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1. Introduction
Azo dyes constitute a group of dye stuffs, which have gained great commercial interest in the textile industry. However, 
the excess amount of these dyes is released as effluent wastewater. Undesirable dyeing agents present in water lead to 
critical environmental problems and also effects on public health due to their toxic, mutagenic, and carcinogenic features 
[1]. Although some traditional physicochemical methods have been applied to treat wastewater by removal of colour in 
various steps, these techniques have many limitations such as the large quantity of chemicals consumed, incapability of 
fully dye removal, formation of toxic metabolites, production of a sludge, which contains also other pollutants which 
needs complex multistep methodologies for efficient treatment [2]. Degradation of Azo dyes involves elimination of the 
colour and then also to degrade the metabolites. Therefore, it is necessary to implement several techniques, because using 
one of them alone can not meet all requirements for effective dye decolorization and degradation of metabolites [3]. 
Nevertheless, decolorization of these dyes using microbial enzymes represents an eco-friendly and relatively inexpensive 
option over the other degradation processes. Furthermore, use of enzymes minimize the water consumption. Oxidases is a 
group among the enzymes, which plays an important role in the decolourization. Especially laccases have been extensively 
used due to their widespread availability and have been used in decolorization of several dyes. Laccase (EC 1.10.3.2) 
presents the polyphenol oxidases and oxygen is reduced to water with the enzymes’ catalytic activity. This enzyme has the 
ability of oxidizing many phenolic compounds and aromatic amines without any requirement of additives [4]. Laccase in 
combination with mediators constitute an effective combination when used in e.g., membrane reactors [5]. The abundance 
of laccase in different white-rot fungi species and production and purification of the enzyme from stable microbial sources 
have already been preferred in many commercial applications [6]. These properties make this enzyme unique in the 
textile dyeing industry. Besides, there is a growing need in the development of different approaches in dye decolorization 
using enzymes. In recent years, great attention has been given to immobilization processes, which provide improved 
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reusability and stability, cost-effective system generation [7–11]. For this process, cryogels are popular polymeric materials 
offering a promising future with their supermacroporous structure. They are easily prepared at freezing temperature, and 
large pores provide some advantages such as low pressure drop, efficient diffusion property and short residence time. 
These characteristics of cryogels make them unique and applicable to be preferred in many fields such as medical [13, 
14] environmental [15–17] and biotechnological applications [18, 19]. Poly(2-hydroxyethyl methacrylate) [PHEMA] 
based support materials have the extensive potential for several applications, including enzyme immobilization because 
of their improved performance at a large scale of different experimental conditions [20, 21]. These materials can also 
be functionalized by novel methodologies, in this way, the hydrophilic character of PHEMA may be modified via using 
different monomers and ligands [22]. MAPA is a phenylalanine containing aminoacid-derived functional monomer. It 
is used to gain hydrophobic functionality to the support material and can interact with glycoproteins such as laccase.  
Therefore, the work presented herein indicates the binding mechanism of MAPA and laccase that can be attributed to the 
interaction between hydrophobic groups of MAPA and laccase [23]. 

In this study, laccase bound to cryo-polymerized support material was aimed to be used for dye decolorization - a 
challange that needs to be met in textile industrial scale applications. For this purpose, we have directed our attention to 
examine optimized conditions for ability of Lac-PHEMAPA cryogel discs. Lac-PHEMAPA cryogel discs were prepared, 
and efficiency in decolorization was studied. Effects of reaction time, pH value, temperature and dye concentration on 
decolorization efficiency of Lac-PHEMAPA cryogel discs were investigated. Besides, storage stability and reusability of 
Lac-PHEMAPA cryogel discs were determined. 

