Synthesis of imidazo-1,4-oxazinone derivatives and investigation of reaction mechanism

Volkan TAŞDEMİR*
Muradiye Vocational School, Van Yüzüncü Yıl University, Van, Turkey

Received: 11.06.2021 • Accepted/Published Online: 02.08.2021 • Final Version: 19.10.2021

Abstract

In this study, nine different C-2 aroyl imidazole derivatives were synthesized in a one pot reaction with two steps, and the reduction reactions of these derivatives with NaBH_{4} were carried out under mild conditions. Substitution reaction of obtained imidazo methanol derivatives with chloroacetylchloride reagent and ring reaction of substitution products were investigated. It was determined that 1,4-imidazoxazinone derivative was obtained as a result of the cyclization reaction. The intermediate products obtained during the cyclization reaction were isolated, and the path of the reaction under different conditions was discussed.

Key words: Cyclization, imidazole, imidazoxazinone

1. Introduction

Imidazole ring is an essential heterocyclic compound containing two nitrogens in its structure. In literature studies, it is seen that imidazole compounds are used in various fields such as biomimetic catalysts [1-3], medical drugs [4], artificial receptors [5], agricultural chemicals [6], sensors [7], supramolecular ligands [8], and batteries [9]. The imidazole ring contains an acidic proton as well as a nitrogen atom with a basic character. Due to this feature, the zwitterionic structure provides sensitivity like an ionic structure [10]. Thanks to this feature of imidazole compounds, it is possible to break the NH proton in the imidazole ring with various bases and to obtain heterocyclic structures containing imidazole ring by substitution with various reagents [11-14]. Imidazole, a member of the electron-rich azole family, can bind to proteins with weak interactions. Due to such properties, it shows a wide range of biological activity in biological systems through coordination, ion-dipole, cation- $\pi, \pi-\pi$ interaction, and Van der Waals interactions [15,16].

Nowadays, drugs such as oxiconazole, clotrimazole, etc. are drugs that contain imidazole in their structure and are used to treat various diseases [17]. Although imidazole-based heterobicyclic compounds are essential structures, imidazole-2aroyl derivatives and the structures of these derivatives such as imidazoxazinone derivatives with various reagents have hardly been investigated. Recently, great effort has been put into developing new, effective, biologically active substances to obtain important heterobicyclic molecules such as imidazoxazines. Imidazoxazines (Figure 1) have some critical activities such as tuberculosis (R-PA-824) [18], anxiety, depression, and anticancer (GSK-588045) [19]. Another important imidazole derivative known to have biological activity is imidazoxazole (CGI-17341) [20].

This study aims to create practical approaches to synthesize heterobicyclic molecules with imidazole rings having different unknown structures and investigate their chemistry in detail. Although there are many examples of imidazole derivatives, the synthesis of imidazoxazinone 5 derivatives (Figure 2), which is not included in the literature, has been investigated. While there are many reaction pathways to obtain imidazole ring, we have utilized the aryglyoxal starting from aryl-acetyl compounds, which was reacted with SeO_{2}. Arylglyoxals are very critical starting materials for different types of heterocyclic molecules such as oxiran, β-lactam, pyrrolidine, pyrrole, and pyrazole [21-23]. In addition, we performed the isolation of the intermediate products during the cyclization reactions, and the path followed by the reaction was also discussed.

2. Experimental

2.1. Materials and methods

Solvents were dried by refluxing with appropriate drying agents and were distilled before use. Melting points were determined using an Electrothermal Gallenkamp apparatus and are uncorrected. FT-IR spectra were obtained in ATR

[^0]

R-PA-824

GSK-588045

CGI-17341

Figure 1. Some important heterocyclic compounds, including imidazoxazine and imidazoxazole

Figure 2. Imidazoxazinone 5.
mode using a Thermo Nicolet iS10. Elemental analysis was carried out using a Thermo Scientific Flash 2000. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded using a 400 MHz Agilent using TMS (tetramethylsilane) as the internal standard. All experiments were followed by TLC (thin layer chromatography) using DC Alufolien Kieselgel 60 F254 (Merck) and a Camag TLC lamp (254/366 nm). Commercially available chemicals were purchased from Merck, Aldrich, ABCR and Alfa Easer Co.

2.2. General procedure 1

Acetophenone (1 mmol) 1 derivatives were dissolved in 30 mL of 1,4 -dioxane in a 100 mL flask. $\mathrm{SeO}_{2}(2.5 \mathrm{mmol})$ was added and refluxed. The course of the reaction was followed by TLC (thin layer chromatography). The reaction was seen to be finished after 24 h . The reaction was filtered, and 20 mL of dissolved ammonium acetate (5 mmol) was added and stirred at room temperature. After determining the completion of the reaction by TLC method, the reaction was filtered with ice water for half an hour and dried. As a result, C-2 aroyl substituted imidazole derivatives 2 were obtained.

2.3. General procedure 2

C-2 aroyl substituted imidazole derivatives $2(1 \mathrm{mmol})$ were dissolved in 30 mL of methanol, and NaBH_{4} (3 mmol) was added, and it was understood that the reaction was completed after 24 h by TLC method. It was extracted with ethyl acetate and water (30X50). It was dried with MgSO_{4} and evaporated. The column chromatography purified the crude product with eluent ethyl acetate / n -hexane $1 / 5$. The C-2 aroyl substituted imidazolo methanol 3a-i derivatives were obtained.

