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1. Introduction
Alzheimer’s disease (AD) is one of the major global health challenges among the elderly population and a chronic and 
progressive syndrome categorized by developing memory and perception impairment [1,2]. Nowadays, nearly 50 million 
people are affected by this illness worldwide, and there will be more than 120 million new cases estimated in 2050 [3,4]. 
The etiology of AD involves many pathways including low acetylcholine level, overproduction of the beta-amyloid peptide, 
hypoxia, reactive oxygen species, and tau protein phosphorylation [5]. Up till now, an effective therapeutic strategy is to boost 
acetylcholine levels in the brain by inhibiting cholinesterase enzymes (acetylcholinesterase (AChE), butyrylcholinesterase 
(BuChE)) and regulate acetylcholine in the human body [6]. To date, very few inhibitors are approved few drugs for AD 
treatment by the United States Food and Drug Administration (FDA) such as tacrine, galantamine, donepezil, but they 
impart several adverse effects such as hepatotoxicity, gastrointestinal disorders, and periphery side effects [5,7].

Diabetes mellitus (DM) is a chronic metabolic disorder caused by hyperglycemia with less insulin action or secretion 
or both [8]. DM triggers severe health complications including neuropathy, nephropathy, cancer, retinopathy, etc. Thus, 
the most effective strategy of DM treatment is to regulate bloodstream glucose levels control [9]. α-Glucosidase inhibitors 
have important roles to decrease glucose levels in the bloodstream by preventing the breakdown of carbohydrates into 
absorbable monosaccharides [10]. However, α-glucosidase inhibitors have several side effects such as gastrointestinal 
disorders, etc. [11]. Thus, it is crucial to seek for low side effect profile α-glucosidase inhibitors. 

4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY), developed by Treibs and Kreuzer in 1968, displays a wide 
range of research fields such as material, medical research, diagnosis, and treatment due to their strong absorption, high 
fluorescence quantum efficiency, and stable chemical structure properties [12–14]. They have been used for variety of 
applications viz. as laser dyes, drug delivery, solar cells, fluorescent labels, anticancer agents in photodynamic therapy 
[15–22].

In medicinal chemistry, pyridine is a versatile heterocyclic nucleus finding applications. It is well-known that they have 
been exhibited various pharmacological and biological activities such as antiviral, anticancer, antidiabetic, anticonvulsant, 
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anticholinesterase, antimicrobial, antiinflammatory, etc. [23–29]. Here, we aimed to define the biological activity of the 
BDPY-2, BDPY-4, and BDPY-5 compounds on AChE, BuChE, α-glucosidase, and DNA.

