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1. Introduction
Copper is a vital and essential micro-bioelement for organism which required for the function of over 30 proteins, including 
ceruloplasmin, cytochrome c oxidase, tyrosinase, and superoxide dismutase. Also it was found mainly in the Cu(II) form 
in the biological systems, since in the presence of oxygen via Fenton‒type reaction Cu(I) is oxidized to Cu(II). The most 
reactive species, hydroxyl radicals release as a result of this reaction and induce “site-specific” oxidative damage to biological 
macromolecules [1,2]. The prooxidant activity is the capacity of reducing transition metal ions to their lower oxidation states 
by antioxidants, exciting the production of reactive species. Therefore, it is important to understand whether it is beneficial or 
harmful to health, depending on the amount of these compounds. 

As secondary metabolites derived in plants, phenolic exhibit various physiological properties such as antimicrobial, 
antiinflammatory, antioxidant, and antiallergenic [3]. Despite their antioxidative properties are well known, they may act as a 
prooxidant depending on some conditions such as high concentration, high pH, in the presence of redox‒active metal ion and 
biological material in the medium [4]. Furthermore, it has been noticed that prooxidant activity increases with increasing the 
number of free‒OH substitutions on the molecule structure [5]. In addition, since these compounds are used as food additives, 
it is very important to examine their antioxidant or prooxidant behavior depending on the conditions in which they are found.

In recent years, noble metal nanoclusters (NCs) have received extraordinary attention due to their many properties such 
as easy synthesis, subnanometer size, photostability, and biocompatibility [6]. Unfortunately, the most of silver nanocluster 
(AgNC) synthesises found in the literature contain NaBH4 as chemical reducing agent [7‒10] and there are rare biological 
reduction synthesis methods for AgNC [11,12]. Metal NCs were able to interact with each other and aggregate irreversibly to 
reduce their surface energy without stabilization [13]. In this context, metal NCs are biologically synthesized via the reduction 
of metal ions by the suitable reducing and stabilizing agents such as protein, peptide or nucleic acid where the thiol, carboxyl, 
and amine groups of biological molecules may be effective to stabilize NCs [7,10,14]. The NCs are able to act as sensitive 
probes with their optical response is highly dependent on the interaction with the organic scaffold. The application fields 
of different types of silver nanoclusters (AgNCs) have included iron [10], mercury [14,15] or biothiols [16] detection, and 
biological imaging [17].

Abstract: In this study, silver nanoclusters as prooxidant biosensor were eco‒friendly synthesized using chicken egg white protein 
without any chemical reducing agents for measuring copper(II)-induced prooxidant activities of catechin, epicatechin, epigallocatechin 
gallate, resveratrol, gallic acid, chlorogenic acid, and rutin. The prooxidant activities were evaluated via measuring the absorption at 450 
nm wavelength of the Cu(I)‒neocuproine chelate formed by extraction of protein-bound Cu(I) with neocuproine reagent. Accuracy was 
determined by evaluating recovery values of wine, grape and apple samples and the obtained values were between 97.2%‒98.9%. Intra-
day precision and inter-day reproducibility experiments were studied with three different experiments in a day and three different days 
respectively. The obtained relative standard deviation values were 0.96% and 1.91%. The detection limit of the biosensor was found as 0.2 
µM. The total prooxidant activities of fresh apple and grape fruits, apple and grape juices, and red wine were determined and the results 
obtained were compared with the findings of the carbonyl assay. In this study, a cheap, easily applicable, sensitive, and reproducible 
biosensor was developed. It was seen that it could be used in the measurement of the prooxidant activity of different food samples and 
give an idea about diet, healthy life, and nutrition.

Key words: Prooxidant biosensor, silver nanocluster, chicken egg white, natural antioxidants, protein oxidation

Received: 09.04.2021              Accepted/Published Online: 12.06.2021              Final Version: 19.10.2021

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://journals.tubitak.gov.tr/chem/

Turkish Journal of Chemistry Turk J Chem
(2021) 45: 1422-1431
© TÜBİTAK
doi:10.3906/kim-2104-27Research Article

https://orcid.org/0000-0002-3473-8180


1423

AKYÜZ / Turk J Chem

Measuring prooxidant activity is a developing research area, required to be interested in with more work. Also it 
is needed to develop cheap, easily applicable, sensitive, and reproducible sensors. Existing assays in the literature are 
expensive especially in detecting radicals by electron spin resonance (ESR) spectroscopy, laborious, limited with respect 
to application area, and cause positive errors in results because of interferences, likewise in protein carbonyl assay. In our 
previous studies, we have developed new methods to overcome these disadvantages in the literature with the needs of this 
research area [18‒22].