2.3.1. Phenyl(4-phenyl-1H-imidazol-2-yl)methanol(3a) [24]

Yield; 73%, Color; white solid. m.p: $170-172^{\circ} \mathrm{C}$
FT-IR(ATR cm ${ }^{-1}$): 3210, 3053, 2833, 2678, 2050, 1888, 1608, 1588, 1511, 1496, 1480, 1458, 1435. ${ }^{1} \mathrm{H}$ NMR (400 MHz , d-DMSO) $\delta=12.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.74-7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.47-7.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.25-7.21$ (m, 1H, Ar-H), 7.16-7.12 (m, 1H, Ar-H), $6.27(\mathrm{~d}, J=2.08 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 5.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}-\mathrm{DMSO}$) $\delta=151.3,143.5,128.8,128.5,127.6,126.9,126.4,124.6,70.1$. LC-MS/MS Anal.Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 251.11789$, Found: 251.11841.

2.3.2. (4-Methoxyphenyl)(4-(4-methoxyphenyl)-1H-imidazol-2-yl)methanol(3b) [24,25]

Yield; 80%, Color; white solid. m.p: $166-168^{\circ} \mathrm{C}$
FT-IR(ATR cm ${ }^{-1}$): $3162,3008,2961,2835,2626,2037,1609,1585,151568,1511,1488,1455,1425 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=11.9(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.73-7.61\left(\mathrm{~m}, \mathrm{AA}^{\prime}\right.$ part of AA'BB' system, $\left.2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.34-7.32(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.87-6.85(\mathrm{~m}$, BB' part of AA'BB' system, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.08(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 5.68(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=158.8,158.0,151.2,139.7,135.7,128.1,125.8,114.2,113.8,111.5,69.7,55.5$, 55.4. LC-MS/MS Anal.Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 311.13902$, Found: 311.13937.

2.3.3. (4-Iodophenyl)(4-(4-iodophenyl)-1H-imidazol-2-yl)methanol(3c)

Yield; 40%, Color; red solid. m.p: $270^{\circ} \mathrm{C}$
FT-IR(ATR cm ${ }^{-1}$): $3201,2050,1980,1908,1653,1587,1526,1482 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.46-7.42\left(\mathrm{~m}, \mathrm{AA}^{\prime}\right.$ part of AA'BB' system, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.26-7.23\left(\mathrm{~m}, \mathrm{BB}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}$ ' system, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.02-7.00(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.70(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl$\left.{ }^{3}\right) \delta=150.6,141.7,137.4,137.1,128.6,126.5,93.1,91.2,69.4$. LC-MS/MS Anal.Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 502.91118$, Found: 502.91223.
2.3.4. (4-Chlorophenyl)(4-(4-chlorophenyl)-1H-imidazol-2-yl)methanol(3d) [24]

Yield; 75%, Color; red solid. m.p: $160-170^{\circ} \mathrm{C}$
FT-IR(ATR cm ${ }^{-1}$): 3148, 2835, 2627, 1609, 1510, 1486, 1448, 1409. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=12.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 7.74-7.72 (m, AA' part of AA'BB' system, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.47-7.45\left(\mathrm{~m}, \mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $2 \mathrm{H}, \mathrm{Ar}-$ H), 7.39-7.33 (m, BB' part of AA'BB' system, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.1,142.3,132.2,130.6,128.8,128.7,128.5,126.3,69.2$. LC-MS/MS Anal.Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{CI}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 319.03994$, Found: 319.04037.
2.3.5. (4-Fluorophenyl)(4-(4-fluorophenyl)-1H-imidazol-2-yl)methanol(3e)

Yield; 73%, Color; pink solid. m.p: $155-157^{\circ} \mathrm{C}$
FT-IR(ATR cm ${ }^{-1}$): 3148, 3032, 2835, 2628, 2050, 1980, 1609, 1583, 1565, 1509, 1487, $1445 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=12.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.77-7.74\left(\mathrm{~m}, \mathrm{AA}^{\prime}\right.$ part of AA'BB' system, $\left.2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.51-7.48\left(\mathrm{~m}, \mathrm{AA}^{\prime}\right.$ part of AA'BB' system, 2 H , Ar-H), $7.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.17-7.11\left(\mathrm{~m}, \mathrm{BB}^{\prime}\right.$ part of AA'BB' system, $\left.4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=163.0,162.4,160.6,160.0,151.2,139.7,139.6,128.8,126.5,126.4,115.7,115.5,115.3,115.0,69.3$. LC-MS/MS Anal.Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]:$ 287.09905, Found: 287.09885.

2.3.6. (4-Bromophenyl)(4-(4-bromophenyl)-1H-imidazol-2-yl)methanol(3f)

Yield; 65%, Color; red solid. m.p: $155-159^{\circ} \mathrm{C}$
FT-IR(ATR cm ${ }^{-1}$): 3139, 2809, 2658, 1716, 1590, 1553, 1514, 1477, 1448, $1406 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=12.17$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 7.68-7.66 (m, AA' part of AA'BB' system, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.53-7.46$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.40-7.38$ (m, BB' part of $A^{\prime} A^{\prime} B^{\prime}$ system, $\left.2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.36(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 5.75(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.0$, 142.7, 131.7, 131.4, 129.1, 126.6, 120.7, 119.0, 69.3. LC-MS/MS Anal.Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 406.93891$, Found: 406.93964.
2.3.7. [1, 1'-Biphenyl]-4-yl(4-([1,1'-biphenyl]-4-yl)-1H-imidazol-2-yl)methanol(3g)

