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1. Introduction
Phytoplankton is the general name given to organisms that have adapted to suspend in the pelagic water of aquatic 
environments such as sea, lake, pond, and river [1]. Planktonic primary producers form the basis of the food chain in 
the aquatic environments and accumulate the xenobiotics within their cells, and, thus, these compounds reach humans 
through this network. It also has an important role in producing 50%–90% of atmospheric oxygen in the world, and a 
change in phytoplankton affects the community composition of the entire aquatic ecosystem [2].

A. platensis is naturally found in lakes in sub-tropical areas with high alkalinity, but it is a cosmopolitan organism that 
can live in a wide variety of aquatic environments such as turbid stagnant waters, streams, fresh and brackish waters. It has 
a spiral filament type that can also be found in straight strains. It is a prokaryotic cyanobacterium, and it has commercial 
importance [3]. C. vulgaris is a common eukaryotic microalga that lives in freshwaters. Besides, they can form green covers 
on bark of trees and stones. C. vulgaris cells are spherical, and the coccoid type and their sizes vary from 5 μm to 10 μm. 
The thickness of the cell wall varies according to the growth phase and basically it protects the cell from stimulants in the 
external environment and pests [4–5]. 

Phthalocyanines (Pcs) are like porphyrins, but they are tetropyrotic macromolecules separated from them by nitrogen 
atoms bound to pyrrole units. The addition of benzene rings to macrocycles enhances absorbance at longer wavelengths 
than porphyrins [6] and allows the use of phthalocyanines in various disciplines [7]. These substances have also been used 
as antibacterial, antifungal, and antitumoral in photodynamic therapy in various studies [8–10]. Drabkova et al. [11] and 
Jančula et al. [7] reported that these compounds have adverse effects against microalgae. These valuable properties of Pcs 
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are due to the cytotoxic effects of produced single oxygen and reactive oxygen species, (ROS) [10].  Pcs can lead to the 
formation of singlet oxygen (1O

2) in the presence of visible light and diatomic oxygen. Singlet oxygen (1O
2) has obstructive 

effects on growth rate and metabolic activities. These molecules oxidize biological structures and, thus, destroy cells [12]. 
The amount of produced singlet oxygen and photocytotoxicity of phthalocyanines and water-soluble sulfonated derivatives 
vary according to the degree of sulfonation. The addition of sulfonate groups around the Pcs greatly increases the solubility 
of these compounds and eliminates the need for liposomal delivery vehicles [6].

In previous studies, it has been demonstrated that singlet oxygen species have an inhibitory effect via binding to 
the negatively charged cell membranes of various algae [13]. Even if there is no significant environmental stress, these 
molecules can occur in algae, cyanobacterial cells, and plants as a result of metabolism, but they can prepare cells for 
oxidative stress by functioning as signal molecules if their amount increases [14, 15]. In this case, it can be toxically harmful 
in cells, by mainly causing degradation of nucleic acids, lipids, and proteins [15]. Therefore, their occurrence is often well 
protected by certain mechanisms in cells. These mechanisms are known as antioxidants and the most important these 
enzymatic mechanisms are superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) 
that are correlated with each other [16]. SOD is an enzyme that reduces the superoxide content by converting superoxide 
radicals into water and hydrogen peroxide [17,18]. APX converts hydrogen peroxide into dehydroascorbate and water by 
using ascorbic acid. GR reduces oxidized glutathione into reduced glutathione to reproduce ascorbic acid and to maintain 
the activity of APX in cells [19–23]. In non-enzymatic parameters, proline is known to increase during the oxidative stress 
process [24–25]. On the other hand, MDA is a molecule that provides the evaluation of membrane damage in cells and is 
formed by the oxidation of fatty acids containing more than one double bond [26–27]. 

Although there are some studies in the literature on the effects of pesticides and heavy metals on algae, there is no study 
on phthalocyanines.

Although there have been many studies related to oxidative damage of pesticides, heavy metals, and other chemicals 
on microalgae, there have been no studies about impact of water contaminated with phthalocyanines containing sulfonate 
groups on phytoplanktonare in the literature. Since the most important difference between a medicine and a poison is 
the concentration to which it is applied, the application concentrations of each newly produced compound should be 
determined. Therefore, the aims of this present study are (i) to investigate whether the excessive usage of the synthesized 
phthalocyanine compound (SPC) has a negative effect on algae and (ii) to evaluate the suitability of the synthesized 
phthalocyanine compound (SPC) as an algaecide with its adequate dosage to prevent algal blooms occurring in the lake 
ecosystems.  