In this study, chicken egg white protein directed silver nanocluster (CEW‒AgNC) biosensor, where the protein was 
used as both reducing and protecting agent, was prepared to detect prooxidant activity of phenolic compounds including 
in fruits, fruit juices, and red wine. In the method, it is thought that cuprous ions formed as a result of reduction of cupric 
ions by phenolic compounds are bound to thiol groups of protein in CEW‒AgNC surface. The protein bound cuprous 
ion which is the indicator of prooxidant activity, was determined colorimetrically by forming a Cu(I)‒neocuproine (Nc) 
complex with Nc reagent. Total prooxidant activities (TPAs) of fresh fruits, commercial fruit juices, and red wine were 
examined and statistically compared with the carbonyl assay. 

2. Materials and methods
2.1. Reagents and instrumentation
The following chemicals/reagents were supplied from the indicated sources: catechin (CAT), resveratrol (RES), 
epigallocatechin gallate (EGCG), epicatechin (ECAT), chlorogenic acid (CLA), and rutin (RT) from Sigma (Taufkirchen, 
Germany); tetrachloroauric acid (HAuCl4) and neocuproine (Nc) from Aldrich (Taufkirchen, Germany); gallic acid 
(GA), silver nitrate (AgNO3), sodium dihydrogen phosphate dihydrate (NaH2PO4.2H2O), ethanol (EtOH), and 2,4‒
dinitrophenylhydrazine (DNPH) from Sigma‒Aldrich (Taufkirchen, Germany); ethylenediaminetetraacetic acid (EDTA) 
disodium salt and copper(II) sulfate from Fluka (Buchs, Switzerland); disodium hydrogen phosphate (Na2HPO4), 
hydrochloric acid (HCl) and sodium hydroxide (NaOH) from Riedel‒de Haën (Seelze, Germany). Fresh apple, apple juice, 
fresh grape, grape juice, and red wine were purchased from a local market.  
2.2. Preparation of solutions
Neocuproine (7.5 mM) and the stock standard antioxidant (10.0 mM) solutions were prepared in EtOH and diluted daily 
for experiments. Copper (2.0 mM), pH 7.4 phosphate buffer (0.5 M), and EDTA (0.1 M) solutions were prepared in 
distilled water. DNPH reagent was prepared in 0.2 N HCl solution. Two grams of fresh apple and grape were extracted 
using the microwave-assisted extraction technique as described in our previous study after all samples were washed with 
water and cut into small pieces with a plastic knife [20]. Fruit juices and wine samples were diluted with distilled water and 
the proposed assay was directly applied.
2.3. Preparation of CEW‒AgNC based prooxidant biosensor
Silver nanoclusters were prepared after slight modifications as described in our previous study [20]. Briefly, protein solution 
(50 mL, 10 mg mL‒1) was added to AgNO3 solution (50 mL, 2.5 mM) and vortexed for 2 min before the addiction of NaOH 
solution (12.5 mL, 5.0 N). The final mixture was incubated in a 37 °C shaken water bath for 20 h. After this time, the color 
changed from white to yellow, and the synthesized CEW−AgNCs were stored in the refrigerator at 4 °C before use.
2.4. Determing prooxidant activity using CEW‒AgNC biosensor
One mL of CEW−AgNC, 1 mL of phosphate buffer, 0.5 mL of Cu(II) solution, (x) mL of standard antioxidant or sample 
solution, and (1−x) mL of distilled water were added to a test tube. After the incubation for 15 min at room temperature, 
0.5 mL EDTA and 1 mL Nc solutions were added and incubated for 20 min. At the end of this time the absorbance values 
were recorded at 450 nm against reagent blank including all solutions except the analyte. First incubation period was 
required to reduce cupric to cuprous by phenolic compounds. Second incubation period was required to remove free 
cupric ions remaining in the solution, and to break the bond of protein−bound (Cu) to obtain Cu(I)−Nc chelate with 
neocuproine reagent. The calibration equations were calculated by using the graphs plotted between concentration versus 
absorbance for each compound and the molar absorption coefficients were figured out from the slope of the calibration 
line concerned.
2.5. Determining prooxidant activity using carbonyl assay
The carbonyl assay is based on the measurement of the absorbance of the dinitrophenylhydrazone (DNP) compound 
formed as a result of the reaction of the 2,4‒DNPH reagent with the carbonyl groups released as a result of protein 
oxidation [23,24]. This assay was applied with slight modification similarly to Akyuz’s study [19], CEW−AgNC solution 
was incubated with phosphate buffer, Cu(II), standard antioxidant or sample, and DNPH solutions for 30 min at room 
temperature. After this time, absorbance measurements were recorded at 370 nm against reagent blank.
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2.6. Statistical analysis
All experiments were performed in triplicate. Excel software (Microsoft Office 2016) was used for calculating the mean 
and the standard error of the mean {mean ± standard deviation (SD)}. The F−test was used to compare the precisions of 
both methods.