2. Materials and methods
2.1. Materials 
Laccase from Trametes versicolor, 2,2’- azino-bis(3-ethylbenz-thiazoline-6-sulphonic acid) (ABTS), 2-hydroxyethyl 
methacrylate (HEMA), methylenebisacrylamide (MBAA), N,N,N’,N’-tetra-methyl-ethylenediamine (TEMED), and 
ammonium persulphate (APS) were obtained from Sigma-Aldrich (SigmaChem, USA). RB-247 was obtained from the 
textile industry. All other chemicals used were of analytical grade. All buffers were prepared with water processed using a 
reverse osmosis step with a Milli-Q system from Millipore (Bedford, MA, USA). 
2.2. Synthesis of MAPA monomer
The experimental procedure applied for the synthesis of MAPA monomer was summarized in the following as reported 
elsewhere [24]. (L)-phenyl alanine methyl ester (C6H5CH2CH(NH2)COOCH3; 5.0 g)  and sodium nitrite (NaNO2; 0.2 g) 
were dissolved in 30 mL water containing 5% w/v potassium carbonate (K2CO3). The reaction chamber was cooled to 0 
°C in an ice bath and the mixture was stirred magnetically under a nitrogen atmosphere. Then, methacryloyl chloride 
(C4H5ClO; 4.0 mL) was added slowly into a reaction solution. The obtained solution was stirred magnetically at 100 rpm 
and 24 °C for 2 h. The product was extracted with ethyl acetate and the aqueous phase was evaporated. The residue was 
crystallized to obtain MAPA monomer. 
2.3. Preparation of PHEMAPA cryogel discs
PHEMAPA cryogel discs were prepared by cryopolymerization as described as follows. In the first step, 1.3 mL of HEMA 
and functional monomer MAPA (200 mg) were dissolved in 5 mL of H2O. In another beaker, 0.283 g of MBAA, as the 
crosslinker, was dissolved in 10 mL of H2O. Then, MBAA and monomer mixture were mixed until they are completely 
dissolved. The mixture was cooled on an ice bath. After adding APS and TEMED, the mixture was poured between two 
glass plates using spacers 1.5 mm in thickness and was put in deep freeze at –18°C and was left for 24 h for polymerization 
to take place. The formed cryogel was then thawed at room temperature, and the cryogel layer was cut into circular pieces 
to be 0.8 cm in diameter. PHEMAPA cryogel discs were washed several times by water and alcohol to remove unreacted 
monomers. PHEMAPA cryogel discs were stored in 0.02% sodium azide solution until they are used. 
2.4. Characterization of PHEMAPA cryogel discs 
To determine polymerization yield, PHEMAPA cryogel discs were dried at vacuum oven and weighed. Eq.1 was used to 
calculate yield: 

Yield (%) = (mdried gel / mt) 100 (1) 
Here, mdried gel represents the mass of dried cryogel disc; mt represents the total mass of monomers. 
Swelling degrees of PHEMAPA cryogel discs were calculated according to Eq. 2. Firstly, they were kept in water until 

they were completely swollen. Then, they were placed on dried paper and excess water was removed. Weights of PHEMAPA 
cryogel discs (mwet gel) were determined. Then, cryogel discs were dried at 55°C and weighted (mdried gel). 

Swelling degree (S) = (mwet gel - mdriedgel ) / mdried gel (2) 
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To determine macroporosity, the weights of the swollen cryogels were determined (mswollen gel). Then, water was removed 
from swollen cryogels by squeezing, and the weights of the squeezed cryogels (msqueezed gel) were determined. Eq. 3 was used 
to calculate macroporosity. 

Macroporosity (%) =(mswollen gel – msqueezed gel) /mswollen gel x 100  (3)
PHEMAPA cryogel discs were characterized by FTIR (Thermo Fisher Scientific, Nicolet iS10, Waltham, MA, USA) to 

determine the presence of phenylalanine. The samples were dried at 55 °C before analysis. 
Surface morphology of PHEMAPA cryogel discs was examined by SEM (JEOL, JEM 1200 EX, Tokyo, Japan). Firstly, 

PHEMAPA cryogel discs were frozen at –20 °C and completely freeze dried in a lyophilizer (Chris Alpha 1-2 LD Freeze 
Dryer, SciQuip, England). Then, the samples were coated with metallic gold, and SEM photos of them were taken in 
different magnifications. 
2.5. Laccase binding studies
Binding of laccase on PHEMAPA cryogel discs was performed in a batch experimental set-up. PHEMAPA cryogel discs 
were equilibrated with 50 mM, pH = 6.0 phosphate buffer for 2h. Laccase solutions were prepared by dissolving laccase in 
15 mL of 50 mM, pH = 6.0 phosphate buffer, and final concentrations of laccase solutions were changed between 0.1 and 
1.5 mg/mL. Laccase binding experiments were performed at 25°C for 18 h. After laccase binding process, Lac-PHEMAPA 
cryogel discs were washed with 50 mM, pH = 6.0 phosphate buffer for three times to remove excess free enzyme molecules. 
Also, effect of pH value (5.0–8.0) on binding of laccase on PHEMAPA cryogel discs was investigated. 

