicochemical behavior and play a key role in 
the design of new materials and processes. However, the long-chain character of polymers, in comparison to low molecular 
weight compounds, poses a few fundamental problems when trying to describe their intermolecular interaction, for 
example, in interface environments [1]. 

Inverse gas chromatography (IGC) [2–3] is a precise and reliable method that has been used for over 40 years to 
determine polymer properties by investigating polymer interactions with low molecular weight compounds [4]. The 
method is also economical as it requires a limited amount of probes and polymer samples.

In the IGC method, the material such as polymer and polymer mixtures [5] to be examined is placed on a column as a 
stationary phase, which is different from the common gas chromatography (GC) of the IGC method. Probes (solvents) of 
known properties are then injected into the chromatographic column containing the polymer. Retention times for probes 
passing in the column are used to describe their interactions with the investigated material.

The activity of a material’s surface depends on the nature of the surface, such as surface free energy and acidity-
basicity [6–7]. It is possible to obtain information about many important surface properties of polymers such as the 
dispersive component of surface free energy [7–9], specific (acid-base) interactions [10–12], thermodynamic parameters 
of adsorption/sorption [13–14] for polymeric systems over a wide temperature range by the IGC.  

Since its discovery, polystyrene has brought its recognition and usefulness to a whole new level. In addition to being 
widely known, it has been frequently demonstrated that polystyrene and its derivatives are reliable and always open to 
innovation, with their application areas, wide areas of use, and postsynthesis modification [15]. Vinyl benzyl chloride, a 
known member of the styrene family, is at this point open to postpolymerization modifications because of the convenience 
provided by the activity of the methyl chloride group [16]. The polymer chain to be synthesized from this monomer forms 
a suitable backbone for the development of many applicable materials, from adsorption to the production of materials to 
be used in display technologies [17], selectivity for certain ions [18] or development of ion exchange membranes [19], 
through modifications to be made with the required functional groups. In addition to these areas of use, these properties 
have led to the emergence of different application areas with new developments that enable the development of different 
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surface area properties [20–22]. Not only the homopolymers but also the copolymers to be produced contribute to the 
diversity in these application areas [18–20]. At this point, in this study, it has been shown again that it is an especially useful 
material for postpolymerization modification. 

Synthesis of the diethanol amine modified polystyrene based monomer, and its polymer were described in the 
literature [23]. In this study, poly (vinyl benzyl chloride) (PVBC) was synthesized by free radical polymerization method. 
The polymer was reacted with diethanol amine to obtain PVBC-Diethanol amine (PVBC-DEA) and characterization of 
PVBC-DEA was carried out.  The surface properties of PVBC-DEA were investigated using the IGC method at infinitely 
dilute conditions. 

2. Inverse gas chromatography theory for surface characterization
While examining the properties of polymers with IGC experiments, the probe-probe interactions are neglected by working 
under infinitely dilute conditions and only polymer-probe interactions are considered. In the method, the polymer sample 
examined as a stationary phase is placed in the chromatographic column, selected probes are injected into the column, and 
the retention times of the probes in the column are recorded. There is a relationship between polymer-probe interactions 
and a net retention volume, VN, given by the following equation:

𝑉𝑉! = 𝑄𝑄. 𝐽𝐽. (𝑡𝑡" − 𝑡𝑡#). (𝑇𝑇 𝑇𝑇$⁄ ) 
 
𝛾𝛾% = 𝛾𝛾%& + 𝛾𝛾%%		 
 

∆𝐺𝐺#[()!] = 2𝑁𝑁#𝑎𝑎[()!]4𝛾𝛾%
&𝛾𝛾+[()!]		 