Yield; 57%, Color; brown solid. m.p: $255-259^{\circ} \mathrm{C}$
FT-IR(ATR cm ${ }^{-1}$): 3266, 3148, 3055, 3032, 2836, 2621, 2049, 1614, 1583, 1568, 1556, 1510, 1485, 1458, 1444, 1405. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}-\mathrm{DMSO}) ~ \delta=12.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.84-7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67-7.61(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), 7.45-7.41 (m, 5H, Ar-H), 7.35-7.32 (m, 2H, Ar-H), 6.33 (d, J=3.2 Hz, 1H, OH), $5.85(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, d-DMSO) $\delta=151.4,142.6,140.5,140.4,139.5,137.9,131.9,129.6,129.4,127.8,127.6,127.5,127.1,126.9$, 126.7, 125.9, 125.2, 69.9. LC-MS/MS Anal.Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 403.18049$, Found: 403.18079.

2.3.8. Naphthalen-2-yl(4-(naphthalen-2-yl)-1H-imidazol-2-yl)methanol(3h)

Yield; 40%, Color; yellow solid. m.p: $176-180^{\circ} \mathrm{C}$
FT-IR(ATR cm ${ }^{-1}$):3263, 3053, 1718, 1630, 1599, 1507, 1367. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}-\mathrm{DMSO}$) $\delta=12.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$, 8.23 ($\mathrm{s}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}$), $7.92-7.81$ (m, $8 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.51-7.44(\mathrm{~m}, 4 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.98(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}) .^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}-\mathrm{DMSO}$) $\delta=151.5,140.9,128.8,133.9,133.2,132.8,132.2,128.3,128.1,127.9,126.6,126.3$, 125.5, 125.1, 124.1, 121.9, 70.3.LC-MS/MS Anal.Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 351.14919$, Found: 351.14966.

2.3.9. (1H-Imidazol-2-yl)(phenyl)methanol(3i) [26]

Yield; 58%, Color; white solid. m.p: $196-199^{\circ} \mathrm{C}$
FT-IR(ATR cm ${ }^{-1}$): $3163,3063,3029,2891,2607,1610,1584,1510,1488,1451 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}-\mathrm{DMSO}$) $\delta=$ $11.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.37-7.19(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , d-DMSO) $\delta=150.7,143.7,128.4,127.4,126.8,70.0$. LC/MS-MS Anal.Calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]$: 175.08659, Found 175.08705.

2.4. General procedure 3

C-2 aroyl substituted imidazolo methanol 3a-h derivatives (1 mmol) were dissolved in dry DCM. Chloroacetylchloride (1 mmol) was added and heated at $45^{\circ} \mathrm{C}$ by stirring. It was understood that the reaction was finished after 2 h by TLC method. The reaction flask was filtered and evaporated. Crude product 5 a was obtained.

2.4.1. 2,8-Diphenyl-8H-imidazo[2,1-c][1,4] oxazin-6(5H)-one (5a)

Yield; 87\%, Color; light yellow viscose.
FT-IR(ATR cm ${ }^{-1}$): 3148, 2980, 2835, 2639, 1747, 1633, 1601, 1583, 1509, 1486, 1455, 1408, 1342. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.83-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.29-7.25(\mathrm{~m}, 6 \mathrm{H}$, Ar-H), $4.64\left(\mathrm{AB}\right.$ sistem, $\left.J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{a}}\right), 4.26\left(\mathrm{AB}\right.$ sistem, $\left.J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~b}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=166.7,144.9,134.1,133.5,130.0,129.7,129.3,129.1,127.7,125.9,125.8,114.1,70.2,41.1 . \mathrm{LC} / \mathrm{MS}-\mathrm{MS}$ Anal.Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 291.11280$, Found 291.11392.
2.4.2. 2,8-bis(4-bromophenyl)-8H-imidazo[2,1-c][1,4]oxazin-6(5H)-one(5f)

Yield; 60\%, Color; light yellow viscose
FT-IR(ATR cm ${ }^{-1}$): 3147, 2833, 2635, 1770, 1633, 1593, 1539, 1485, 1440, 1398, 1310. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.68 (br, 2H, Ar-H), 7.59 (br, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.44-7.40(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$, imidazole CH and CH$), 4.62(\mathrm{AB}$ sistem, $\mathrm{J}=13.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{a}}\right), 4.30\left(\mathrm{AB}\right.$ sistem, $\left.\mathrm{J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~b}}\right) \cdot{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=166.7,144.6,133.4,132.6,132.4,129.3$, 127.4, 124.6, 124.2, 114.6, 69.4, 41.0. GC/MS (e/z) Anal.Calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}: 445.93$, Found 445.93.
2.4.3. 2,8-di([1,1'-biphenyl]-4-yl)-8H-imidazo[2,1-c][1,4]oxazin-6(5H)-one(5g)

Yield; 55\%, Color; green viscose
FT-IR(ATR cm ${ }^{-1}$): 3132, 3030, 2833, 2641, 1746, 1633, 1603, 1485, 1471, 106, $1300 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.92-7.90 (m, 2H, Ar-H), 7.69-7.62 (m, 3H, Ar-H), 7.51-7.45 (m, 3H, Ar-H), 7.36-7.20 (m, 12H, Ar-H, imidazole CH and CH$), 4.64\left(\mathrm{AB}\right.$ sistem, $\left.\mathrm{J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{a}}\right), 4.26\left(\mathrm{AB}\right.$ sistem, $\left.\mathrm{J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~b}}\right) \cdot{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $166.8,144.8,142.8,142.2,139.6,139.4,133.9,132.3,128.8,128.8,128.2,127.9,127.6,126.9,126.2,124.6,114.2,70.0,41.2$. GC/MS (e/z) Anal.Calcd. for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}: 442.17$, Found 442.17
2.4.4. 8-phenyl-8H-imidazo[2,1-c][1,4]oxazin-6(5H)-one(5i)