2. Material and methods 
2.1. Algae culture and treatment 
Soley Microalgae Institute (California, USA) (Culture collection No: SLSP01) and Çukurova University supplied the 
cultures of A. platensis-M2 and C. vulgaris, and the aliquots were cultivated in Spirulina Medium [28] and BG11 [29] 
under axenic conditions, respectively.  The 200 mL of A. platensis and C. vulgaris pre-cultures growed at 30±1 °C and 
25±1 °C, respectively. The mimicry conditions of circadian rhythm are 12:12 h, at 6800 lux, during the seven days. At 
the end of this period, cultures were inoculated as 50 mL of algal culture. 2(3), 9(10), 16(17), 23(24)-Tetrakis-(sodium 
2-mercaptoethanesulfonate) metal-free phthalocyanine compound (SPC) was synthesized according to the procedure of 
Günsel et al. [30] (Scheme). Various concentrations of the synthesized phthalocyanine compound (SPC) (0-1.5 ppb for 
A. platensis and 0–8 ppb for C. vulgaris) were dripped to the cultures.  EC50 value was used for the determination of 
concentrations ranges in preliminary bioassays.
2.2. Cell growth and chlorophyll-a assay 
Optical density (OD) of control and stress-treated cultures were determined spectrophotometrically during the 7 days.  OD 
at 560 nm was preferred for A. platensis, and OD at 750 nm was selected for C. vulgaris to adjust the most appropriate growth 
plots. Chlorophyll-a extracts were obtained by methanol, and the contents were determined by spectrophotometrical 
methods during the 7 days [31]. 
2.3. Antioxidant enzyme activities 
The culture extractions were conducted according to Tunca et al. [25], and the samples were deep-freezed until enzyme 
assays (at –20 °C). On the assay day, samples were pounded with liquid nitrogen and specific buffers of each enzyme were 
used to suspend the samples.  Bradford’s [32] method was carried out to measure the protein concentrations of microalgae 
yield. In the assay, bovine serum albumin (BSA) was used as a standard. 

Beyer and Fridovich [33] method was modified to determine the SOD activity and NBT (nitroblue tetrazolium) 
photoreduction principle were utilized in this assay.1.5 mL buffer was prepared with 100 mM K2HPO4 buffer (pH 7.0), 1 
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mM Na2EDTA and 2% PVP for homogenization. The samples were centrifugated at 14.000 rpm and 4 °C for 20 min. After 
treatment, SOD activity was measured as described in Önem et al. [34]. The standard graphic was prepared, and it was 
used to calculate the quantity of SOD activity as unit mg–1 protein.  

Wang et al [35] method was modified to determine the APX activity. The estimation of the ascorbate oxidation 
decreasing rate at 290 nm was utilized as principle. Önem et al. [34] were perfomed for extraction and determination of 
the enzyme activity. The initial rate of the reaction using the extinction coefficient of ascorbate (E = 2.8 mM cm-1 at 290 
nm) was utilized to calculate enzyme activity.

Sgherri et al. [36] method was modifed to measure the GR activity. 1.5 mL buffer was prepared with 100 mM K2HPO4 
buffer (pH 7.0), 1 mM Na2EDTA and 2% PVP for homogenization. The GR activity was measured as described in Önem 
et al. [34]. The initial rate of the reaction after subtracting the non-enzymatic oxidation using the extinction coefficient of 
NADPH (E = 6.2 mM cm–1 at 340 nm) was utilized to calculate the enzyme activity.
2.4. Determination of malondialdehyde and hydrogen peroxide
Heath and Packer [37] method was modified to determine the MDA content. A total of 3 mL of 0.1% TCA (Trichloroacetic 
acid) (4 °C) was used for homogenization of 0.2 g pellet. After centrifugation at 4100 rpm for 15 min, the supernatant was 
used to perform the assay as described in Tunca et al. [25]. The non-specific absorbance at 600 nm and the absorbance 
at 532 nm were recorded, and they substracted from each other. The extinction coefficient of 155 mM−1 cm−1 was used 
to determine the MDA content. 1 mL of 1 M KI, 0.5 mL of 0.1 M Tris–HCl (pH = 7.6), and 0.5 mL of supernatant were 
mixed to determinate of the H2O2 content. After 90 min, the absorbance at 390 nm was measured, and H2O2 content was 
calculated as described in Tunca et al. [25].  
2.5. The proline content determination 
Weimberg et al.’s [38] method was modified to determine the proline content. A total of 10 Ml of 3% aqueous sulphosalicylic 
acid was used to homogenize 0.1 g of pellet. The samples were used to carry out as described in Tunca et al. [25], and the 
absorbance at 520 nm was measured by spectrophotometrical methods. 
2.6. Statistical analysis 
The differences between the control and treated samples were analyzed by one-way ANOVA, with a 95% confidence 
interval according to LSD. Three biological replicate cultures were used for each treatment. The mean values ± SE were 
given in Figures. 

