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1. Introduction
Synthetic organic dyes are widely used in chemical, petrochemical, food processing or textile industries, many of which 
are discharged to the environment by wastewater, causing many ecological problems [1–3]. In recent years, the removal 
of these dyes from wastewater has become a major and urgent need for a clean and comfortable environment. Several 
methods including chemical oxidation [4], adsorption [5], electrochemical treatment [6], microbiological degradation [7], 
and photocatalytic degradation [8] have been developed to resolve these problems. Among these methods, photocatalysis 
is one of the most attractive methods in this field because of its low cost and the formation of non-toxic by-products [9,10].

Titanium dioxide (TiO2) is one of the most important semiconductor materials and photocatalyst because of its low 
cost, easy availability, high chemical stability, anti-corrosive properties, and non-toxicity [11, 12].

Phthalocyanines (Pcs) are also known as attractive alternatives for photocatalytic decomposition based on the visible 
light of organic dyes. They have two absorptions in the UV region of 300–400 nm (B band) and 600–700 nm region 
(Q band) resulting from π-π* transitions. In addition, besides this property, metallophthalocyanines possess excellent 
resistance to chemical degradation and good photosensitivity [13–17]. The synthetic flexibility of phthalocyanines offers 
great possibilities to change the desired properties. For example, fluoro-substituted metallophthalocyanines have been 
reported to be efficient catalysts for many applications [18–22]. Electron withdrawing fluorine substituents decrease the 
electron density of the macrocyclic ring and increase the redox potential, catalytic activity, and stability [18–28].

Pc nanostructures were successfully grown on the TiO2 nanofibers substrates by in-situ one-pot synthesis with the 
advantage of saving time and simplicity.

Electrospinning is a way of obtaining nanofibers from various polymer solutions and melting them by applying 
electrical forces [29–31]. There are remarkable studies on the preparation of electrospun nanofibers to suit or enable 
various applications by changing the solution and processing parameters during production [32, 33]. Nanofibers are of 
considerable interest in a wide range of applications nowadays, including catalyst supports, drug delivery systems, sensors/
biosensors, and photocatalysts, due to the multiple benefits they provide [34–36]. This approach makes it possible to 
produce nanofibers by combining many objects with a mixture of different polymers or by making modifications to the 
surfaces of the resulting fibers [37, 38].
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Because of the above advantages, combining the photoresponsive property of both TiO2 and phthalocyanines to 
prepare a photocatalyst is important in the degradation of organic dyes. In this study, methylene blue (MB) was studied 
because MB is a common industrial organic dye and overdose of MB dye may cause harmful effects on human health, 
such as accelerated heart rhythm, vomiting, tissue necrosis [3, 39, 40]. In these considerations, here, we attempted to 
design photocatalysts that can be efficient in the photocatalytic degradation of methylene blue (MB) under ultraviolet 
(UV) irradiation. Also, it aims to evaluate the photocatalytic efficiency of both the central metal cation as cobalt and 
the fluorinated peripheral groups. For these purposes, in this study, pure TiO2, TiO2/phthalocyanine (TiO2/Pc), 
TiO2/2,9(10),16(17),23(24)-tetrakis{[2′,3′,5′,6′-tetrafluoro-4′-(octafluoropentoxy)benzyloxy]phthalocyanine (TiO2/FPc) 
and TiO2/2,9(10),16(17),23(24)-tetrakis{[2′,3′,5′,6′-tetrafluoro-4′-(octafluoropentoxy) benzyloxy]phthalocyaninato}
cobalt(II) (TiO2/FCoPc) photocatalysts based on TiO2 nanofibers were prepared by combining the electrospinning and 
solvothermal techniques. These photocatalysts were characterized by using X-ray diffraction (XRD), scanning electron 
microscopy (SEM), energy dispersive X-ray (EDX), and UV–Visible absorption spectra. Their photocatalytic properties 
were investigated by UV-Visible absorption spectrophotometric measurements, and kinetic parameters were obtained. 
Recycling properties of the photocatalytic degradation of MB using TiO2/FCoPc as the optimum photocatalyst was tested 
in order to gain information about multiple uses and stability of this material.