Yield; 68\%, Color; light yellow viscose
FT-IR(ATR cm ${ }^{-1}$): 3149, 3059, 2858, 2672, 1766, 1611, 1496, 1456, 1408, 1351. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.65-$ $7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.26(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.59(\mathrm{AB}$ sistem, J=15.7 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{a}}\right), 4.24\left(\mathrm{AB}\right.$ sistem, $\left.\mathrm{J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~b}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=166.6,144.4,133.3,130.2,129.4$, 127.6, 118.9, 70.2, 41.0. GC/MS (e/z) Anal.Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}: 214.07$, Found 214.07
2.4.5. (1-(2-Chloroacetyl)-4-phenyl-1H-imidazol-2-yl)(phenyl)methyl 2-chloroacetate (11a)

Yield; 88%, Color; grey solid. m.p: $138-140^{\circ} \mathrm{C}$
FT-IR(ATR cm ${ }^{-1}$): 3161, 3063, 3034, 2981, 2964, 2940, 1960, 1748, 1606, 1531, 1495, 1450, 1387. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.34(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.43-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.32-7.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.14\left(\mathrm{AB}\right.$ sistem, $\left.J=1.2,15.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.52(\mathrm{AB}$ sistem, $J=1.2,15.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=167.0,165.5,147.6,136.1,132.6,129.2,129.1,128.9,128.9,128.8,128.3,125.4$, 115.2, 72.8, 44.7, 41.5. LC/MS-MS Anal.Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 403.06107, Found 403.06201.

3. Results

In this study, for starting compounds, C-2 aroyl substituted imidazolo methanol derivatives 3 shown in Scheme 1 were obtained from C-2 aroyl substituted imidazole derivatives 2 , which is not found in the literature. The synthesis of 1,4 -imidazoxazinone derivatives of C-2 aroyl substituted imidazolo methanol derivative compounds with chloroacetylchloride 13 under the various base and solvent conditions was investigated.

C-2 aroyl substituted imidazolo methanol $\mathbf{3}$ derivatives were used as starting compound for obtaining $\mathbf{5}$ or $\mathbf{6}$ molecules of heterobicyclic imidazoxazinone derivatives. As shown in Scheme 2, cyclization experiments were carried out on reagents using various bases.

Table 1 shows the experiments performed in the presence of various bases, the reagent used, and the starting compound. To abstract the NH and OH protons in the starting compound 3a as in the mechanism given in Scheme 2, when sodium hydride (NaH) is used as a base in DMF, compound 4 formed. However, when compound 13 was added later, neither products 5-6 formation nor starting compound 3a was obtained. No product formation was observed when potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ was used as a base in dichloromethane (DCM). The starting product $\mathbf{3 a}$ was obtained when the starting compound was made directly with acetic acid (AcOH). We know well from previous studies that 4 intermediate products were formed [27]. As a result of the experiments carried out, it is thought that the compound $\mathbf{1 3}$ reagent used has two

Scheme 1. C-2 aroyl substituted imidazolo methanol derivatives.

Scheme 2. Heterobicyclic imidazoxazinone derivatives.

Table 1. Experiments with compound 3a in the presence of various bases.

Compound		Chloroacetylchloride 13	Solvent	Base	Temperature	Result	Time (h)
1	3 a	2.8 mmol	DMF	NaH	$0^{\circ} \mathrm{C}$	nd^{b}	24
2	3 a	1 mmol	DCM	$\mathrm{K}_{2} \mathrm{CO}_{3}$	Room Temp.	nd^{b}	24
3	3 a	1 mmol	AcOH	-	Room Temp.	nr^{a}	24
4	3 a	1.4 mmol	THF	$\mathrm{K}_{2} \mathrm{CO}_{3}$	Room Temp.	nd^{b}	24

$n^{\text {a }}$: No reaction, starting material was recovered. $n d^{\text {b }}$: Non-isolated mixture.
different ends that can react, and the polymeric structures are formed as a result of the reaction of compound 4 formed by the use of inorganic bases.

The experiments were concentrated upon obtaining compound 9 from the reaction of compound $\mathbf{1 3}$ with the formation of $\mathbf{8}$ by breaking off the NH proton present in the phenyl (4 -phenyl- 1 H -imidazol-2-il) methanone $7 \mathbf{a}$ with various bases shown in Table 2.

Table 2 shows the experiments with various solvents and bases to remove the 7 a NH protons of the imidazole compound. Only the starting compound was recovered from the reaction of the molecule $7 \mathbf{a}$ with bases such as $\mathrm{NaH}, \mathrm{K}_{2} \mathrm{CO}_{3}$, and TEA, with compound 13. In the literature, the NH proton can be easily separated [28-31] with bases such as $\mathrm{NaH}, \mathrm{K}_{2} \mathrm{CO}_{3}$ and reacted with the appropriate reagent. In the literature, there are some studies in which removal of one of the NH_{2} protons was done using bases such as $\mathrm{NaH}, \mathrm{K}_{2} \mathrm{CO}_{3}$ and substitutions with chloroacetylchloride [32-34].