Bound amount of laccase was determined according to Eq. 4 by measuring the initial and final laccase concentration 
spectrophotometrically at 650 nm (Shimadzu, Japan) by Lowry method [25].

Q = (Ci-Cf)V/m (4)
Here, Q is the amount of bound laccase on a unit mass of PHEMAPA cryogel discs (mg/g), Ci is the initial concentration 

of laccase (mg/mL), Cf is the equilibrium concentration of laccase after binding (mg/mL), V is the volume of aqueous 
binding solution (mL), and m is the mass of dried cryogel discs used (g).
2.6. Dye decolorization
Dye decolorization ability of Lac-PHEMAPA cryogel discs was determined with the pigment RB-247 in a batch system. 
RB-247 was dissolved in distilled water. The final concentration of the dye solution was 50 mg/L. Three pieces of Lac-
PHEMAPA cryogel discs (21 mg) were added to the dye solution, and dye decolorization process was performed at 25 
°C for 8 h. Decolorization efficiency of Lac-PHEMAPA cryogel discs was determined by measuring solutions of RB-247 
(before and after decolorization) spectrophotometrically at 612 nm (Shimadzu UV-1700). The decolorization yield was 
calculated according to Eq. 5;

Decolorization (%) = (Initial Absorbance-Final Absorbance)/(Initial Absorbance)*100    (5)
Effect of pH on dye decolorization ability of Lac-PHEMAPA cryogel discs was investigated. Initial pH of the dye solution 

was changed between 3.0 and 8.0. Besides, the effect of temperature on dye decolorization ability of Lac-PHEMAPA cryogel 
discs was examined at different temperatures (4, 10, 20, 30, 40, 50, 60 °C). On the other hand, Lac-PHEMAPA cryogel 
discs were stored at 4 °C for three months to examine storage stability of Lac-PHEMAPA cryogel discs. Maintaining of dye 
decolorization capability of Lac-PHEMAPA cryogel discs was evaluated after three months of storage. 

Usage of cheap and reusable enzyme bound to materials in the industry for dye decolorization processes are important. 
Therefore, same Lac-PHEMAPA cryogel discs were used ten times in decolorization process and decolorization efficiency 
of Lac-PHEMAPA cryogel discs was tested in each step. No dye desorption process was applied between decolorization 
steps.

3. Results and discussions
Materials with immobilized laccase have been applied for the treatment of textile wastewater pollutant. In literature, there 
have been many publications indicating applications of laccase on dye decolorization [26-30]. In most of these studies, 
the superiority of immobilized laccase over free laccase, and the ability of immobilized laccase on dye decolorization was 
reported. Apart from these studies, application of laccase in the industrial scale has been taken into consideration and for 
this purpose optimum conditions of dye decolorization were investigated in our study. The schematic presentation of the 
overall methodology and dye decolorization process is briefly illustrated in Figure 1.
Textile wastewater shows markedly fluctuating pH and temperature values [31]. In addition to these parameters, initial 
dye concentration and reaction time have significant effects on dye decolorization [32]. By this reason, our paper focuses 
on examining the efficiency of Lac-PHEMAPA cryogel discs on dye decolorization with confirming their properties on 
enzyme stability and reusability of Lac-PHEMAPA cryogel discs.   
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3.1. Characterization studies
SEM images of PHEMAPA cryogel discs are given in Figure 2. Unique characteristics of cryogels can be clearly seen 
on SEM images of the PHEMAPA cryogel discs. Bulk structure of the PHEMAPA cryogel discs was characterized with 
interconnected large pores. Some swelling properties of PHEMA and PHEMAPA cryogel discs are also given in Table 1. 

Figure 1. The schematic presentation of the dye decolorization process using Lac-PHEMAPA cryogel discs. 