2. Experimental
The materials, equipment, AChE, BuChE, α-glucosidase inhibitory, and DNA hydrolytic cleavage actions are given as 
supplementary information.
2.1. Synthesis
2.1.1.  4-(3-Pyridin-4-ylpropoxy)benzaldehyde (1)
4-hydroxybenzaldehyde (1.57 g, 12.8 mmol), K2CO3 (3.53 g, 25.6 mmol), pyridine derivative (2 g, 12.8 mmol) were 
mixed in 20 mL dry DMF under nitrogen at 85 ºC for 24 h. The mixture was poured into ice-water and added 100 mL 
chloroform. Organic phase was dried with Na2SO4, and the crude product was performed to chromatograph on an 
aluminum oxide with chloroform as an eluent. Yield: 2.01 g (65%). IR (ATR), ν/cm−1: 3075 (Ar–H), 2955–2877 (Aliph. 
C–H), 1671 (C=O), 1592, 1507, 1469, 1425, 1397, 1311, 1255, 1214, 1151, 1110, 1018, 885, 799, 614. 1H NMR (400 MHz, 
DMSO-d6), (δ): 9.87 (s, 1H, =CH), 8.47 (d, 2H, ArH), 7.87 (d, 2H, ArH), 7.29 (d, 2H, ArH), 7.12 (d, 2H, ArH), 4.10 (t, 
2H, CH2–O), 2.78 (t, 2H, Ar-CH2), 2.10-2.06 (m, 2H, -CH2-). 13C-NMR (DMSO-d6), (δ): 191.76, 163.96, 150.93, 149.80, 
132.29, 130.10, 124.46, 115.38, 67.68, 31.15, 29.39. MALDI-TOF-MS m/z : 241.46 [M]+.
2.1.2. BODIPY-2 (BDPY-2)
Compound (1) (250 mg g, 1.04 mmol), 2,4-dimethylpyrrole (0.23 mL, 2.08 mmol) and four drop of trifluoroacetic acid 
(TFA) were dissolved in dichloromethane (200 mL) stirred at rt for 24h. Then a solution of 2,3-dichloro-5,6-dicyano-
1,4-benzoquinone (DDQ) (237 mg, 1.04 mmol) in CH2Cl2 (5 mL) was added slowly to the mixture. 3 mL triethyl 
amine (NEt3) was added. Then, 3 mL boron trifluoride diethyl etherate (BF3.OEt2) was added, and the reaction mixture 
stirred for 24h at rt. The mixture was washed with water, and the organic phase was dried over MgSO4; the solvent was 
evaporated under reduced pressure. The product was performed to chromatographed on an aluminum oxide column 
with a CH2Cl2:hexane (4:1) as solvent system. Yield: 261 mg (55%). IR (ATR) ν (cm-1):  3072 (Ar-H), 2923-2864 (Aliph. 
C-H), 1603, 1542, 1506, 1467, 1410, 1367, 1304, 1241, 1190, 1155, 1074, 972, 795. 1H-NMR (400 MHz, DMSO-d6), 
(δ): 8.45 (m, 2H, ArH), 7.28-7.25 (m, 2H, ArH), 7.10 (d, 2H, ArH), 6.89 (d, 2H, ArH), 6.17 (s, 2H, =CH), 4.04 (t, 2H, 
CH2-O), 3.91 (t, 2H, Ar-CH2-), 2.44 (s, 6H, CH3), 2.02-1.99 (m, 2H, -CH2-), 1.39 (s, 6H, CH3). 13C-NMR (DMSO-d6), 
(δ): 155.11, 150.83, 149.94, 143.20, 142.60, 136.32, 131.56, 129.57, 127.14, 124.41, 121.74, 115.65, 67.28, 66.97, 31.22, 
29.54, 14.60. UV-Vis (CHCl3) λmax nm (log e): 503 (4.99). MALDI-TOF-MS m/z : 459.70 [M+H]+. 
2.1.3. BODIPY-4 (BDPY-4)
BODIPY 2 (100 mg, 0.21 mmol) and compound (1) (131 mg, 0.54 mmol) were dissolved in toluene (25 mL). Glacial 
acetic acid (0.3 mL, 3.57 mmol), piperidine (0.3 mL, 2.61 mmol), and a catalytic amount of magnesium perchlorate were 
added. The mixture was refluxed using Dean-Stark trap apparatus until was residuum. The product was performed to 
chromatographed on an aluminum oxide column with a CHCl3:benzene (3:2) as solvent system.  Yield: 57 mg (30%). IR 
(ATR) ν (cm−1): 3067 (Ar–H), 2918–2849 (Aliph. C–H), 1597, 1537, 1509, 1485, 1461, 1385, 1242, 1199, 1161, 1107, 989, 
823. 1H NMR (400 MHz, DMSO-d6), (δ): 8.51-8.46 (m, 8H, ArH), 7.58 (d, 4H, ArH), 7.40-7.36 (m, 8H, ArH), 7.13 (d, 
4H, ArH), 7.04 (d, 2H, ArH), 6.94 (s, 2H, =CH), 6.82 (d, 2H, Ar–H), 4.07 (t, 6H, CH2-O), 2.89-2.84 (m, 6H, Ar-CH2), 
2.14-2.11 (m- 6H, -CH2-), 1.47 (s, 6H, CH3). 13C NMR (DMSO-d6), (δ): 160.27, 160.03, 157.38, 155.31, 155.23, 155.07, 
148.81, 147.62, 147.39, 147.16, 137.23, 137.12, 137.01, 136.94, 136.76, 130.11, 129.32, 129.06, 124.86, 115.62, 114.99, 
67.30, 66.96, 31.37, 15.85. UV–Vis (CHCl3) λmax nm (log ε): 644 (5.01), 591 (4.63), 370 (4.83). MALDI-TOF-MS m/z : 
905.79 [M]+.
2.1.4. BODIPY-5 (BDPY-5)
BODIPY 5 was synthesized similarly to BODIPY-4 by using compound (3) instead of compound (1). The product 
was purified by aluminum oxide column chromatography using chloroform as solvent. Yield: 123 mg (65%). IR 
(ATR) ν (cm−1): 3029 (Ar–H), 2919–2850 (Aliph. C–H), 1599, 1537, 1509, 1486, 1422, 1386, 1295, 1242, 1162, 1140, 
1106, 1025, 990, 939, 826, 711. 1H NMR (400 MHz, DMSO-d6), (δ): 8.44-8.39 (m, 8H, ArH), 7.65 (d, 4H, ArH), 7.43 (s, 
2H, ArH), 7.31-7.28 (m, 4H, ArH), 7.12 (d, 8H, ArH), 6.93 (s, 2H, =CH), 6.82 (d, 2H, ArH), 3.90 (t, 6H, CH2-O), 2.73 
(t, 6H, Ar-CH2), 2.01-1.97 (m- 6H, -CH2-), 1.45 (s, 6H, CH3). 13C NMR (DMSO-d6), (δ): 160.11, 157.43, 152.48, 149.90, 
147.63, 142.00, 138.72, 137.36, 136.97, 136.38, 133.32, 132.87, 130.08, 129.30, 126.65, 124.44, 123.95, 118.47, 116.39, 
115.59, 114.98, 67.28, 66.93, 30.46, 14.85. UV–Vis (CHCl3) λmax nm (log ε): 646 (5.04), 593 (4.62), 372 (4.86). MALDI-
TOF-MS m/z : 906.00 [M+H]+.  
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3. Results and discussion
3.1. Synthesis and characterization
The synthesis of monostyryl (BDPY-2), distyryl BODIPY dyes (BDPY-4, BDPY-5) containing pyridine groups are presented 
in Figure 1. Compound (1) was synthesized from the reaction of 4-(3-chloropropyl)pyridine with 4-hydroxybenzaldehyde 
in DMF. The monostyryl BDPY-2 was prepared by treating 2,4-dimethylpyrrole with 4-(3-pyridin-4-ylpropoxy)
benzaldehyde in the presence of  TFA, DDQ, NEt3, BF3.OEt2 in CH2Cl2. Then, distyryl BODIPY dyes (BDPY-4, BDPY-5) 