3. Results and discussion
This study was the green synthesized method using chicken egg white proteins that was carried out with slight changes in 
the synthesis method of our previous study [20] and applied for the first time to measure the copper-induced prooxidant 
activities of phenolic antioxidants as prooxidant biosensor. A novel CEW−AgNC prooxidant biosensor was proposed 
to measure copper catalyzed prooxidant activities of CAT, ECAT, EGCG, RES, GA, CLA, and RT as standard phenolic 
compounds, fresh fruits, commercial fruit juices, and red wine. The developed assay involved the reduction of cupric 
ions by the phenolic antioxidants and binding of cuprous ions to S‒terminal residues of protein in the silver nanoclusters 
inducing site‒specific protein damage via reactive oxygen species (ROS) formation. The prooxidant activities of phenolic 
compounds were indirectly determined by measuring protein bound‒Cu(I) known as a marker of prooxidant activity, 
utilizing ethanolic Nc reagent to obtain Cu(I)‒Nc chelate. 
3.1. Optimization of CEW‒AgNC synthesis conditions
For optimizing synthesis conditions, firstly concentration of phosphate buffer solution that was used for preparing protein 
solution before the synthesis of CEW‒AgNC was studied. Within this experiments, 0.1, 0.2, and 0.5 M phosphate buffer 
solutions were used for preparing protein solution which was used for synthesis of NC, and maximum absorbances of 
synthesized NC solutions were achieved with 0.2 M phosphate buffer. Secondly, concentration of AgNO3 solution (0.45 
mM, 2.25 mM and 0.35 M) was studied and the best results were obtained at 2.25 mM AgNO3 concentration. Although, a 
6:1 ratio between nucleic acid and silver concentrations was mentioned in DNA‒stabilized AgNC synthesis in the literature 
[8,25], this ratio was not suitable for those prepared with protein. Finally, pH values of synthesized CEW‒AgNC solutions 
were evaluated between 11‒13 and the highest absorbance values were obtained at pH 13.
3.2. Optimization of incubation periods
The developed assay involved two incubation periods, that the first incubation was required for the reduction of cupric ion, 
and binding to the protein thiol in the CEW‒AgNC (Figure 1A). The second incubation was required to eliminate excess 
Cu(II) with EDTA and separating the bond between copper and protein using neocuproine reagent to obtain Cu(I)‒Nc 
chelate (Figure 1B). To optimize these periods, time intervals from 1 to 60 min was applied to epicatechin (ECAT), gallic 
acid (GA), and rutin (RT) compounds at equal concentrations (40 µM) with triple experiments. As can be seen in Figures 
1A and B, 15 and 20 min for first and second incubation periods respectively were found more appropriate for the three 
tested compounds.
3.3. Analytical performance of the proposed biosensor
Absorption spectra of epicatechin between 10‒50 μM concentrations with respect to the proposed biosensor and absorption 
spectra of synthesized CEW‒AgNC solution were given in Figure 2. Validation parameters of the proposed biosensor were 
studied and the results obtained were summarized in Table 1. Using the slope of the calibration line of the epicatechin 
standard and standard deviation of the blank, limit of detection (LOD) and limit of quantification (LOQ) values were 
calculated. According to the calculations, the LOD and LOQ values which were the lowest values in the literature, were 
found to be 0.2 and 0.7 μM ECAT equivalent, respectively. CEW‒AgNC biosensor was found more sensitive than CEW‒
AuNC biosensor, which was reported that AgNCs were more reactive than their gold analogs [9,16]. Accuracy of the 
proposed biosensor was determined by evaluating percent recovery values of wine, grape, and apple samples that spiked 
at three different concentrations 10, 20, 30 μM ECAT standard. The obtained recovery values were 98.4, 97.2, 98.9 for 
wine; 98.6; 98.2; 97.9 for grape; and 98.1; 98.7; 98.9 for apple, respectively. Intra-day precision was studied with three 
different experiments in a day and inter-day reproducibility was studied at three different days by determining epicatechin 
standard at 20 μM concentration level. The obtained relative standard deviation values were 0.96 and 1.91, respectively. All 
experiments were repeated three times.