 

∆𝐺𝐺#[()!] = −𝑅𝑅𝑇𝑇 𝑙𝑙𝑙𝑙 8
𝑉𝑉!,-
𝑉𝑉!,-./

9 

 
∆𝐺𝐺# = −𝑅𝑅𝑇𝑇 𝑙𝑙𝑙𝑙 𝑉𝑉! +𝐾𝐾 
 

−∆𝐺𝐺# = 𝑅𝑅𝑇𝑇 𝑙𝑙𝑙𝑙 𝑉𝑉! = 2𝑁𝑁#𝑎𝑎4𝛾𝛾%&𝛾𝛾+& +𝐾𝐾00 

 
∆𝐺𝐺# = ∆𝐺𝐺#% + ∆𝐺𝐺#& 
 

−∆𝐺𝐺#% = 𝑅𝑅𝑇𝑇 𝑙𝑙𝑙𝑙 8
𝑉𝑉!,-
𝑉𝑉!,$12

9 

 
∆𝐺𝐺#% = ∆𝐻𝐻#% − 𝑇𝑇. ∆𝑆𝑆#% 
 
∆𝐺𝐺#% 𝑇𝑇⁄ = ∆𝐻𝐻#% 𝑇𝑇⁄ − ∆𝑆𝑆#% 
 
−∆𝐻𝐻#% 𝐴𝐴𝑁𝑁∗⁄ = 𝐾𝐾#. 𝐷𝐷𝑁𝑁 𝐴𝐴𝑁𝑁∗⁄ + 𝐾𝐾& 

 (1)
Where Q is volumetric flow rate measured at room temperature; J is James-Martin gas compressibility correction factor 

term; tR  is retention time of the probe and tA is retention time of air; T  and Tr are temperature of the studied column and 
room temperature, respectively [24].

Surface free energy of the polymer: The surface of solids can be defined by the dispersive or specific component of their 
surface free energy. These components allow describing the surface as electron acceptor or an electron donor to express 
the surface properties numerically. The surface free energy is given by equation (2) [25]; 𝑉𝑉! = 𝑄𝑄. 𝐽𝐽. (𝑡𝑡" − 𝑡𝑡#). (𝑇𝑇 𝑇𝑇$⁄ ) 

 
𝛾𝛾% = 𝛾𝛾%& + 𝛾𝛾%%		 
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&𝛾𝛾+[()!]		 
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𝑉𝑉!,-
𝑉𝑉!,-./

9 
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𝑉𝑉!,-
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9 
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   (2)

The dispersive component, gS
D, defines van der Waals dispersion forces of the solid, while the specific component, gS

D 
, includes all polar forces such as acid-base, H-bond, and dipole forces. Dorris–Gray and Schultz methods can be used to 
obtain the gS

D values.
According to the method proposed by Dorris and Gray [26] to determine gS

D value is given by equation (3).
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 (3)

where, DGA[CH2] is the adsorption free energy for a methylene group; NA is Avogadro constant; a[CH2] is the surface area of an 
adsorbed methylene group and gL[CH2] is the surface free energy of a solid constituted solely by methylene groups, such as 
polyethylene gL[CH2]= 35.6 - 0.058(t), is the operating temperature. DGA[CH2] is obtained experimentally according to equation 
(4). 

𝑉𝑉! = 𝑄𝑄. 𝐽𝐽. (𝑡𝑡" − 𝑡𝑡#). (𝑇𝑇 𝑇𝑇$⁄ ) 
 
𝛾𝛾% = 𝛾𝛾%& + 𝛾𝛾%%		 
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 (4)

Where VN,n is the retention volume of n-alkanes containing n carbon atoms while VN,n+1 is the retention volume of 
n-alkanes containing n+1  carbon atoms. 

For an n-alkane probe series, the plot of the carbon numbers of n-alkanes versus RTlnVN values is linear. DGA[CH2] value 
is found from the slope of the linear line. And the values of gS

D can be determined by equations (3) and (4).
The free energy of adsorption, DGA, can be obtained by the following equation using net retention volume data [27]:
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 (5)
Where K  is a constant. 
Schultz realized that gS

D values obtained by the method he developed were compatible with the Dorris-Gray method. 
According to this method, gD is given by the following equation [27]

𝑉𝑉! = 𝑄𝑄. 𝐽𝐽. (𝑡𝑡" − 𝑡𝑡#). (𝑇𝑇 𝑇𝑇$⁄ ) 
 
𝛾𝛾% = 𝛾𝛾%& + 𝛾𝛾%%		 
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 (6)
Where gL

D is the dispersive component of the surface free energy of the adsorbent and K”  is a constant. It is possible to 
calculate the gS