2. Experimental
2.1. Materials
Polyvinylpyrrolidone (PVP, Mw = 1.300.000) powder, phthalonitrile, ethanol, acetic acid, titanium(IV) butoxide (TBT), 
ethylene glycol, methylene blue (MB) were obtained from Sigma Aldrich. They were all used without any purification. 
Distilled water was supplied from Merck Millipore Milli-Q ultrapure water system (Merck Millipore, Molsheim, 
France). Distilled water was used throughout all experiments. 4-[2’,3’,5’,6’-tetrafluoro-4’-(octafluoropentoxy)benzyloxy]
phthalonitrile was synthesized and purified as our previous report [25].
2.2. Preparation of photocatalysts
2.2.1. Preparation of TiO2 nanofibers
In a capped bottle, 2 g PVP powder was dissolved in acetic acid (5 mL) and absolute ethanol (9 mL) mixture under 
vigorous stirring for 2 h. Then, TBT (2 g) was added to this homogeneous solution followed by stirring for 2 more hours 
to make a precursor solution. In order to have TiO2 nanofibers, a flat, aluminum foil-covered plate was located at a fixed 
distance of 15 cm from the needle tip. 12 kV (Gamma High Voltage Research) voltage was supplied, and electrospinning 
was carried out at room temperature. The feeding rate of the PVP solution was controlled by a digitally controlled syringe 
pump (New Era, NE-300), which was adjusted to a volume flow ratio of 1 mL/h. With the applied voltage, the solvent was 
evaporated and charged polymers were deposited on the Al foil collector in the form of nanofibers. TiO2 nanofibers were 
made by the calcination of obtained nanofibers at 550 °C for 2 h (Figure 1).
2.2.2. Fabrication of TiO2/Pc and TiO2/FPc nanofibers
A mixture of TiO2 nanofibers (15 mg), ammonium molybdate (1 mg), phthalonitrile derivatives (phthalonitrile (12.8 mg) 
for TiO2/Pc or 4-[2’,3’,5’,6’-tetrafluoro-4’-(octafluoropentoxy)benzyloxy]phthalonitrile (53.6 mg) for TiO2/FPc and ethylene 
glycol (40 mL) were put into a teflon-lined stainless autoclave with the capacity of 50 mL. The autoclave was closed, and 
the reaction mixture was reacted at 160 °C for 20 h. The reaction system was closed, and the mixture was allowed to reach 

 
Figure 1. The schematic procedure of preparation of the TiO2/Pc, TiO2/FPc, and TiO2/FCoPc nanofibers.
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room temperature. The obtained samples were washed with distilled water under ultrasound (at three times) and ethyl 
alcohol to remove any ionic residue. Finally, the products were dried in vacuo (Figure 1). 
2.2.3. Fabrication of TiO2/FCoPc nanofibers
The autoclave was charged with 4-[2’,3’,5’,6’-tetrafluoro-4’-(octafluoropentoxy)benzyloxy]phthalonitrile (53.6 mg), 
CoCl2.4H2O (5 mg), ammonium molybdate (1 mg), TiO2 nanofibers (15 mg) and ethylene glycol (40 mL). This mixture 
was stirred at 160 °C for 24 h, then the reaction system was cooled down to room temperature. The product was washed 
successively with distilled water and ethanol, then, dried at 50 °C for 10 h (Figure 1).
2.3. Characterization
Surface morphologies of the fabricated nanofibers were investigated using a scanning electron microscope (SEM; QUANTA 
400 F) after sputter coating with ultra-thin gold film. Energy dispersive X-ray (EDX) spectroscopy was used to analyze 
the composition of samples. Crystal structure analysis was carried out using X-ray diffraction (XRD) (Rigaku D/Max-IIIC 
diffractometer) with Cu-Kα line of 1.54 Å radiation and 2θ range of 10–90°. UV–Visible absorption spectra were recorded 
on a Perkin Elmer Lambda 45 UV-Visible spectrophotometer.
2.4. Photocatalytic degradation test
The photodegradation studies of MB solution were examined under the UV lamp by using synthesized nanofibers. 

Photocatalytic degradation of MB for different nanofibers was investigated
(i) in the dark with the presence of photocatalysts,
(ii) in the UV-light irradiation with the presence of the photocatalysts. 
UV-A light (= 365 nm, UV-A 320 nm to 400 nm) was used in all the experiments [41]. Photocatalytic degradation 

of the MB was performed in a petri dish containing 100 mL dye solution with 10 mg of the photocatalyst sample. In 
order to figure out the photocatalysis activity of the samples, 5 ppm MB aqueous solution was prepared. The solution was 
stirred in dark for 30 min to realize adsorption-desorption equilibrium between the photocatalyst sample and the organic 
molecules. Changes in the concentrations of dyes were measured using UV-Vis spectrometer. The reaction was carried 
out at room temperature for 2 h. Samples of MB dye solution at different time intervals were analyzed during this time.