In the studies performed to obtain imidazoxazinone derivatives in Table 3, no product could be isolated in all other trials except 5a, 8, and 9. It might be due to the presence of more than one reacting group on the imidazole ring, and the presence of two reagent ends in compound 13. At the same time, it may have caused the formation of different polymeric structures. After this observation, crude NMR was obtained without extraction in all our other trials except 8 and 9 in

Table 2. Trials to obtain molecule 9.

Compound		Chloroacetylchloride	Base	Solvent	Temp.	Result	Time (h)
1	7 a	1.4 mmol	$\mathrm{NaH}(1.6 \mathrm{mmol})$	DMF	$0^{\circ} \mathrm{C}$	nr^{a}	24
2	7 a	1.4 mmol	$\mathrm{NaH}(1.6 \mathrm{mmol})$	THF	$0^{\circ} \mathrm{C}$	nr^{a}	24
3	7 a	1.4 mmol	$\mathrm{K}_{2} \mathrm{CO}_{3}(2.5 \mathrm{mmol})$	THF	Reflux	nr^{a}	24
4	7 a	1.4 mmol	$\mathrm{K}_{2} \mathrm{CO}_{3}(2.5 \mathrm{mmol})$	Acetone	Reflux	nr^{a}	24
5	7 a	1.4 mmol	$\mathrm{TEA}(3 \mathrm{mmol})$	THF	Room Temp.	nr^{a}	24
6	7 a	1.4 mmol	-	AcOH	Reflux	nr^{a}	24
7	7 a	1.2 mmol	TEA $(3 \mathrm{mmol})$	Pyridine	Reflux	nr^{a}	24

$n r^{\text {a }}$: No reaction, starting material was recovered.

Table 3. Synthesis of imidazoxazinone molecule.

Compound		Chloroacetylchloride	Base	Solvent	Temp.	Result	Time
1	3 a	1.4 mmol	-	THF	$45^{\circ} \mathrm{C}$	5 a	15 min
2	3 a	1.4 mmol	-	DCM	Room Temp.	5 a	2 h
3	3 a	1.4 mmol	TEA	DCM	Room Temp.	11 or 12	2 h
4	3 a	1 mmol	TEA	DCM	Room Temp.	nd $^{\mathrm{b}}$	1 h
5	3 a	1.4 mmol	NaHCO $_{3}$	MeCN	Room Temp.	5 a	30 min
6	3 a	1 mmol	-	DCM	45°	5 a	2 h
7	3 a	1 mmol	-	THF	Room Temp.	5 a and $3 \mathrm{a}(1 / 3)$	2 h
8	3 a	1 mmol	1 mmol	-	AcOH	Room Temp.	3 a
9	3 a	-	THF	$45^{\circ} \mathrm{C}$	nd $^{\mathrm{b}}$	24 h	

$n d^{\text {b }}$: Non-isolated mixture.

Table 3. In NMR analysis, the formation of 5a, the molecule we aimed in reactions $1,2,5,6$, and 7 , was determined. Due to the isolation problems arising from the lactone structure of the molecule $\mathbf{5 a}$, the peaks of compound $\mathbf{1 3}$, which is overused with the $\mathbf{5 a}$ molecule, were also observed. In the reaction where compound $\mathbf{1 3}$ was used at $1 / 1$ stereometric coefficients
(Scheme 3), it was observed that molecule $\mathbf{5 a}$ was synthesized purely without using a base, and there was no chemical shift of molecule 13. Using the base molecule 13 with a $1 / 1$ stichiometric coefficient, a mixture of molecules was observed, which was not understood in crude NMR. In the reaction conditions obtained by taking crude NMR, it was determined that when the reaction medium was heated at $45^{\circ} \mathrm{C}$ in dry DCM for 2 h without using base, high purity targeted molecule was synthesized without leaving starting compounds $\mathbf{3 a}$ and $\mathbf{1 3}$.

Various cyclization trials were carried out under the reaction conditions shown in Table 3 to obtain imidazoxazinone derivatives, as shown in Scheme 3. As a result, it was observed that the product formed in the reaction of compound 3a and compound 13 in DCM solvent at a ratio of $1: 1$ at $45^{\circ} \mathrm{C}$ was imidazoxazinone derivative is compound 5 .

In the reaction without the use of a base, it was thought that the OH group would react with the acyl carbonyl [35] and substitute the chloroacetylchloride compound on oxygen, and then the molecule would be cyclized by cleaving the NH proton in the imidazole compound with the appropriate base. As predicted, it was observed that the reaction started when the OH group in the imidazole molecule attacked the electrophilic acyl carbonyl of compound $\mathbf{1 3}$, and the compound $\mathbf{5 a}$ was formed in the solvent medium without using any base as a result of the attack of the second electrophilic group of compound 13 to the methyl chloride with the unshared electron pair of the NH nitrogen in the imidazole through the resonance that occurred in the molecule. It was determined that the $\mathbf{5 a}$ molecule was not degraded by NMR taken at certain intervals within a month. However, introducing a nucleophile such as water, alcohol, etc. causes the molecule to react rapidly.