The statistical comparison of CEW‒AgNC biosensor and carbonyl assay were performed by appling the F‒test at 95% 
confidence level and the TPAs of epicatechin and red wine (10 fold diluted) were expressed as mg ECAT L−1 equivalents. 
There was no significant difference at 95% confidence level between both methods with respect to the F‒test data presented 
in Table 2.

Calibration equation, correlation coefficient (r) and linear range (µM) values of some natural antioxidant standards 
were given at Table 3. As shown in the Table 3, excellent linearity was obtained between absorbance and concentration 
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with respect to the proposed biosensor for all compounds. All correlation coefficient values were found above r = 0.999. 
The order of molar absorption coefficients of the studied compounds by using the CEW‒AgNC was as follows: ECAT > RT 
> CAT > RES > EGCG > CLA > GA. 

The molar absorptivity of ECAT was found higher than CAT and other phenolic acids and this result was supported 
similarly with one of our previous works [19]. On the other hand, in the study of Kondakçı et al. [18], the order of 
prooxidant activity of tea catechins was found similar as ECAT > CAT > EGCG with respect to the molar absorption 
coefficients. Also it was supported with the literature as the prooxidant activity of RES was lower than catechins and 
higher than phenolic acids [20]. Rice‒Evans et al. [26] stated that the polyphenols with the o‒dihydroxy structure in the B 
ring included the highest scavenging activities. They also reported that under physiological conditions flavonoids which 
had the half peak reduction potencial values below <0.06 mV, underwent redox cycles and were thus might be reduce 
transition metals. Eghbaliferiz and Iranshahi [27] stated that RES exhibit prooxidant activity in the presence of copper. 
In the study of Ahmad et al. [28], resveratrol caused mutations to the plasmid DNA. They treated the DNA samples with 
increasing concentrations of RES (10‒200 µM) in the presence and absence of copper ions and said that resveratrol was 
act as prooxidant at higher concentrations. Zhen et al. [29] studied the prooxidant activity of some hydroxycinnamic 
acid compounds, measuring DNA damage in the presence of Cu(II) ions. They found that the prooxidant activity of the 
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Figure 1. Optimization of time periods of the proposed assay with epicatechin (ECAT), gallic acid 
(GA), and rutin (RT) at 40 µM of each standard.
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compounds bearing o‒dihydroxyl group such as CLA were displayed much higher than the others which had no functional 
groups. Simić et al. [30] examined the electrochemical oxidation of some phenolic compounds with cyclic voltammetric 
method. They reported that the compounds with low anodic potential (Epa) (<0.45 V) demonstrated antioxidant activity, 
whereas the compounds with high Epa values (>0.45 V) acted as prooxidants. In their study, RT behaved as an antioxidant 
with the 0.23 V Epa values. Yang et al. [31] investigated the DNA damage caused by quercetin, rutin, p‒coumaric acid 
and their derivatives with 300 µm concentration. In their study, it was found that rutin had higher prooxidant activity 
than phenolic acids. Lambert and Elias [32] reported that green tea catechins such as CAT, ECAT, and EGCG, might 
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Figure 2. Spectra of epicatechin between 10‒50 μM concentrations. Inset: absorption spectra of 
synthesized CEW‒AgNC solution. 

Table 1. Validation parameters of the CEW‒AgNC biosensor for determining 
prooxidant activity using UV‒vis spectrophotometer.