Figure 1. The synthesis of BODIPY dyes 2, 4 and 5. (i) K2CO3, 85 ºC, DMF. (ii) 2,4-dimethylpyrrole, DCM, 
TFA, DDQ, NEt3, BF3.OEt2. (iii) Glacial acetic acid, piperidine, Mg(ClO4)2, toluene.
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were synthesized using monostyryl BDPY-2, compound (1), compound (3) [20], piperidine, Mg(ClO4)2 as a catalyst in 
toluene at reflux temperature. 

In the IR spectrum of (1), −C=O peak of (1) seemed at 1671 cm−1. In the 1H-NMR spectrum of (1), the aldehyde proton 
(=CH) resonated at 9.87 ppm. In the 13C-NMR spectrum of (1), the C=O group appeared at 191.76 ppm. The molecular 
ion peak of (1) was shown as 241.46 [M]+. In the IR spectrum of monostyryl BDPY-2, aldehyde peaks of (1) disappeared. 
In the 1H-NMR spectrum of monostyryl BDPY-2, aldehyde proton (=CH) vanished, and pyrrole =CH protons appeared 
at 6.17 ppm. The 13C-NMR data of BDPY-2 confirmed the structure. In the MALDI–TOF–MS of BDPY-2, the presence of 
the molecular ion peak at m/z = 459.70 [M+H]+ confirmed the structure. The IR spectra of distyryl BODIPY dyes (BDPY-
4, BDPY-5) were similar with BDPY-2. In the 1H-NMR spectra of BDPY-4, BDPY-5, pyrrole =CH was observed at 6.94 
ppm for BDPY-4, 6.93 ppm for BDPY-5. Also, The 13C-NMR data of BDPY-4 and BDPY-5 confirmed the structures. The 
molecular ion peaks were observed at m/z: 905.79 as [M]+ for BDPY-4  (Figure S1a), 906.00 as [M+H]+ for BDPY-4 (Figure 
S1b). The UV-Vis spectra of BDPY-2, BDPY-4, BDPY-5 were recorded in CHCl3 (Figure 2). As shown in Figure 3, BDPY-
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Figure 2. UV-Vis spectra of BDPY-2, BDPY-4, BDPY-5 in CHCl3.