Figure 2. SEM image of PHEMAPA cryogel discs.
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Macroporous structure of PHEMAPA cryogel discs provided the high swelling ratio (987%) and high swelling degree (9.8 
gH2O/gpolymer) values for PHEMAPA cryogel discs. Furthermore, macroporosity of the PHEMAPA cryogel discs was found 
as 76.7% and gelation yield was obtained as 89%. Thus, monomers HEMA and MAPA were mostly polymerized to get the 
whole structure of the PHEMAPA cryogel.  

FTIR spectrum analysis of PHEMA and PHEMAPA cryogel discs were performed to show the incorporation of MAPA 
within the cryogel structure. The subtraction result of FTIR spectrum of PHEMA from PHEMAPA is shown in Figure 3. 
Characteristic stretching vibration band of ester around 1645 and 1521 cm–1, aromatic C-H banding around 1297, 1212 and 
3055 cm–1, additional ester around 1724 indicated the incorporation of MAPA functional monomer in cryogel structure.
3.2. Laccase binding studies
3.2.1. Effect of pH value
Determination of optimum pH has a significant influence on enzyme binding.   The effect of pH on laccase binding on 
PHEMAPA cryogel discs is given in Figure 4a. Maximum laccase binding on PHEMAPA cryogel discs was obtained at 
pH 6.0. Laccase binding capacity of PHEMAPA cryogel discs was decreased at pH values lower and higher than pH 6.0. 
MAPA as a functional monomer has a double mode of action providing aromatic and hydrophobic interactions together. 
Binding between PHEMAPA cryogel discs and laccase molecules can be attributed mostly to hydrophobic and aromatic 
interactions. Laccase is a complex glycoprotein  [33]. Hydrophobic amino acids and saccharide groups of laccase molecules 
are expected to interact with phenylalanine groups on PHEMAPA cryogel discs [34, 35].
3.2.2. Effect of the initial concentration of laccase
The effect of initial laccase concentration on laccase binding capacity of PHEMAPA cryogel discs is presented in Figure 
4b. The maximum amount of laccase bound on PHEMAPA cryogel discs was 17.5 mg laccase/g cryogel. As it can be seen 
from the figure, after 0.5 mg/mL of laccase there is no meaning increase the amount of bound laccase. Therefore, it is 
not economical to load more laccase per unit of PHEMAPA cryogel discs. Thus, we used Lac-PHEMAPA cryogel discs 

Table 1. Characteristics of PHEMA and PHEMAPA cryogel discs. 

  Swelling ratio
(%)

Swelling degree
(gH2O/gpolymer)

Macroporosity
(%)

Gelation yield 
(%)

PHEMA cryogel discs 889 8.9 75 90
PHEMAPA cryogel discs 987 9.8 76.7 89
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carrying 17.5 mg/g laccase in other experimental studies. Laccase binding capacity of PHEMA cryogel discs is also shown 
in Figure 4b. Laccase binding on PHEMA cryogel discs was very low. As a result, laccase binding on PHEMAPA cryogel 
discs occurs via specific interaction between MAPA groups and laccase molecules.   

Modelling of the equilibrium data was applied using Langmuir and Freundlich isotherms [36]. Langmuir adsorption 
isotherm was defined in Eq.6 
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Figure 4a. Effect of pH value on laccase binding on PHEMAPA cryogel discs. Initial concentration 
of laccase: 0.1 mg/mL, temperature: 25 °C. All data were reported as mean ± SD, n = 3.

Figure 4b. Effect of initial laccase concentration on laccase binding on PHEMAPA cryogel discs. Binding buffer: pH 
= 6.0 phosphate buffer, temperature: 25 °C. All data were reported as mean ± SD, n = 3.
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Q = Qmax . b. Ceq / (1 + bCeq) (6)
Here, Q is the amount of bound laccase on PHEMAPA cryogel discs(mg/g), Ceq is the equilibrium concentration 

of laccase (mg/mL), b is the Langmuir constant (g/mmol) and Qmax is the binding capacity of PHEMAPA cryogel discs. 
Freundlich isotherm was defined in Eq.7

Qe = KfCe
1/n (7)

Langmuir and Freundlich adsorption isotherms were given in Table 2. According to the results, R2 value for Langmuir 
adsorption isotherm is higher than the R2 value for Freundlich isotherm. Thus, our system fits Langmuir isotherm and 
laccase molecules were placed on PHEMAPA cryogel discs as a single layer. The obtained results indicated that there was no 
steric hindrance when laccase molecules interacted with special binding sites on PHEMAPA cryogel discs. Furthermore, 
equal energy binding, homogeneous interaction sites and no lateral interaction which are related to Langmuir adsorption 
are valid for our affinity binding system.