Parameter Value

Calibration equation A = 12885 c – 0.013
Correlation coefficient (r) r = 0.9999
Calibration range (μM) 0.7–50
Limit of detection (μM)a 0.2
Limit of quantification (μM)a 0.7
Accuracy – spike in wine (recovery, %) (n = 3)b 98.4; 97.2; 98.9
Accuracy – spike in grape (recovery, %) (n = 3)b 98.6; 98.2; 97.9
Accuracy – spike in apple (recovery, %) (n = 3)b 98.1; 98.7; 98.9
Intra‒day precision (RSD, %) (n = 3)c 0.96
Inter‒day reproducibility (RSD, %) (n = 3)c 1.91

a LOD = 3sbl/m (where m is the slope of the calibration line, and sbl is the standard 
deviation of the blank), aLOQ = 10sbl/m,
b Accuracy was determined by evaluating recovery values of wine, grape and apple 
samples that spiked at 10, 20, 30 μM epicatechin standard.
c Intra‒day precision was studied with three different experiments in a day and inter‒
day reproducibility experiments were studied at three different days by determining 
epicatechin standard at 20 μM concentration level.
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be responsible for the induction of apoptosis in tumor cells, although they were known as antioxidant compounds. 
Furthermore, in the study of Zhou and Elias [33] it was mentioned that EGCG showed higher prooxidant activity with 
low pH of solution medium and they detected lower prooxidant activity with the higher pH values. This information was 
supported with the iron(III)-induced prooxidant activity assay worked in pH 5.5 and found the highest prooxidant activity 
value of EGCG in the literature, instead of the other assays worked in physiological pH [22].

Comparison of the proposed method with previously published methods in terms of limit of detection (LOD) values 
as μM ECAT equivalent was shown in Table 4. It can be seen that the lowest LOD value in the literature was achieved with 
the proposed biosensor.
3.4. Total prooxidant activities of real samples
The primary components of the samples were as follows: chalcones, flavanols, flavonols, and condensed tannins in apple 
and apple juice [36]; anthocyanins, flavanols, flavonols, phenolic acids in grape, and grape juice [37]; anthocyanidins, 
flavanols, flavonols, and especially resveratrol in red wine [28,36,37], respectively. TPA values of fresh apple and grape, 

Table 2. Statistical comparison of TPA of epicatechin and red wine (10 fold diluted) using F‒test at 95% 
confidence level with respect to the both assays.

Sample Parameter CEW‒AgNC biosensor Carbonyl assay

ECAT standard

No. of samples 5 5
Average TPA 144.29a 141.21a

SDb 1.16 1.60
Variance 1.34 2.56
Degrees of freedom 4
Fcalculated 1.91
Fcritical 6.39

Red wine

No. of samples 5 5
Average TPA 45.37a 54.53a

SDb 1.11 1.79
Variance 1.23 3.20
Degrees of freedom 4
Fcalculated 2.60
Fcritical 6.39

a mg ECAT L−1 equivalent.
b Standard deviation.

Table 3. Calibration equation, correlation coefficient (r) and linear range (µM) of some natural antioxidant 
standards using CEW‒AgNC biosensor.

Compound Calibration equation  Correlation coefficient (r) Linear range (µM)

ECAT A = 12885 c – 0.013 r = 0.9999 0.7–50
CAT A = 7928 c – 0.005 r = 0.9998 20–100
EGCG A = 3140 c + 0.018 r = 0.9997 20–100
RES A = 3505 c + 0.005 r = 0.9998 20–100
GA A = 1676 c + 0.033 r = 0.9998 20–100
CLA A = 2081 c + 0.029 r = 0.9997 20–100
RT A = 9868 c + 0.023 r = 0.9993 20–100
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commercial apple and grape juices, and red wine were determined as mM epicatechin equivalent and compared with those 
of carbonyl assay as reference method. As you can see in Figure 3 the results were compatible with each other.

In the study of Rice‒Evans et al. [26], it was indicated that the amount of epicatechin was approximately 55 times 
higher than resveratrol in red wine. Since red wine contains strong prooxidant compounds such as catechin derivatives 
and resveratrol, higher TPA was determined than apple and grape samples. TPA of the apple containing phenolic acid 
derivatives was found to be low due to relatively low prooxidant ability of related compounds. 

In the evaluating Figure 3, the lowest TPA value was found in fresh fruits and so it can be concluded that consuming 
fresh fruit is healthier than consuming fabricated fruit juices. In this context, in order to be protected from various diseases 
and to live healthy, all fabricated products and prepackaged foods should be refrained and taken care to consume fruits and 
vegetables in the most natural form as much as possible.