Figure 3.  Lineweaver–Burk plot of BDPY-4 on AChE.
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2 showed an absorption peak at 503 nm, which is based on to a S0→S1 (p-p*) transition. Introduction of compound (1), 
compound (3) to the BDPY-2 to give BDPY-4, BDPY-5 lead to red shifts (141 nm and 143 nm) in both the absorptions. 
BDPY-4 and BDPY-5 indicated absorption peaks at 644 nm and 646 nm.
3.2. AChE/BuChE inhibitory properties of the compounds 
The inhibition actions of the compounds (BDPY-2, BDPY-4, and BDPY-5) on AChE and BuChE were investigated 
according to our previously reported methods [30]. The results were expressed as IC50 and selective index (SI=BuChE/
AChE) values. As shown in Table 1, the compounds showed dose-dependent inhibition on AChE and BuChE and IC50 
values of the compounds ranged from 54.78 ± 4.51 to 184.87 ± 5.49 µM. BDPY-4 was the most potent compound on AChE 
with an IC50 of 54.78 ± 4.51 µM. The IC50 values of BDPY-2 and BDPY-5 were determined as 72.46 ± 2.95 and 64.89 ± 3.89 
µM, respectively against AChE. On the other hand, the IC50 values of BDPY-2, BDPY-4, and BDPY-5 were 184.87 ± 5.49, 
150.30 ± 6.09, and 170.30 ± 4.33 µM, respectively on BuChE. The SI values of BDPY-2, BDPY-4, and BDPY-5 were 2.55, 
2.74, and 2.62. The results showed that the compounds had lower anticholinesterase effects than galantamine as a positive 
control (IC50: 36.25 ± 0.58 µM for AChE; 65.32 ± 0.99 µM for BuChE), but they have a higher selective index (SIgalantamine: 
1.80).

The mechanism for AChE inhibition was graphically determined by applying the Lineweaver–Burk and Dixon plots 
analysis of the most potent compound (BDPY-4). Acetylthiocholine iodide was used as a substrate for AChE inhibition. 
Lineweaver–Burk plot showed that Km (an index of the affinity of the enzyme for its substrate) was in similar values, but 
Vmax (maximal velocity of the reaction) decreased on increasing concentrations of the compound on AChE. While the 
Km value was 11.14 mM, the Vmax values changed from 277.78 µM/min to 126.58 µM/min (Figure 3, Table 2). The results 
indicated that BDPY-4 was a noncompetitive inhibitor and bound to a site other than the active site. On the other hand, 
BDPY-4 presented Ki (inhibition constant) values of 57.20 ± 0.20 µM, according to the Dixon plot (Figure 4, Table 3). 

To determine the structural change of AChE (10 µM) induced by BDPY-4, we measured the UV-Vis spectroscopy by 
adding the compound (5, 10, 15, and 20 µM) into AChE solution (10 µM). AChE has an absorption peak at 282 nm due to 
aromatic amino acids. As shown in Figure 5, the absorbance of the enzyme increased with various BDPY-4 concentrations 
(hyperchromism). In addition, the absorption peak shifted from 282 nm to 285 nm (redshift). The UV-Vis spectrum 
implies that BDPY-4 showed binding with enzyme and changed the microenvironment of some amino acid residues of 
AChE.
3.3. α-Glucosidase inhibitory properties of the compounds
The inhibitory properties of the compounds on α-glucosidase were investigated according to our previously reported 
methods [31]. The results were expressed as IC50 values. As shown in Table 4, IC50 values of the compounds ranged from 
94.99 ± 4.77 to 218.62 ± 8.71 µM. BDPY-4 was the highest α-glucosidase inhibitory effects among the tested compounds, 
but the compound showed lower inhibitory than acarbose used as a positive control (IC50=32.22 ± 0.40 µM).

Table 1. The IC50 (µM) and SI (BuChE/AChE) values of the compounds on AChE and 
BuChE.