D value of the polymer at the experiment temperature from the slope of the RTlnVN – a(gL
D)0.5 graph, using 

n-alkane probe series. The values of a(gL
D)0.5 are obtained from the literature [27].
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Acid-base properties of the polymer: A polar probe in the IGC column interacts both specifically and dispersively with 
the stationary phase. Specific interactions refer to all other interactions such as polar, H-bond, metallic or magnetic, which 
are interactions other than dispersive interactions [28]. Hence, a specific component of the adsorption free energy, DGA

S , 
can be defined by equation (7).
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 (7)
Where DGA

D is the dispersive component of the adsorption free energy. DGA
S, is defined by the following equation.
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Where VN is the retention volume for the polar probe and VN,ref is the retention volume for n-alkanes reference line. 

-DGA
S  , is determined by the distance between the ordinate values of the polar probe data point and the n-alkane reference 

line on the RTlnVN – a(gL
D)0.5 graph [29]. 
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where, DHA

S is the adsorption enthalpy, DSA
S   is the adsorption entropy; T  is the studied column temperature. DHA

S and 
DSA

S   values are found by plotting -DGA
S / T   versus 1/T   values using equation (10), for polar probes.
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DHA

S  and DSA
S are related to Lewis acid-base properties [29]. The  DHA

S   value is due to specific interactions between 
the adsorbent surface and the polar probe, and is associated with the acidic-basic character as seen in equation (11).
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Where DN is Gutmann’s donor; AN* is Gutmann’s modified acceptor numbers [29]. KA represent Lewis acidity of the 

adsorbent surface while KD represent basicity of the adsorbent surface. According to equation (19), when -DHA
S / AN*    

values are plotted against DN / AN* the slope and intercept of the line are equal to KA and KD , respectively. The ratio of KD   
and KA values to each other gives information about the acidic-basic character of the surface. Accordingly, the condition 
for the surface to be considered acidic is KD / KA < 1 and the condition to be considered basic is KD / KA > 1.

3. Materials and instrumentation
Chromosorb-W (AW-DMCS-treated, 80/100 mesh) used as support material for the chromatographic column were 
supplied by Merck AG Inc., Germany. Silane-treated glass wool which was used to plug the ends of the chromatographic 
column was provided by Alltech Associates Inc., USA. Abbreviation, source, mass fraction purity, and CAS registry 
number of all probes in used the IGC experiments and other chemicals used in the synthesis are given in Table 1.

IGC experiments were performed on Agilent Technologies 6890N model gas chromatography device equipped with a 
thermal conductivity detector, USA. The IGC column used was purchased from Alltech Associates, Inc., USA, was made 
from a stainless-steel tube (3.2 mm o.d. and 1 m length).

To prepare the PVBC-DEA coated support material, firstly the polymer sample was dissolved in DMSO solvent, and 
then Chromosorb W solid was added to the obtained polymer solution. The slow evaporation method was used to remove 
the DMSO solvent from the solution.

The prepared material (1.326 g) was filled into the chromatographic column and conditioned under helium (He) 
atmosphere for 24 h at 373.2 K. Probes used were injected into the column using a 1 μL Hamilton syringe, Romania. 
During each injection procedure, 1 μL of probe was poured into the syringe, and then the remaining portion of the syringe 
was filled with air. The average values of retention times were determined by taking at least consecutive probe injections at 
each column temperature studied. These values were used for reported values of retention volumes, VN The percent error 
in  VN  was calculated as less than ±  0.5. Experimentally, the flow rate for the carrier gas (He) was decided as 3-4 cm3. min-1. 
And was kept constant throughout the IGC measurements. 

A TA/Discovery DSC251 model DSC device and a Thermo Scientific Nicolet 380 Spectrometer device were used for 
the analysis of the polymers obtained.

4. Result and discussion
4.1. Synthesis and modification with diethanol amine of poly (vinyl benzyl chloride) (PVBC)
For the synthesis of PVBC, free radical polymerization method was used as it is described in literature [30]. 10 mL (0.071 
mol) of Vinyl benzyl chloride and 0.155 g (0.95 mmol) of AIBN were dissolved in 40 mL of pre-dried THF in a two-necked 
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round-bottom flask. The polymerization was performed under a nitrogen atmosphere at 65 oC for eight hours. After the 
reaction was terminated, the resulting viscous mixture was allowed to cool to room temperature. After that, the polymer 
solution was slowly precipitated in hexane dropwise and the precipitated polymer was purified by filtration. The resulting 
polymer was washed with excess Hx and dried overnight under a vacuum. 9.5 g of PVBC (Figure 1) were obtained.