4. Conclusion
Phenolic bioactive compounds known as health-beneficial antioxidants are able to exhibit prooxidant behaviour causing 
to increase oxidative process exponentially depending on high concentration, high pH, presence of high free transition 
metal ion and biological material in the medium. Thus, the determination of prooxidant activity of phenolics has gained 
importance as it may guide to diets and the treatment of various diseases. There are rare prooxidant biosensors in the 
literature to determine the prooxidant activities of natural antioxidants through protein damage. The aim of this study 
was to develop a novel, low cost, easily applicable, fast, sensitive, and reproducible biosensor determining the prooxidant 
activity in contrast to the methods in the literature, which were expensive, time-consuming, and require qualified 
personnel like ESR. In this study, spectrophotometric silver nanocluster based prooxidant biosensor, prepared by using 
chicken egg white protein was synthesized in the principle with green chemistry and applied as a prooxidant biosensor for 
the first time to detect copper catalyzed prooxidant activity of phenolic antioxidants abundant in foods, beverages, cereals. 
Protein was utilized as both reducing and stabilizing agent in the silver nanocluster synthesis procedure. In the assay, after 
phenolic antioxidants reduced cupric ions, cuprous ions were bound to the protein S‒terminal residues on the CEW‒
AgNC surface inducing site‒specific protein damage via ROS formation. Protein bound‒Cu(I), as a marker of prooxidant 
activity, was precisely determined via CEW‒AgNC biosensor with the lowest LOD value (0.2 µM) in the literature using 
neocuproine (Nc) reagent. Accuracy was evaluated with recovery values obtained up to 100% that spiked at three different 
concentrations of ECAT standard. Precision and reproducibility studied by determining ECAT standard as intra-day and 
inter-day experiments were found 0.96% and 1.91%, respectively. The TPA values of fresh fruits, commercial fruit juices, 
and red wine were calculated and the results were statistically compared with those of carbonyl assay. The most important 
advantage of using nanoclusters in medicine especially in cancer diagnosis and treatment is their ability to penetrate to 
the kidney tissue because of their ultrasmall size and to easily dissipate from the body to reduce toxicity in vivo unlike 
nanoparticles [38]. In addition, considering the results of the proposed method, it was thought to give important ideas in 

Table 4. Comparison of the proposed method with previously published methods in terms of limit of detection 
values as μM ECAT equivalent.

Method Detection LOD (μM) Reference

CEW‒AgNC UV‒vis 0.2 Present work
CEW‒AuNC Fluorescence 0.7 [21]
CEW‒AuNC UV‒vis 0.9 [20]
Solid protein based Cu(I)‒Nc assay UV‒vis 1.2 [19]
Solid protein based Fe(II)‒Fz assay UV‒vis 0.5 [22]

Modified carbonyl assay 
(using solid protein) UV‒vis 3.0 [19]

Chromatographic analysis HPLC‒DAD 1.9 (μg/mL RT eq.)
6.5 (μM ECAT eq.) [34]

BSA‒AgNC Fluorescence 0.8 (μM Cys eq.)
1.9 (μM ECAT eq.) [16]

DNA‒CuNC Fluorescence 2.0 (μM Cys eq.)
4.8 (μM ECAT eq.) [35]
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terms of healthy life and nutrition with the controlling of oxidative stability of fabricated products and additives that had 
extended shelf life.

CRediT authorship contribution statement
The corresponding author is responsible for all contributions.

Declaration of competing ınterest 
The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

0

0.5

1

1.5

2

Apple Grape Apple juice Grape juice Red wine

)
T

A
C

E 
M

m( ytivitca tnadixoorp lato
T

CEW-AgNC

Carbonyl assay

Figure 3. Comparison of TPA values of apple, grape, apple juice, grape juice, and red wine expressed 
as mM epicatechin equivalent with respect to the both CEW‒AgNC and carbonyl assays.

References

1. Arredondo M, Núñez MT. Iron and copper metabolism. Molecular Aspects of Medicine 2005; 26: 313-327. doi: 10.1016/j.mam.2005.07.010

2. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress‒induced cancer. Chemico-
Biological Interactions 2006; 160: 1-40. doi: 10.1016/j.cbi.2005.12.009

3. Bendini A, Cerretani L, Carrasco‒Pancorbo A, Gómez‒Caravaca AM, Segura‒Carretero A et al. Phenolic molecules in virgin olive oils: a 
survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 
2007; 12: 1679-1719. doi: 10.3390/12081679