First- and second-order kinetic models were applied to the experimental data for determining mechanisms controlling 
adsorption process like mass transfer and chemical reaction [37]. The pseudo first order kinetic of Lagergren is the most 
widely used equation for the adsorption of solute from a liquid solution, and it is defined in Eq. 8.

log[qeq / (qeq – qt)] = (k1t) / 2.303 (8)
Here, qeq is the experimental amount of laccase bound at equilibrium (mg/g), qt is the amount of laccase bound at time 

t (mg/g) and k1 is the rate constant.
The pseudo second order kinetic model is defined in Eq. 9.
 (t/qt) =(1 / k2qeq

2) +(1/ qeq) t (9)
Here, k2 is the rate constant of the pseudo-second-order adsorption (g mg–1min–1). If the pseudo-second-order kinetics 

is applicable, the plot of t/q versus t should be linear.
Pseudo-first and -second order kinetic models for binding of laccase on PHEMAPA cryogel discs are summarized 

in Table 3. When the results were evaluated, the correlation coefficient was higher for pseudo second order kinetics. 
Therefore, the affinity system in this study could be explained by pseudo-second order kinetics. The binding of laccase on 
PHEMAPA cryogel discs did not affect diffusion limitations. Macropores inside PHEMAPA cryogel structure prevented 
from flow resistance. As a result, specific interactions between laccase and phenylalanine controlled kinetic behaviour. 
In other words, binding of laccase on PHEMAPA cryogel discs was chemically controlled and was performed without 
diffusion limitations.
3.3. Dye decolorization using Lac-PHEMAPA cryogel discs
3.3.1. Effect of reaction time on dye decolorization
Effect of reaction time on dye decolorization efficiency of Lac-PHEMAPA cryogel discs was given in Figure 5. As can be 
clearly seen from the figure, the ability of Lac-PHEMAPA cryogel discs on dye decolorization was found to be as 90% in 
2 h. It was observed that Lac-PHEMAPA cryogel discs were capable to decolorize the dye RB-247 with 100% efficiency in 
4 h. 
Furthermore, PHEMAPA cryogel discs and Lac-PHEMAPA cryogel discs were compared in terms of dye decolorization 
capabilities in the same conditions as stated above. Obtained results are given in Figure 5. According to the figure, it is 

Table 2. Langmuir and Freundlich binding isotherm constants for laccase binding on PHEMAPA cryogel discs. 

Experimental Langmuir constants Freundlich constants

Q (mg/g) Qmax(mg/g) b (mL/mg) R2 Qf n R2

PHEMAPA cryogel discs 17.50 19.72 8.89 0.97 19.2 3.14 0.94

Table 3. The first- and second-order kinetic constants.

Equilibrium 
concentration Experimental Pseudo-first order Pseudo-second order

Qeq (mg/g) k1(1/min) qeq(mg/g) R2 k2(g/mg.min) qeq(mg/g) R2

0.5 mg/mL 17.50 0.02 3.34 0.28 0.01 17.73 0.99
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clear that Lac-PHEMAPA cryogel discs were able to decolorize RB-247 with a high percentage (almost 100%), whereas 
PHEMAPA cryogel discs were capable of absorbing 24% of RB-247 dye. Therefore, obtained decolorization efficiency of 
Lac-PHEMAPA cryogel discs on RB-247 can be attributed to biodegradation ability of cryogel discs.
3.3.2.Effect of medium pH on dye decolorization
Effect of pH on dye decolorization of Lac-PHEMAPA cryogel discs was investigated and obtained results are shown in 
Figure 6. As clearly seen in the figure, Lac-PHEMAPA cryogel discs showed maximum dye decolorization activity (almost 
100%) at the range of pH = 4–6. Also, dye decolorization activity decreased dramatically below pH 4.0 and above pH = 
6.0, only 11% decolorization rate was observed at pH = 8. Different pH values have effect on dye decolorization efficiency. 
Therefore, pH adaptability of Lac-PHEMAPA cryogel discs in a wide range of pH values provides an opportunity for 
treatment of dye contaminated effluents.  
3.3.3. Effect of temperature on dye decolorization
Temperature is a critical parameter for enzyme stability. Effect of temperature on dye decolorization of Lac-PHEMAPA 
cryogel discs was investigated. Seven different temperatures (4, 10, 20, 30, 40, 50, 60 °C) were tested to determine the 
effect of temperature on dye decolorization and obtained results were presented in Figure 7. It can be seen that Lac-
PHEMAPA cryogel discs showed 86% decolorization activity even at 4 °C. Also, dye decolorization efficiency of 100% was 
observed between 10–30 °C. Lac-PHEMAPA cryogel discs had the ability of 73% dye decolorization activity at relatively 
high temperature (60 °C). 
3.3.4. Storage stability and reusability
To determine storage life of immobilized enzymes, Lac-PHEMAPA cryogel discs were stored at +4 °C for three months. 
After three months, Lac-PHEMAPA cryogel discs showed close to 100% decolorization efficiency. 