AChE BuChE SI 

BDPY-2 72.46 ± 2.95 184.87 ± 5.49 2.55
BDPY-4 54.78 ± 4.51 150.30 ± 6.09 2.74
BDPY-5 64.89 ± 3.89 170.30 ± 4.33 2.62
Galantamine 36.25 ± 0.58 65.32 ± 0.99 1.80

Table 2. The Vmax and Km values of the BDPY-4 on AChE.

Vmax Km

No inhibitor 277.78 µM/min 11.14 mM
25 µM 222.22  µM/min 11.14 mM
50 µM 196.08  µM/min 11.14 mM
100 µM 126.58  µM/min 11.14 mM
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3.4. DNA hydrolytic cleavage properties of the compounds
The DNA hydrolytic cleavage actions of the compounds on supercoiled pBR322 plasmid DNA were determined according 
to our previously reported methods, and the intensity bands were observed under UV illuminator [32]. To investigate 
the ability of the compounds to damage the phosphodiester bonds of supercoiled plasmid DNA, we designed hydrolytic 

Figure 4. Dixon plot of BDPY-4 on AChE.

Table 3. The inhibitory type and Ki value of the BDPY-4 on AChE.

Type Ki

BDPY-4 noncompetitive 57.20 ± 0.20 µM

Figure 5. UV-Vis spectrum of BDPY-4-AChE complexes.
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cleavage studies. The supercoiled plasmid DNA has three forms in agarose gel: form I (supercoiled form), form II (nicked 
form cleavage of one strand), form III (linear form cleavage of two strands). The results are presented in Figure 6. It is 
known that supercoiled pBR322 plasmid DNA (Thermo Fischer Scientific, SD0041) is in the supercoiled form at a rate of 
more than 90%. Since the plasmid DNA has impurity, the density of Form II is increased on negative controls. In this study, 
the presence of the compounds did not have DNA hydrolytic cleavage effects at 25 and 50 µM as compared to negative 
controls (Figures 6(a),(b), lanes 1) under our experimental conditions. The results claimed that these compounds may low 
toxicity potential in the dark as a preliminary study.

4. Conclusion
In conclusion, we have synthesized new monostyryl (BDPY-2) and distyryl BODIPY dyes (BDPY-4, BDPY-5) and 
investigated their acetylcholinesterase from Electrophorus electricus (AChE), butyrylcholinesterase from equine serum 
(BuChE), α-glucosidase from Saccharomyces cerevisiae, and DNA hydrolytic cleavage actions. The compounds showed 
varying inhibition actions against AChE, BuChE, and α-glucosidase. BDPY-4, which was a noncompetitive inhibitor, was 
the most potent compound on AChE with an IC50 of 54.78 ± 4.51 µM. The UV-vis spectroscopy studies claimed that it 
interacted with enzyme change the microenvironment around AChE. In addition, the compounds had low α-glucosidase 
inhibitory effects when compared to acarbose. The DNA hydrolytic cleavage was not showed on supercoiled plasmid DNA 
in the presence of the compounds at 25 and 50 µM as compared to negative controls under our experimental conditions. 
These findings suggested that these compounds have low toxicity potential in the dark. Further studies are needed regarding 
anticholinesterase and toxicity effects of BDPY-4 on development of formulations, cell cultures, and in vivo studies for 
application in internal diseases.
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Table 4. The IC50 (µM) values of the compounds on 
α-glucosidase.

α-glucosidase

BDPY-2 218.62 ± 8.71
BDPY-4 94.99 ± 4.77
BDPY-5 105.83 ± 5.03
Acarbose 32.22 ± 0.40

Figure 6. DNA hydrolytic nuclease effects of the compounds for 30 min (a), 60 min (b). Lane 1: DNA control; lanes 2–3: 25 and 50 μM 
of (BDPY-2); lanes 4-5: 25 and 50 μM of (BDPY-4); lanes 6-7: 25 and 50 μM of (BDPY-5).
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SUPPLEMENTARY INFORMATION 
 
1. Materials and equipment  

4-Hydroxybenzaldehyde, 3-(3-chloropropyl)pyridine, 2,4-dimethylpyrrole were 

purchased from commercial suppliers.  All reagents and solvents were of reagent grade 

quality and were obtained from commercial suppliers. The IR spectra were recorded on a 