4. León‒González A J, Auger C, Schini‒Kerth VB. Pro‒oxidant activity of polyphenols and its implication on cancer chemoprevention and 
chemotherapy. Biochemical Pharmacology 2015; 98 (3): 371-380. doi: 10.1016/j.bcp.2015.07.017

5. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R et al. Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Research 
International 2014; 2014: 761264. doi: 10.1155/2014/761264

6. Li J, Zhu J‒J, Xu K. Fluorescent metal nanoclusters: from synthesis to applications. Trends in Analytical Chemistry 2014; 58: 90-98. doi: 
10.1016/j.trac.2014.02.011

7. Gwinn E G, O’Neill P, Guerrero AJ, Bouwme-ester D, Fygenson DK. Sequence‒dependent fluorescence of DNA‒hosted silver nanoclusters. 
Advanced Materials 2008; 20: 279-283. doi: 10.1002/adma.200702380

8. Fu Y, Jin H, Bu X, Gui R. Melamine‒induced decomposition and anti‒fret effect from a self‒assembled complex of rhodamine 6G and DNA‒
stabilized silver nanoclusters used for dual‒emitting ratiometric and naked‒eye‒visible fluorescence detection. Journal of Agricultural and 
Food Chemistry 2018; 66: 9819-9827. doi: 10.1021/acs.jafc.8b03402



1430

AKYÜZ / Turk J Chem

9. Xu H, Suslick KS. Water‒soluble fluorescent silver nanoclusters. Advanced Materials 2010; 22: 1078-1082. doi: 10.1002/adma.200904199

10. Huang H, Li H, Feng J‒J, Wang A‒J. One‒step green synthesis of fluorescent bimetallic Au/Ag nanoclusters for temperature sensing and 
in vitro detection of Fe3+. Sensors and Actuators B: Chemical 2016; 223: 550-556. doi: 10.1016/j.snb.2015.09.136

11. Liu T, Su Y, Song H, Lv Y. Microwave‒assisted green synthesis of ultrasmall fluorescent water‒soluble silver nanoclusters and its application 
in chiral recognition of amino acids. Analyst 2013; 138: 6558-6564. doi: 10.1039/C3AN01343J

12. Liu M, Chen W. Green synthesis of silver nanoclusters supported on carbon nanodots: enhanced photoluminescence and high catalytic 
activity for oxygen reduction reaction. Nanoscale 2013; 5: 12558-12564. doi: 10.1039/C3NR04054B

13. Diez I, Ras R HA. Flourescent silver nanoclusters. Nanoscale 2011; 3: 1963-1970. doi: 10.1039/C1NR00006C

14. Lu D, Zhang C, Fan L, Wu H, Shuang S et al. A novel ratiometric fluorescence probe based on BSA assembled silver nanoclusters for 
mercuric ion selective sensing. Analytical Methods 2013; 5: 5522-5527. doi: 10.1039/C3AY40901E

15. Wang C, Xu L, Wang Y, Zhang D, Shi X et al. Fluorescent silver nanoclusters as effective probes for highly selective detection of mercury(II) 
at parts‒per‒billion levels. Chemistry: An Asian Journal 2012; 7 (7): 1652-1656. doi: 10.1002/asia.201200033

16. Chen Z, Lu D, Cai Z, Dong C, Shuang S. Bovine serum albumin‒confined silver nanoclusters as fluorometric probe for detection of 
biothiols. Luminescence 2014; 29: 722-727. doi: 10.1002/bio.2613

17. Shiang YC, Huang C, Chen WY, Chen PC, Chang HT. Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell 
imaging. Journal of Materials Chemistry 2012; 22: 12972-12982. doi: 10.1039/C2JM30563A

18. Kondakçı E, Özyürek M, Güçlü K, Apak R. Novel pro‒oxidant activity assay for polyphenols, vitamins C and E using a modified CUPRAC 
method. Talanta 2013; 115: 583-589. doi: 10.1016/j.talanta.2013.06.006

19. Akyüz E, Sözgen Başkan K, Tütem E, Apak R. Novel protein‒based solid‒biosensor for determining pro‒oxidant activity of phenolic 
compounds. Journal of Agricultural and Food Chemistry 2017; 65 (28): 5821-5830. doi: 10.1021/acs.jafc.7b01649

20. Akyüz E, Şen FB, Bener M, Sözgen Başkan K, Tütem E et al. Protein‒protected gold nanocluster‒based biosensor for determining the 
prooxidant activity of natural antioxidant compounds. ACS Omega 2019; 4 (1): 2455-2462. doi: 10.1021/acsomega.8b03286