Reusability of Lac-PHEMAPA cryogel discs were tested for their decolorization efficiency, and obtained results are 
shown in Figure 8. Lac-PHEMAPA cryogel discs maintained 80% and 60% of its decolorization activity after six cycles 
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and ten cycles, respectively. It is noteworthy to say that, the reusability experiments were performed without any dye 
desorption process between each dye decolorization cycle. 

4. Comparison with literature
There have been several studies in the literature aiming decolorization of textile dyes using different kinds of physical 
and chemical methods [38–40]. Even though these methods find a great range of availability and applicability for the 
decolorization of wastes contaminated with dye, optional assays relied on biotechnological methodologies has received 
great interest. Laccase immobilized on matrices have taken place as one of the most widely used materials for this purpose 
[27, 41–44]. It is noteworthy saying that immobilization of laccase enhances decolorization efficiency and cost-effectively 
provide sustainable approach with the advantages of reusability and long-term storage stability. 
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Figure 7. Effect of temperature on dye decolorization efficiency of Lac-PHEMAPA cryogel 
discs. Initial RB-247 concentration: 50 mg/L (pH 4.5). All data were reported as mean ± 
SD, n = 3.
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Usually, up to recent days, polymeric support materials consisting of polyacrylamide and alginate were frequently 
preferred for enzyme immobilization. However, porous materials have been introduced as effective matrices for 
immobilization of enzymes with low cost and high mechanical stability. 

Decolorization ability of laccase on the decolorization of textile dyes has been reported in many types of research. One 
of these studies showed that laccase from Trametes modesta immobilized on γ-aluminum oxide pellets were applicable for 
the decolorization of anthrachinonic dyes (Lanaset Blue 2R, Terasil Pink 2GLA) and azo dyes, Indigo Carmine, and the 
triphenyl- methane dye Crystal Violet [45].

In a previous study, laccase immobilized poly(MA- alt-MVE)-g-PLA/ODA-MMT nanocomposite was prepared for the 
decolorization of Reactive Red 3. Effects of different experimental conditions (pH value, temperature, dye concentration 
and reaction time) were determined for optimizing the decolorization process. Decolorization efficiency of laccase (0.05 
mg/mL laccase concentration) immobilized poly(MA-alt-MVE)-g-PLA/ODA-MMT nanocomposites was found as 65% 
in pH = 5.0 at 20 ºC for 90 min [46].

In another study, laccase from Tramates versicolor immobilized on porous glass beads and their efficiency on dye 
decolorization were investigated. Anthraquinone (Reactive blue 19 and Dispersed blue 3), indigoid (Acid blue 74) dyes 
and azo dyes (Acid red 27 and Reactive black 5) were decolorized. The results from this study indicated that different 
decolorization rates were obtained for mentioned dyes defined as 40.6% for acid red 27, 12.0% for reactive black 5, 74.0% 
for acid blue 74, 78.0% for dispersed blue, 77.0 for reactive blue 19 [42].

A previous research reported that ZnO nanowires into macroporous SiO2 formed composite material used for laccase 
immobilization. The dye decolorization ability of resultant support material was examined. As a result of this study, 93% 
and 82% decolorization rates were reported for Remazol brilliant blue B, and acid blue 25, respectively. In accordance 
with the results of our study, laccase immobilized composite indicated enhanced thermal stability and pH adaptability. In 
addition, laccase immobilization leads to maintained 42% decolorization ability after ten cycles [47].