When the ${ }^{1} \mathrm{H}$-NMR spectrum is examined over the $\mathbf{5 a}$ compound shown in Figure 3, it is seen that the protons of the C_{5} carbon atom are resonant at $4.26 \mathrm{CH}_{2 \mathrm{~b}}$ and $4.64 \mathrm{CH}_{2 \mathrm{a}} \mathrm{ppm}$. It is understood from the spectrum that these protons are diastereotopic, interacting with each other, and are part of an AB system. When the interactions of these protons were examined, the interaction value was measured as $J=15.8 \mathrm{~Hz}$. It is understood from this value that these protons are in the geminal position, and neighboring groups with these protons have π orbitals [36]. It is in harmony with this information in the molecular structure we propose. The proton of the C_{8} carbon resonated as a singlet at 7.35 ppm due to its electronic environment. When the HSQC spectrum is examined, it has been confirmed that the protons resonating at 4.26 and 4.64 ppm are geminal protons and are bound to the same carbon. It is seen that protons resonating at 4.26 to 4.64 ppm are C_{5} paired with the resonant carbon at 41.1 ppm . On the other hand, it has been confirmed from the HSQC spectrum that the proton resonating in the aromatic field is an aliphatic proton that the C_{8} carbon atom protons do not belong to any aromatic system. It was observed that the proton resonant at 7.43 ppm belongs to the resonant carbon C_{8} at 70.1 ppm . It is seen that the lactone carbonyl carbon of the imidazoxazinone compound is C_{6} resonant at 166 ppm and $\mathrm{C}_{9}, \mathrm{C}_{2}$, and C_{3} carbon atoms are resonant at $144.9,134.1$, and 114.0 ppm , respectively.

4. Conclusion

In this work, nine different C-2 aroyl imidazole derivatives were synthesized, and C-2 aroyl substituted imidazolo methanol derivative compounds were obtained as the starting compound in the yield of imidazoxazinone derivatives with suitable reducers. Then, the synthesis of 1,4-imidazoxazinone derivatives with chloroacetylchloride under the various base and solvent conditions was investigated. As a result of the obtained imidazo methanol derivatives and the substitution

3

5 O

Scheme 3. Preparation of imidazoxazinone derivatives.

TAŞDEMİR / Turk J Chem

Figure 3. Imidazoxazinone derivative 5a.
reaction and ring closure reactions, the synthesis of 1,4 imidazoxazinone derivatives and dichloraacetylchloride derivative molecules was carried out. Structure characterizations for the obtained compound $\mathbf{5}$ were elucidated by using ${ }^{1} \mathrm{H}-\mathrm{NMR}$, ${ }^{13} \mathrm{C}$-NMR, and LC-MS / MS.

Acknowledgement and/or disclaimers, if any

Authors thank to Van Yüzüncü Yil University (grand number: FBA-2019-8405) for financial support and Science Research and Applied Center for their research laboratories and spectral analysis.

Supporting information

${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$-NMR, HSQC, APT spectrum and LC-MS / MS, GC-MS data are provided in the Supplementary Material section of this article.