For the postpolymerization modification reaction, 1 g of synthesized PVBC and 1.1 g (7.8 mmol) of potassium carbonate 
as an acid scavenger were dissolved in predried 15 mL of THF in a reaction flask and stirred in this manner for twenty 
minutes. The reaction flask, which continued to stir, was placed in an ice bath at 0 oC  . Solution of 0.8 mL (7.8 mmol) of 
diethanol amine dissolved in 5 mL of dried THF, was added dropwise to the reaction vessel.  After the completion of the 
addition, reaction was stirred for 18 hours at room temperature. Subsequently, the reaction was stirred for 3 hours more but 
at 60 oC  . Lastly, the reaction was terminated and the mixture, which was let to cool to room temperature, was precipitated 
dropwise in hexane and purified, and then filtered. The resulting polymer was dried under a vacuum overnight. Obtained 
diethanol amine modified PVBC (Figure 1) was weighed as 0.90 g.

0.10 g of diethanol amine modified PVBC was added to 10 mL of 0.10 M HCl solution. This mixture was stirred and 
dissolved at room temperature. Then, 3 mL of filtrate was titrated with 0.10 M NaOH solution using phenolphthalein as 
a colour indicator. At the end of titration result, total amine content of the polymer was calculated as about 4.50 mmol/g 
polymer.

Table 1. Abbreviation, source, mass fraction purity, and CAS registry number of the chemicals.

Chemical name Abbreviation Source Purity CAS number

n-hexane Hx Supelco ≥ 0.990 110-54-3
n-heptane Hp Merck ≥ 0.990 142-82-5
n-octane O Merck ≥ 0.990 111-65-9
n-nonane N Merck ≥ 0.990 111-84-2
n-decane D Merck ≥ 0.995 124-18-5
Ethyl acetate EA Merck ≥ 0.995 141-78-6
Acetone Ace Supelco ≥0.998 67-64-1
Dichlorometane DCM Supelco ≥0.995 75-09-2
Trichlorometane TCM Supelco ≥0.990 67-66-3
Tetrahydrofurane THF Supelco ≥0.998 109-99-9
Diethanolamine - Sigma-Aldrich ≥0.980 111-42-2
Vinylbenzyl chloride VB Sigma-Aldrich ≥0.970 30030-25-2

CH2 Cl

n

+
0

THF

n

OH
N

OH

H

CH2
N

OH

OH  

 
PVBC                                                                                                               PVBC-DEA  

Diethanol amine  

Figure 1. Preparation of PVBC-DEA
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FT-IR spectroscopy was used for characterizations of synthesized and modified polymers. As it is seen in Figure 2, 
the difference between PVBC and modified-PVBC spectrums can be detected around at 1365.43 cm–1 and 1254.95 cm–1, 
which are belongs to C-N stretching of newly bonded benzyl carbon and nitrogen of diethanol amine.  In addition, the 
stretching peaks of the methylene and methyl groups of the polymer at 2918 cm–1 and the C-Cl stretching peak at 669 
cm–1, which is observed to disappear in the spectrum of the modified polymer but is seen in the main structure, evidence 
confirms the accuracy of the structures.
4.2. Surface characterization of PVBC-DEA
To investigate the adsorption, surface, and Lewis acid-base properties of the PVBC-DEA, EA, Ace, DCM, TCM, THF 
(polar probes), and Hx, Hp, O, N, and D (nonpolar probes) was passed through the IGC column in the temperature range 
30 to 55 oC. The net retention volume, VN , of the probes used on the polymer were calculated from equation (1) and the 
retention diagrams drawn are presented in Figures 3 and 4. The dispersive component of the surface free energy, gS

D, of 
PVBC-DEA was obtained from both Dorris–Gray method and Schultz method using equations (3) and (6), respectively.
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Figure 2. FT-IR spectra of PVBC and PVBC-DEA.