3. Results and discussion
In this work, pure TiO2, TiO2/Pc, TiO2/FPc, and TiO2/FCoPc nanofibers (Figure 2) were synthesized by combining 
the electrospinning and solvothermal techniques, and resulting nanofibers were characterized by SEM and XRD 
measurements. Detailed investigation of photocatalytic degradation of MB by using these nanofibers was also performed 
by kinetic measurements.

The morphological properties of these nanofibers were investigated by SEM (Figure 3). Figure 3a shows SEM images 
of the electrospun TiO2 nanofibers before solvothermal treatment. SEM images of calcinated TiO2 nanofibers at 550°C 
suggested smooth surface nanofibers with diameters in the range of 250–350 nm. The fabricated sample appeared as a non-
woven nanofiber morphology after solvothermal treatment. A comparison between the SEM images of TiO2/Pc, TiO2/FPc 
and TiO2/FCoPc nanofibers in Figures 3b–3d, respectively with TiO2 nanofibers clearly indicating that different types of 
Pc nanostructures were grown on the surface of TiO2 nanofibers and gained beneficial properties such as large surface-to-
volume ratio morphology. The morphology of FPc and FCoPc nanostructures grown on TiO2 nanofibers changed from the 
nanowires to nanoflowers in Figures 3c and 3d, compatible with results from the literature [42].

It is clearly seen that different types of Pc nanostructures grow on the surface of TiO2 nanofibers when different 
precursors are used according to the SEM images of TiO2/Pc, TiO2/FPc, and TiO2/FCoPc nanofibers in Figures 3b–3d. The 
average diameters of the TiO2, TiO2/Pc, TiO2/FPc, and TiO2/FCoPc nanofibers were calculated from the SEM images and 
found approximately as 0.45, 0.5, 0.7, and 0.8 μm, respectively. It shows that Pc nanostructures did not grow on the surface 
of TiO2 nanofibers when phthalonitrile compound was used as a precursor in the preparation of TiO2/Pc photocatalyst. 
It was clearly seen that when using 4-[2’,3’,5’,6’-tetrafluoro-4’-(octafluoropentoxy)benzyloxy]phthalonitrile (for TiO2/FPc) 
FPc nanostructures grow on the surface of TiO2 nanofibers. In addition, 4-[2’,3’,5’,6’-tetrafluoro-4’-(octafluoropentoxy)
benzyloxy]phthalonitrile used in the preparation of the TiO2/FCoPc photocatalyst were reacted with CoCl2.4H2O to 
synthesize FCoPc molecules in situ. FCoPc molecules were collected as nanoflowers on the surface of TiO2 nanofibers. In 
the case of TiO2/FPc and TiO2/FCoPc nanofibers, 4-[2’,3’,5’,6’-tetrafluoro-4’-(octafluoropentoxy)benzyloxy]phthalonitrile 
was homogeneously dispersed in TiO2 nanofibers by the interaction of hydrogen bonds formed between the fluorinated 
groups of the phthalonitrile derivative and the surface hydroxyl groups of TiO2 nanofibers. Since the presence of Co in 
addition to fluorinated groups also enhances the interaction, the TiO2/FCoPc nanofiber has the largest diameter, hence the 
largest surface area, and increased interaction with MB is expected.
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According to EDX analysis results of TiO2, TiO2/Pc, TiO2/FPc, and TiO2/FCoPc nanofibers, the weight percentage (Wt 
%) of each element was shown in Table 1. Ti and O elements were reported to exist in pure TiO2 electrospun nanofibers; 
on the other hand, Ti, N, F, and Co occurred in TiO2/Pc, TiO2/FPc, and TiO2/FPc nanofibers, respectively.