Scheme. The molecular structure of 2(3), 9(10), 16(17), 23(24)-tetrakis-
(sodium 2-mercaptoethanesulfonate) metal-free phthalocyanine 
compound (SPC).
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3. Results
There were statistically significant decreases at OD 560 absorbance in A. platensis cultures according to an increase of the 
phthalocyanine (SPC) concentrations during the 7 days (p < 0.05) (Figure 1). On the other hand, the increases were observed 
on the growth plot obtained from OD 750 absorbance at 8 ppb concentration on the 7 th day in C. vulgaris cultures exposed 
to the phthalocyanine compound (SPC). Similarly, chlorophyll-a content rises at the same conditions (p < 0.05) (Figure 2). 

In A. platensis application, the total SOD and GR activities of A. platensis cultures did not display significant alteration 
in the overall concentrations (Figure 3a, 3b), but APX activity decreased at 0.25, 0.50 ppb, 1 ppb, and 1.5 ppb concentrations 
compared to control (p < 0.05) (Figure 3c). While the MDA content rised at all concentrations (p < 0.05) (Figure 4a), the 
H2O2  content statistically significantly raised at 0.125 ppb concentration (p < 0.05)(Figure 4b). The free proline content 
displayed decreases at 0.25 ppb, 0.50 ppb, 1 ppb, and 1.5 ppb concentrations (p < 0.05) (Figure 4c).

In C. vulgaris application, SOD activity showed an increase at 2 ppb concentration compared to control (p < 0.05) (Figure 
5a). Also, the GR activity displayed increases compared to control at 1, 2, and 4 ppb concentrations (p < 0.05) (Figure 5b). On 
the contrary, the APX activity showed a significant decrease compared to control at all concentrations (p < 0.05)(Figure 5c). 
Moreover, both MDA and H2O2 content of C. vulgaris cultures showed significant decreases at all concentrations compared 
to control (p < 0.05) (Figures 6a,6b). The free proline amount displayed decreases at concentrations (0.5 and 4 ppb) of the 
phthalocyanine compound (SPC) (Figure 6c).

4. Discussion 
In this study, the effects of the synthesized phthalocyanine compound (SPC) were investigated in terms of some parameters 
such as the absorbance of OD560 and OD750, the contents of chlorophyll-a, H2O2, malondialdehyde, and proline, and the 
activities of SOD, APX, and GR in A. platensis and C. vulgaris.

Figure 1. Biomass values and chlorophyll-a values of A. platensis supplemented with 
the phthalocyanine compound (SPC) (0-1.5 ppb) during the 7 days. Data are the 
means ± SE of three replicates.
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It can be concluded that there is a decrease in the growth rate of A. platensis with the phthalocyanine compound (SPC) 
application, but interestingly, an increase was observed in C. vulgaris application at 8 ppb concentration especially on the 7th 
day. As a result of its enhancer effect on C. vulgaris growth, commercial use of the synthesized phthalocyanine compound 
(SPC) for C. vulgaris cultures may be considered.