References

1. Schröder K, Enthaler S, Bitterlich B, Schulz T, Spannenberg A et al. Design of and Mechanistic Studies on a Biomimetic Iron-Imidazole Catalyst System for Epoxidation of Olefins with Hydrogen Peroxide. Chemistry A European Journal 2009; 38 (15): 5471-5481. doi: 10.1002/chem. 200802731
2. Jin Z. Muscarine, imidazole, oxazole, and thiazolealkaloids. The Royal Society of Chemistry 2011; 28 (6): 1143-1191. doi: 10.1039/ c0np00074d
3. Gao G, Xiao R, Yuan Y, Zhou C-He, You J et al. Efficient imidazolium catalysts for the benzoin Condensation. Journal of Chemical Research 2002; 2002 (6): 262-263. doi: 10.3184/030823402103172130
4. Farooq S, UlHaq I, Ullah N. Synthesis, characterization and biological evaluation of N-Mannich base derivatives of 2-phenyl-2-imidazoline as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents. Arabian Journal of Chemistry 2021; 14 (4): 103050. doi: 10.1016/j.arabjc.2021.103050
5. Mazik M, Hartmann A. Recognition properties of receptors consisting of imidazole and indole recognition units towards carbohydrates. Beilstein Journal of Organic Chemistry 2010; 6 (9): 1-10. doi: 10.3762/bjoc.6.9
6. Choi J-H, Abe N, Tanaka H, Fushimi K, Nishina Y et al. Plant-Growth Regulator, Imidazole-4-Carboxamide, Produced by the Fairy Ring Forming Fungus Lepista sordida. Journal of Agricultural and Food Chemistry 2010; 58 (18): 9956-9959. doi: 10.1021/jf101619a
7. Emandia G, Flanagana KJ, Sengea MO. Fluorescent imidazole-based chemosensors for the reversible detection of cyanide and mercury ions. Photochemical \& Photobiological Sciences 2018; 17: 1450-1461. doi:10.1039/C8PP00226F
8. ChengHe Z, LinLing G, YiYi1 Z, FeiFei Z, GuangZhou1 W et al. Review on supermolecules as chemical drugs. Science in China Series B: Chemistry 2009; 52 (4): 415-458. doi: 10.1007/s11426-009-0103-2
9. Niedzicki L, Zukowska G.Z, Bukowskaa M, Szczecinski P, Grugeonb S et al. New type of imidazole based salts designed specifically for lithium ion batteries. Electrochimica Acta 2010; (55): 1450-1454. doi: 10.1016/j.electacta.2009.05.008
10. Jacques P, Graff B, Diemer V, Ay E, Chaumeil H et al. Negative solvatochromism of a series of pyridinium phenolate betaine dyes with increasing steric hindrance. Chemical Physics Letters 2012; 531: 242-246. doi: 10.1016/j.cplett.2012.02.018
11. Fu N, Zhang L, Luo S, Chenga J-P. Chiral primary amine catalysed asymmetric conjugate addition of azoles to α-substituted vinyl ketones. Organic Chemistry Fronttiers 2014; 1: 68-72. doi: 10.1039/C3QO00027C]
12. Taşdemir V, Kuzu B, Tan M, Genç H, Menges N. Copper-Catalyzed Synthesis of Fused Imidazopyrazine N-Oxide Skeletons. Synlett 2019; 30 : 307-311. doi:10.1055/s-0037-1610859
13. Calvino-Casilda V, Banares MA. In situ Raman monitoring of Michael addition for the synthesis of 1-substituted imidazoles intermediates with antiviral properties. Catalysis Today 2012; 187: 191-194. doi: 10.1016/j.cattod.2011.09.006
14. Mombelli PL, Chapelain C, Munzinger N, Joliat E, İllarionov B et al. Imidazole-and Benzimidazole-Based Inhibitors of the IspE: Targeting the Substrate-Binding Site and the Triphoshate-Binding Loop of the ATP Site. European Journal of Organic Chemistry 2013; 1068-1079. doi: 10.1002/ejoc. 201201467
15. Kuzu B, Tan M, Ekmekci Z, Menges N. A novel structure for ESIPT emission: Experimental and theoretical İnvestigations. Journal of Photochemistry \& Photobiology A: Chemistry 2019; 381: 11874. doi: 10.1016/j.jphotochem.2019.111874
16. Zhang L, Peng X-Mei, Damu GLV, Geng R-Xia, Zhou C-He. Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry. Medicinal Research Reviews 2014; 34 (2): 340-437. doi: 10.1002/med. 21290
17. Tippannanavar, M, Verma, A, Kumar R, Gogoi R, Kundu A et al. Preparation of nanofungicides based on imidazole drugs and their antifungal evaluation. Journal of Agricultural and Food Chemistry 2020; 68 (16): 4566-4578. doi: 10.1021/acs.jafc. 9 b 06387
18. Nagaraj M, Muthusubramanian S, Transition metal-free, base-promoted hydroalkoxylation: Synthesis of Substituted imidazo[2,1-c][1,4] oxazines. Jouranal of Chemistry Scientific. 2016; 128 (3): 451-458. doi: 10.1007/s12039-016-1045-9
19. Kuzu B, Genc H, Taspinar M, Tan M, Menges N. An easy synthetic protocol for imidazo-1,4-oxazines and evaluation of their toxicities. Heteroatom Chemistry 2018; 29: 1-12. doi: 10.1002/hc. 21412
20. Ashtekar DR, C-Perira R, Nagrajan K, Vishvanathan N, Bhatt AD et al. In vitro and in vivo activities of the nitroimidazole cgi 17341 against mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy 1993; 37 (2): 183-186. doi: 10.1128/aac.37.2.183
21. Eftekhari-Sis B, Zirak M, Akbari A. Arylglyoxals in Synthesis of Heterocyclic Compounds. Chemical Reviews 2013; 113 (5): $2958-3043$. doi: 10.1021/cr300176g
22. Khalili B, Jajarmi P, Eftekhari-Sis B, Hashemi MM. Novel one-pot, three-component synthesis of new 2-Alkyl-5-aryl-(1H)-pyrrole-4-ol in water. The Journal of Organic Chemistry 2008; 73 (6): 2090-2095. doi: 10.1021/jo702385n
23. Eftekhari-Sis B, Akbaril A, Amirabedi M. Synthesis of new N-Alkyl(Aryl)-2,4-Diaryl-1H-Pyrrol-3-ols via aldol paal-knorr reactions. Chemistry of Heterocyclic Compounds 2010; 46 (11): 1330-1334. doi: 10.1007/s10593-011-0669-4
24. Mirko R, Manoj K. P, Alberto R, Valentina Z. sodium channel blocking activity and in-vivo testing of new phenylimidazole derivatives. Letters in Drug Design and Discovery 2016; 13 (9): 962-967. doi: 10.2174/1570180813666160714125755
25. Kuzu B, Tan M, Taslimi P, Gülçin İ, Taşpınar M et al. Mono- or di-substituted imidazole derivatives for inhibition of acetylcholine and butyrylcholine esterases. Bioorganic Chemistry 2019; 86 :187-196. doi: 10.1016/j.bioorg.2019.01.044
26. Martinez R, Pastor M.I, Yus M. 1,2-Functionalized imidazoles as palladium ligands: an efficient and robust catalytic system for the fluorine-free hiyama reaction. European Journal of Organic Chemistry 2014; 2014 (4): 872-877. doi: 10.1002/ejoc.201301439
27. Kuzu B, Taşdemir V, Menges N. Alkene or Alkyne-linked Imidazole Derivatives and Investigation of Their Applications. İn: 7th Drug Chemistry Conference: Design, Synthesis, Production and Standardization of Drug Active Substances, Antalya, Turkey, 2019.
28. Mishra D, Singh R, Rout C. A facile amidation of chloroacetyl chloride using DBU. International Journal of ChemTech Research 2017 ; 10 (3): 365-372.
29. Choi J, Lee J-O, Kim M-S, Nam SJEN, Chun K-H. Preparation of Morpholine-2-one and 1,4-Oxazepan-2-one Derivatives by Cyclization Reaction between N-Bts Amino Alcohol and Chloroacetyl Chloride. Bulletin Korean Chemical Society 2008; 29 (8): 1443-1444. doi: 10.5012/bkcs.2008.29.8.1443
30. Gao B, Wang L, Du R. Studies on Chloroacylation Reaction Process of Crosslinked Polystyrene Microspheres with ω - Chloroacyl Chloride as Reagent. Journal of Macromolecular Science Part A: Pure and Applied Chemistry 2010; 47 (9): 927-934. doi: 10.1080/10601325.2010.501677
31. Kiamehr M, Moghaddam FM, Erami MS. A convenient synthesis of 3-formyl-2-thioacetamide-indole derivatives via the one-pot reaction of indolin-2-thiones, isocyanides and chloroacetylchloride. Tetrahedron Letters 2015; 56 (52): 7190-7192. doi: 10.1016/j.tetlet.
32. Sing K.S, Manne N, Pal M. Synthesis of (S)-1-(2-chloroacetyl)pyrrolidine-2- carbonitrile: A key intermediate for dipeptidyl peptidase IV inhibitors. Beilstein Journal of Organic Chemistry 2008; 4 (20): 1-5. doi: 10.3762/bjoc.4.20
33. Viktor V. Efimov V.V, Krasnov P.O, Lyubyashkin A.V, Suboch G.A et al. Experimental and theoretical study of the acylation reaction of aminopyrazoles with aryl and methoxymethyl substituents. Journal of Molecular Structure 2018; 1165: 370-375. doi: 10.1016/j. molstruc.2018.04.018
34. Fikry R, Ismail N, Raslan S, El-Tahawe H. Synthesis and Reactions of New Pyrazole Derivatives. European Chemical Bulletin 2016; 5 (5): 157-162. doi: 10.17628/ECB.2016.5.157
35. Toma T, Shimokawa J, Fukuyama T. N,N-Ditosylhydrazine: A Convenient Reagent for Facile Synthesis of Diazoacetates. Organic Letters 2007; 9 (16): 3195-3197. doi: 10.1021/ol701432k
36. Balcı M. Nükleer Manyetik Rezonans Spektroskopisi. Ankara, Türkiye: ODTÜ Yayıncılık, 2004.