Figure 3. The retention diagrams of EA, Ace, DCM, TCM, and THF on PVBC-DEA.
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According to Dorris–Gray method, the adsorption free energy of one methylene group, DGA[CH2], was determined from 
the slope of the lines plotted between the carbon number of alkanes and RTlnVN in the studied temperature range (Figure 
5). gS

D values were calculated by equation (3) and are presented in Table 2.
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Figure 5. A plot of the carbon number of alkanes vs. RTlnVN values at studied temperatures.
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Using by Schultz method, the a(gL
D)0.5 - RTlnVN  graph was plotted in the 30 to 55 oC temperature range for n-alkanes 

and polar probes (for example the graph at 30 oC is in Figure 6). The gS
D values found from the slope of the reference line 

of alkanes in the graphs drawn according to the method are presented in Table 2. 
As it can be observed from Table 2, It has been determined that the gS

D values found by both methods are remarkably 
close to each other and decrease with increasing temperature. An increase in temperature lowered the values of gS

D    
significantly which may be caused by the expansion of the surface at higher temperatures [31]. Generally, there is a linear 
relationship between the variation of gS

D and temperature. Therefore, its value at room temperature can be obtained using 
the extrapolation method [32]. In [32], by extrapolation, gS

D values of polystyrene were found 23.41 mj/m2  for 25 oC  using 
Dorris-Gray method and 22.70 mj/m2 for 25 oC using Schultz method. We report the gS

D values for polystyrene based 
polymer PVBC-DEA as 41.18 mj/m2 for 25 oC using Dorris-Gray method, and 39.82 mj/m2 for 25 oC using Schultz method.

It is known that most polymeric materials have gS
D values between 20 and 40 mj/m2 [33]. The gS

D values of PVBC-DEA 
are consistent with this information. 

The values of DHA
S   for polar probes were determined from equations (8) and (10) and were presented in Table 3. According 

to Table 3, It has been observed that the value of DHA
S  increases in the following order: TCM>DCM>Ace>EA>THF. The 

THF as a probe molecule (DN = 84.4, AN  = 2.1) exhibited the lowest -DHA
S value, which is to be expected considering the 

Table 2. The obtained values from Dorris–Gray method and 
Schultz method for PVBC-DEA at studied temperatures.

t (oC)
Dorris–Gray method Schultz method

gS
D (mj/m2) gS

D (mj/m2)
30 39.43 37.94
35 37.37 35.65
40 36.72 34.72
45 35.61 33.40
50 33.99 31.58
55 30.55 28.16
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basic properties of this molecule and the basic properties of PVBC-DEA surface given by the KD value. TCM is an acidic 
probe molecule (DN = 0.0, AN   = 22.7), it may be expected to interact strongly with basic surfaces. 

The values of KA and KD   for the surface of PVBC-DEA were calculated by the graph (Figure 7), drawn using equation 
(11). In the literature [33], by IGC experiments,  KD /KA   for polystyrene sample was determined as [(1.66)/(0.21)]>1, and 
the character of its surface is defined as basic. In this study, KD/KA [(0.412)/(0.029)]>1, it is understood that the polymer 
surface exhibits a basic behavior. 

5. Conclusion
In this work, we first performed the synthesis and characterization of polystyrene-based polymer PVBC-DEA modified 
with dibutyl amine. Then, by IGC method, we investigated the interaction of various nonpolar and polar probes with 
the polymer surface. We determined the gS

D values for PVBC-DEA as 30.55–39.43 mj/m2   using the Schultz method and 
28.16–37.94 mj/m2   using the Dorris-Gray method. It is understood that an increase in temperature from 30 to 55 oC causes 
a decrease in the gS

D values found by both methods. We found the KA and KD  values to be 0.029 and 0.412, respectively. 
Since the KD value is higher than the KA, the PVBC-DEA surface can be said to have a basic character. According to the 
experimental results obtained, it has been understood that IGC is a suitable method to examine the surface properties of 
the polymer.
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Table 3. The values of -DHA
S of adsorption on PVBC-DEA for the polar 

probes.

Polar probe EA Ace DCM TCM THF

 -ΔHA
S (kJ/mol) 4.84 6.74 7.41 7.53 3.31
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