Perkin Elmer 1600 FT-IR Spectrophotometer, using KBr pellets. 1H and 13C-NMR 

spectra were recorded on a Bruker Avance III 400 MHz spectrometers in DMSO-d6, and 

chemical shifts were reported (d) relative to Me4Si as internal standard. MALDI-MS of 

complexes were obtained in dihydroxybenzoic acid as MALDI matrix using nitrogen 

laser accumulating 50 laser shots using Bruker Microflex LT MALDI-TOF mass 

spectrometer Bremen, Germany). Optical spectra in the UV-vis region were recorded 

with a Perkin Elmer Lambda 25 spectrophotometer. The inhibitory properties of the 

enzymes were carried out using Thermo Scientific MultiskanTM Go Microplate 

Spectrophotometer using a 96-well microplate reader. Electrophoresis was performed 

using BioRad, Wide Mini-Sub Cell GT Cell. 

 

 2. Biological effects 

2.1. AChE and BuChE inhibitory assay 

AChE and BuChE inhibition of the compounds were measured according to 

Ingkaninan’s method with some modifications using a 96-well microplate reader [1]. 

Galantamine was used as a positive control and DMSO (final concentration 1%) as blank. 

Tris-HCl buffer pH 8 (50 µL, 50 mM), DTNB (125 µL, 3 mM), AChE/BuChE (25 µL, 

0.2 U/mL) and the compounds were added in the microplate and incubated for 15 min at 



 2 

room temperature. Afterwards, 25 µL of 15 mM the substrate (AChI/BChI) was added to 

start enzymatic reaction. The absorbance was measured at 412 nm using microplate 

reader. AChE and BuChE inhibition percentage of the compounds was calculated using 

the formula 1. Formula 1= % Inhibition: (A-B)/A×100. A is the activity of the enzyme 

without compound, and B is the activity of the enzyme with compound. The inhibitory 

effect of the compounds was expressed as the concentration, which inhibited 50% of the 

enzyme activity (IC50). 

Lineweaver–Burk and Dixon plots were performed to determine inhibitory type, 

and constant (Ki) values of BDPY-4 was the most potent compound on AChE [2,3]. The 

kinetic analysis was conducted by various substrate concentrations (5, 10, 15, and 20 

mM) in the absence and presence of BDPY-4. 

AChE binding studies of BDPY-4 were carried out using UV-Vis spectroscopy to 

investigate the interaction of compound with protein. A stock solution of AChE was 

prepared in the buffer and stored at 4 °C for further use. In this work, a fixed 

concentration of AChE was taken (10 µM), and various concentrations of BDPY-4 (0-20 

µM) were added to AChE solution [4]. 

2.2. α-Glucosidase inhibitory assay 

α-Glucosidase inhibition assay was performed as previously reported with some 

modifications [5]. Acarbose was used as a positive control, and DMSO (final 

concentration 1) as blank. The compounds (50 µL) in phosphate buffer pH 6.9, α-

glucosidase (100 µL, 0.5 U/mL) were added and allowed to react for 20 min in a 

microplate. After incubation, 4-pNPG (50 µL, 5 mM) was added and incubated for 20 

min at room temperature. The absorbance was measured at 405 nm using a 96-well 
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microplate reader. α-glucosidase inhibition percentage of the compounds was calculated 

using the formula 1. 

2.3. Supercoiled pBR322 plasmid DNA cleavage experiments 

Supercoiled pBR322 plasmid DNA nuclease effects of the compounds were 

investigated using agarose gel electrophoresis. DMSO (final concentration 1%) was used 

as a negative control. Supercoiled pBR322 plasmid DNA was treated with increasing 

concentrations of the compounds (50 and 100 µM) in the buffer containing 50 mM Tris-

HCl pH 7.0. All samples were incubated at 37 ºC for 30 min and 60 min. Afterwards, 

loading buffer (bromophenol blue, xylene cyanol, glycerol, ethylenediaminetetraacetic 

acid, sodium dodecyl sulfate) was added, and the samples were loaded on agarose gel 

(0.8%) with ethidium bromide staining in TAE buffer (Tris-acetic acid-EDTA). 

Electrophoresis was performed at 100 V for 90 min [6]. 
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Figure S1. (a) MALDI-TOF MS spectrum of BDPY-4. (b) MALDI-TOF MS spectrum of 

BDPY-5. 