21. Akyüz E, Şen F B, Bener M, Sözgen Başkan K, Apak R. A novel gold nanocluster–based fluorometric biosensor for measuring prooxidant 
activity with a large Stokes shift. Talanta 2020; 208: 1204252. doi: 10.1016/j.talanta.2019.120425

22. Akyüz E, Sözgen Başkan K, Tütem E, Apak R. Novel iron(III)‒induced prooxidant activity measurement using a solid protein sensor in 
comparison with a copper(II)‒induced assay. Analytical Letters 2020; 53 (9): 1489-1503. doi: 10.1080/00032719.2019.1710180

23. Levine RL, Williams JA, Stadtman EP, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods in 
Enzymology 1994; 233: 346-357. doi: 10.1016/s0076-6879(94)33040-9

24. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods in Enzymology 1994; 233: 
357-363. doi: 10.1016/s0076-6879(94)33041-7

25. Han B, Wang E. DNA‒templated fluorescent silver nanoclusters. Analytical and Bioanalytical Chemistry 2012; 402: 129-138. doi: 10.1021/
acs.jchemed.0c00158

26. Rice‒Evans CA, Miller NJ, Paganga G. Structure‒antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology 
and Medicine 1996; 20 (7): 933-956. doi: 10.1016/0891-5849(95)02227-9

27. Eghbaliferiz S, Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: updated review of mechanisms 
and catalyzing metals. Phytotherapy Research 2016; 30: 1379-1391. doi: 10.1002/ptr.5643

28. Ahmad A, Syed FA, Singh S, Hadi SM. Pro-oxidant activity of resveratrol in the presence of copper ions: mutagenicity in plasmid DNA. 
Toxicology Letters 2005; 159: 1-12. doi: 10.1016/j.toxlet.2005.04.001

29. Zheng L‒F, Dai F, Zhou B, Yang L, Liu Z‒L. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of cu(II) ions: 
mechanism and structure–activity relationship. Food and Chemical Toxicology 2008; 46: 149-156. doi: 10.1016/j.fct.2007.07.010

30. Simić A, Manojlović D, Šegan D, Todorović M. Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. 
Molecules 2007; 12: 2327-2340. doi: 10.3390/12102327

31. Yang B, Chen F, Hua Y, Huang S‒S, Lin S et al. Prooxidant activities of quercetin, p‒coumaric acid and their derivatives analysed by 
quantitative structure–activity relationship. Food Chemistry 2012; 131: 508-512. doi: 10.1016/j.foodchem.2011.09.014

32. Lambert JD, Elias RJ. The antioxidant and pro‒oxidant activities of green tea polyphenols: a role in cancer prevention. Archives of 
Biochemistry and Biophysics 2010; 501 (1): 65-72. doi: 10.1016/j.abb.2010.06.013

33. Zhou L, Elias RJ. Antioxidant and pro‒oxidant activity of (‒)‒epigallocatechin‒3‒gallate in food emulsions: influence of pH and phenolic 
concentration. Food Chemistry 2013; 138 (2–3): 1503-1509. doi: 10.1016/j.foodchem.2012.09.132



1431

AKYÜZ / Turk J Chem

34. Farcas AD, Mot AC, Zagrean‒Tuza C, Toma V, Cimpoiu C et al. Chemo‒mapping and biochemical‒modulatory and antioxidant/
prooxidant effect of Galium verum extract during acute restraint and dark stress in female rats. PLoS One 2018; 13 (7): 1-18. doi: 10.1371/
journal.pone.0200022

35. Hu Y, Wu Y, C/hen T, Chu X, Yu R. Double‒strand DNA‒templated synthesis of copper nanoclusters as novel fluorescence probe for label‒
free detection of biothiols. Analytical Methods 2013; 5: 3577-3581. doi: 10.1039/C3AY40088C

36. Ignat I, Volf I, Popa VI. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food 
Chemistry 2011; 126: 1821-1835. doi: 10.1016/j.foodchem.2010.12.026

37. Orak H. Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their 
correlations. Scientia Horticulturae 2007; 111: 235-241. doi: 10.1016/j.scienta.2006.10.019

38. Zhang X-D, Wu D, Shen X, Liu P-X, Fan F-Y et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 2012; 
33: 4628-4638. doi: 10.1016/j.biomaterials.2012.03.020