The crystal structures of TiO2, TiO2/Pc, TiO2/FPc, and TiO2/FCoPc nanofiber photocatalyst were characterized via X-ray 
diffraction spectrometer (XRD) (Figure 4). It was observed that the developed pure TiO2 nanofiber was a combination of 
anatase and brookite rather than a fully anatase structure. Anatase peaks at 25.3o (101), 37.9o (004), 47.7o (200), and 54.7o 
(002) and a minor brookite phase at 30.8o (121) can be seen [43]. As suggested in the literature, the presence of broad peaks 
around 14.8o (200), 21.1o to 30.4o (100), and at 42o to 46o (100) [44, 45] for TiO2/FCoPc and broad peaks around 15.7o to 
30.2o (100) [46] for TiO2/FPc support to the formation of different Pc’s on TiO2 nanofiber.

The performances of pure TiO2, TiO2/Pc, TiO2/FPc, and TiO2/FCoPc nanofiber photocatalysts were also evaluated 
on the degradation of MB that is a typical dye pollutant in industrial wastewater. Photogenerated electrons cause the 
degradation of MB. Change in absorbance of MB at 664 nm with time was measured under dark and irradiation, and, from 
the initial (Co) and the concentration at any time (C) of MB solution, the ratio of concentrations (C/Co) was determined 
(Figure 5). In order to establish the adsorption-desorption equilibrium of MB solution, MB solution was stirred in the dark 
for 30 min before the irradiation in all cases (Figure 5 inset). 

Change of MB concentration with time suggested first-order reaction kinetics as reported in the literature [47] where 
MB concentration was related with the reaction time via the following equation 1;

 
Figure 2. The structures of Pc, FPc, and FCoPc complexes.
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Here, k is a rate constant of the photodegradation of MB reaction, t is time, and C is the concentration of MB dye 
solution at a specific irradiation time. k values were obtained from the slope of the straight-lines of two regions (Region I= 
0-60 minutes, Region II = 60–120 min) for the plot of ln(C/C0) versus time (Figure 6a, b).

According to the results given in Table 2, the k values in region I (kI) were almost 10 times lower than the k values in 
region II (kII), and TiO2/Pc and TiO2/FCoPc catalysts had the highest values in region I and region II, respectively. These 
results indicated that, although the interaction rate of TiO2/Pc was faster than the others, TiO2/FPc and TiO2/FCoPc seem 
more effective as the reaction progress (Figure 6a, b).

The degradation rate (D%) was calculated with the following equation-2 (Figure 7):
𝑙𝑙𝑙𝑙
𝐶𝐶
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𝑥𝑥100 % (Equation-2)

 

(a) (b)

(c) (d)

Figure 3. SEM images of (a) TiO2, (b) TiO2/Pc, (c) TiO2/FPc, and (d) TiO2/FCoPc nanofibers.

Table 1. EDX results of (a) TiO2, (b) TiO2/Pc, (c) TiO2/FPc and (d) TiO2/FCoPc 
nanofibers.

Element
Wt%

(a) (b) (c) (d)

Ti
O
N
F
Co

50.29
49.70

50.35
42.27
7.37

49.57
34.57
5.37
10.48

48.06
35.46
4.38
11.51
0.58

Total 100.00 100.00 100.00 100.00
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The photocatalytic reactivity order was found as TiO2/FCoPc > TiO2/FPc > TiO2/Pc > TiO2. The corresponding 
degradation rates of MB reached about 88% within 120 min for TiO2/FCoPc, which was in parallel with k values, due to 
the largest surface area of the TiO2/FCoPc nanofibers as can be seen from SEM images (Figure 3d). 

To determine the photocatalyst’s stability, which is critical for their practical applications, the TiO2/FCoPc was recovered 
by washing distilled water and used many times to degrade fresh MB solutions. Each time, the catalyst was dried in an 
oven at 50 °C, without any further modification. Figure 8 shows that, after reuse, the TiO2/FCoPc nanofiber retained high 
catalytic activity (100% to 98.5% and 95.51% by 1st, 2nd use, and 3rd use, respectively) with only approximately 6% loss in 
photocatalytic performance after the 3rd cycle.

According to these results, it can be suggested that the efficiency of TiO2/FCoPc as a photocatalyst in photocatalytic 
degradation reactions is similar or higher than the related studies in the literature [48–50] and can be suggested as a 
promising candidate for the removal of organic pollutants from wastewater.

Based on the studies in the literature on photocatalytic degradation of organic pollutants in aqueous solutions [51–
55], a possible mechanism for photocatalytic degradation of MB in UV light irradiation with FCoPc/TiO2 nanospun was 
schematically clarified in Figure 9, and the mechanism for photocatalytic degradation of MB was suggested as follows 
(Equations a-i):
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Figure 4. XRD patterns of TiO2, TiO2/Pc, TiO2/FPc and TiO2/
FCoPc nanofibers.