In a previous study, sol-gel synthesis of biopolymer-silica hybrids was preferred as matrices for laccase immobilization. 
They reported 84% Malachite green degradation ability for 72 h [26].

In another study, laccase trapped beads consisting of alginate/gelatin blend with polyethylene glycol was used for dye 
decolorization. Glutaraldehyde activated materials have enhanced decolorization ability. Reactive Red B-3BF (50 mg/L) 
was decolorized down to 50% after ten cycles [48].

Purified laccase from Trametes hirsuta decolorize effectively triarylmethane, indigoid, anthraquinonic and azo dyes 
[49]. Another study showed that immobilized laccase more than 70%  of retained its activity after 5 months storage at +4 
°C [44]. In a previous study in literature, laccase immobilized on Poly(MMA-co-GMA) cyogel showed maximum activity 
at pH = 4 and immobilized laccase activity decrease dramatically above and below pH = 4 [50]. Another study showed that 
Trametes versicolor crude laccase showed maximum activity at pH = 4.5 [51]. Lentinus polychrous  crude laccase showed 
maximum Acid Blue 80 decolorization activity around pH = 5 [52]. In this study, immobilized laccase showed maximum 
dye decolorization activity at pH = 4, 5, 6 and decolorization rate achieved above 70%. 

Textile dyes are chosen for the cloths since the pigment is very robust and will be resistant to bleaching and degradation. 
The surplus dyes that are released from industries are, therefore, a challenge. Use of high concentrations of immobilized 
enzymes is one approach; another approach might be to combine, for example, laccase with nanoparticles of titanium, 
which will become an efficient partner to the laccase when exposed to UV-light, since titanium creates activated oxygen 
that is a potent reagent for degrading aromatic structures [52–55]. In order not to destroy the enzymes by oxidation from 
the activated oxygen from the titanium, one would need to use sequential treatment of the dyes in order to degrade the dye 
molecules and also to degrade the metabolites formed.
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Figure 8. Reusability of Lac-PHEMAPA cryogel discs. Temperature: 25 °C. Initial 
RB-247 concentration: 50 mg/L (pH 4.5). All data were reported as mean ± SD, n = 3.
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5. Conclusion
Dye effluents lead to important environmental problems. Therefore, coping with these effluents is of great concern and 
troublesome because of the complexity of dye contaminants. The techniques developed for this aim are cost effective and 
sophisticated. Consequently, easy to prepare and cheap decolorization techniques have gained attention to manage dye 
effluents.  In this study, the ability of laccase bound to (PHEMAPA) cryogel discs was indicated for dye decolorization 
using a model dye, Reactive Blue 247. MAPA was preferred to eliminate the activation process for enzyme binding and 
cryogel discs known as novel polymeric systems were used because of their unique structural features and advantageous 
dynamics. After using a model substrate (ABTS) for determining laccase activity of laccase bound (PHEMAPA) cryogel 
discs, the experimental conditions were optimized in order to determine the best performance of immobilized laccase on 
(PHEMAPA) cryogel discs in dye decolorization. When the facility of these cryogels was taken into consideration, it could 
be suggested that these materials are promising tools for enzyme binding along with dye decolorization by the advantage 
of excellent enzyme activity in a broad range of temperature and stability preserved during storage.

6. Outlook
This paper deals with small pieces of cryogels into which laccase has been immobilized. It is obvious that the combination 
of the cryogel with the big pores, and the enzyme functions well regarding degrading of surplus dyes in wastewater from 
textile industry.

It should be mentioned that cryogels can be prepared in many different shapes. Monoliths and big discs could be 
created as filters for passing wastewater through. The pores are big enough to allow microorganisms to pass through the 
cryogel. What is fascinating is also the fact that there is very little backpressure when passing liquid through a cryogel. 
Furthermore, when treating wastewater with mixing, the cryogel can be protected from attrition by producing the gel 
within a plastic “housing” [53] . This latter prolongs the lifespan for the cryogels. These factors open up possibilities for 
scaling up treatment of industrial waters.
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