Supplementary material

Spectra

${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HSQC}$, APT spectra were taken by Agilent $400 \mathrm{MHz}\left({ }^{13} \mathrm{C}-\mathrm{NMR}: 100 \mathrm{MHz}\right)$ and mass spectra were taken by Thermoscientific brand LC-MS / MS.

3a compound FT-IR spectrum

3a compound ${ }^{1} \mathrm{H}$-NMR spectrum

O
O
O
1

3a compound ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum

V33\#29 RT: 0.20 AV: 1 NL: 2.73 E88
T: FTMS + p ESI Full ms [70.0000-1050.0000)

3a compound LC-MS/MS spectrum

3b compound FT-IR spectrum

3b compound ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum

3b compound ${ }^{13} \mathrm{C}-$ NMR spectrum

3b compound LC-MS/MS spectrum

3c compound FT-IR spectrum

3c compound ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum

3c compound ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum

3c compound LC-MS/MS spectrum

3d compound FT-IR spectrum

3d compound LC-MS/MS spectrum

3e compound FT-IR spectrum

3e compound ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum

$\stackrel{+}{0}$
\vdots

$$
\begin{aligned}
& \text { 항요 }
\end{aligned}
$$

3e compound ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum

3e compound LC-MS/MS spectrum

3f compound FT-IR spectrum

3f compound ${ }^{1} \mathrm{H}$-NMR spectrum

$\stackrel{\infty}{\stackrel{\infty}{\circ}}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1
230	220	210	200	190	180	170	160	150	140	130	120	$\stackrel{110}{\mathrm{f} 1(\mathrm{ppm})}$	100	90	80	70	60	50	40	30	20	10	0	-10

3f compound ${ }^{13} \mathrm{C}-$ NMR spectrum

$3 f$ compound LC-MS/MS spectrum

3g compound FT-IR spectrum

3 g compound ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum

3 g compound ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum

3 g compound LC-MS/MS spectrum

3h compound FT-IR spectrum

3h compound ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum

3h compound ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum

3h compound LC-MS/MS spectrum

3i compound FT-IR spectrum

3i compound ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum

3i compound ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum

3i compound LC-MS/MS spectrum

5a compound FT-IR spectrum

5a compound ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum

n	
$\underset{R}{R}$	च
1	न

5a compound ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum

5a compound APT spectrum

5a compound LC-MS/MS spectrum

$5 f$ compound FT-IR spectrum

5 f compound ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum

\qquad

150	145	140	$\begin{array}{c}135 \\ \text { f1 (ppm) }\end{array}$	130	125

$5 f$ compound ${ }^{13} \mathrm{C}-$ NMR spectrum

5f compound GC-MS spectrum

5 g compound FT-IR spectrum

5 g compound ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum

5 g compound ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum

5 g compound GC-MS spectrum

$5 i$ compound FT-IR spectrum

5i compound ${ }^{1} \mathrm{H}$-NMR spectrum

5i compound ${ }^{13} \mathrm{C}$-NMR spectrum

5i compound GC-MS spectrum

11a compound FT-IR spectrum

11a compound ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum

11a compound ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum

\square
 \int

11a compound HSQC spectrum

$\stackrel{\text { @ }}{\stackrel{\text { ® }}{1}}$
-30
-25
-20

11a compound APT spectrum

11a compound LC-MS/MS spectrum

[^0]: * Correspondence: volkantasdemir@yyu.edu.tr