Figure 5. C/Co–time graphs for the photocatalytic degradation 
of MB for TiO2, TiO2/Pc, TiO2/FPc and TiO2/FCoPc nanofibers.
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MPc + hυ → MPc*   (a)
MPc* + O2 → MPc + O2 (or 1O2)  (b) 
MPc* + TiO2 → MPc• + + TiO2 (e-) (c)
TiO2 nanofibers were first photoexcited to generate electron/hole (e−/h+) pairs. The electrons on the conduction band 

(CB) of TiO2 can be trapped to the O2 for generation of •O2
-, which is the most necessary active material for photocatalytic 

degradation of MB. Photogenerated holes on the valence band (VB) of TiO2 were expected to react with H2O or OH- to 
create •OH because the potential of occurrence was lower than the VB of TiO2.

TiO2 (ecb
-) + O2 (or 

1O2) → TiO2 + O2•
- (d)

O2• - + H2O → HO2• + OH-  (e)

 

 
Figure 7. Photodegradation rate of MB for TiO2, TiO2/Pc, TiO2/FPc and TiO2/
FCoPc nanofibers.

Figure 6. a) ln C/Co–time (region I), b) ln C/Co–time (region II) graphs for the photocatalytic degradation of MB for 
TiO2, TiO2/Pc, TiO2/FPc and TiO2/FCoPc nanofibers.



GÜMRÜKÇÜ et al. / Turk J Chem

2041

Table 2. Effect of different type of photocatalysts on the rate constant k and the total 
removal of photocatalytic MB degradation.

Sample name
k (min–1)

Total removal (%)
Region I Region II

TiO2 0.0020 0.0199 77
TiO2/Pc 0.0036 0.0218 80
TiO2/FPc 0.0028 0.0240 82
TiO2/FCoPc 0.0031 0.0310 88
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Figure 8. Recycling properties of the photocatalytic degradation of MB 
using TiO2/FCoPc as photocatalyst.

Figure 9. Schematic view of the degradation mechanism for MB by TiO2/FCoPc photocatalyst.
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HO2• + H2O → H2O2 + HO•   (f)
H2O2 → 2HO•    (g)
HO• + MB → CO2 + H2O   (h)
MPc• + + MB → MPc + MB•+  (i)
The TiO2 nanofibers serve as an electron trap for the activated surface adsorbed FCoPc dye. The trapped electron 

stimulates active oxygen species for later growth. Additionally, the active oxygen species, the by-produced radical cation 
FCoPc•+ has already interacted with MB and induces MB photodegradation. Because no valence band hole is created 
in the TiO2 nanofibrous, the nanofibrous FCoPc/TiO2 avoids recombination of the internal charge. TiO2 only acts as an 
electron mediator in this cycle, and the dye as a sensitizer.

4. Conclusion
TiO2 nanofiber was successfully fabricated from TBT precursor and firstly in-situ synthesis of Pc’s on electrospun TiO2 
nanofiber was performed by the solvothermal process for photocatalytic degradation of MB. For this purpose, photocatalytic 
activity of a new type of fluor containing phthalocyanine (FPc) was comparatively investigated with non-flourinated Pc 
and fluor containing cobalt Pc (FCoPc). Here, the effect of cobalt metal ion and peripheral fluorinated groups on the 
design of the photocatalyst was studied. The structures and morphologies of TiO2/Pc nanofibers were characterized using 
XRD, SEM, EDX, and UV–Vis absorption spectra. 

The kinetic studies of photocatalytic degradation showed that while the catalytic effects of photodegradation of the Pcs 
in the dark are less than that of TiO2, Pcs have absorption in the UV region, which increases light efficiency, and showed 
better catalytic effect under light. The TiO2/FCoPc nanofibers exhibited a higher catalytic activity of photodegradation for 
MB than the pure TiO2, TiO2/Pc, or TiO2/FPc nanofibers under UV-light irradiation after 90 min due to the advantage of 
fluorinated groups. The presence of cobalt improves this efficiency. According to recycling results, TiO2/FCoPc nanofiber 
was found to be suitable for multiple uses. Based on all results, TiO2/FCoPc photocatalyst may be a promising candidate 
for the purification of organic pollutants from wastewater.
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