Morelli et al. [39] reported that APX and GR activities did not significantly change, even at the higher water-soluble CdSe 
quantum dots (QD) concentrations of water-soluble QDs in Phaeodactylum tricornutum. This situation may be explained as 
the level of reduced glutathione is a strong free radical scavenger. Also, in our study, the absence of reduced glutathione in the 
glutathione pool may be related to the decreased APX activity. It was observed that SOD and GR activity did not change, but 
only APX activity significantly decreased in A. platensis with the phthalocyanine compound (SPC) application. Günsel et al. 
[40] observed that while the antioxidant SOD enzyme activity decreased at the 0–15 µg mL-1 concentration with the application 
of water-soluble phthalocyanine derivative, while the APX and GR activities did not change statistically. It can be concluded 
that phthalocyanine derivatives show different oxidative stress characteristics depending on their content. Phthalocyanine 
tetrasulfonate tetra sodium has generating capacity of ROS much than other phthalocyanines, so the compound in the study 
was more toxic than the one used in Günsel et al. [40].  Tekbaba et al. [41] found that SOD activity increased, while the GR 
activity decreased with the application of water-soluble copper phthalocyanine containing sulfonate groups in A. platensis, 
but it did not change the APX content at similar concentrations to our study. This significant difference indicates that the 
metal bonded groups in phthalocyanines significantly alter the free oxygen generating capacity of the compound.

Fang et al. [42] reported that 4,4′-di-CDPS and 4,4′-di-CDE chemicals inhibited the activity of antioxidant enzymes, and, 
thus, the chemicals increased to MDA content of Scenedesmus obliquus. Likewise, deficiency of these three key enzymes in 
oxidative stress response is related to the increase of MDA at all concentrations and H2O2 content at 0.125 ppb in our study, 
and the H2O2 content may not have changed at high concentrations due to the activities of oxidases such as amino acid 
oxidase glucose oxidase, glycolate oxidase, and sulfite oxidase [43]. 

Figure 2. Biomass values and chlorophyll-a values of C. vulgaris supplemented with the 
phthalocyanine compound (SPC) (0-8 ppb) during the 7 days. Data are the means ± SE 
of three replicates.

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00775-021-01860-0&casa_token=r32CprF88-4AAAAA:4Fip5g3WvKa4r-tp_RYAuI7yXQo0pCd6o6r1VLPSvYy8NlsaIPHw8GHUJz-xAMlls_HmMDLMxdFa2MvjPw
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Ding et al. [44] observed that SOD activity increased at low naproxen (NPX) concentration (1 mg L−1), but it decreased 
at higher concentrations (at 50 and 100 mg L−1) by NPX application on Cymbella sp. and Scendesmus quadricauda. They 
explained that higher NPX levels caused the accumulation of OH− and H2O2 in algal cells. On the other hand, Melegari 
et al. [45] observed that MDA content did not change by increasing antioxidant enzyme activities in Chlamydomonas 
reinhardtii.  According to Tekbaba et al. [41], water-soluble copper phthalocyanine containing sulfonate groups increased 
the SOD and GR activites, but it decreased the APX activity. In our study, SOD and GR enzyme activities increased 
at low doses but did not show any effect at high doses, possibly due to enzyme degradation caused by the synthesized 
phthalocyanine compound (SPC) in C. vulgaris application. 

Tekbaba et al. [41] reported that MDA and H2O2 concentrations in A. platensis decreased with water-soluble copper 
phthalocyanine containing sulfonate groups. In C. vulgaris application, these parameters increased. Also, this situation 

Figure 3. Total SOD (a), GR (b) and APX (c) activities of A. platensis supplemented 
with the phthalocyanine compound (SPC) (0–1.5 ppb).  Data are the means ± SE of 
three replicates.

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00775-021-01860-0&casa_token=r32CprF88-4AAAAA:4Fip5g3WvKa4r-tp_RYAuI7yXQo0pCd6o6r1VLPSvYy8NlsaIPHw8GHUJz-xAMlls_HmMDLMxdFa2MvjPw
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00775-021-01860-0&casa_token=r32CprF88-4AAAAA:4Fip5g3WvKa4r-tp_RYAuI7yXQo0pCd6o6r1VLPSvYy8NlsaIPHw8GHUJz-xAMlls_HmMDLMxdFa2MvjPw
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00775-021-01860-0&casa_token=r32CprF88-4AAAAA:4Fip5g3WvKa4r-tp_RYAuI7yXQo0pCd6o6r1VLPSvYy8NlsaIPHw8GHUJz-xAMlls_HmMDLMxdFa2MvjPw
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differs from the findings in this study. The use of metal-free phthalocyanine derivatives may provide more growth-
promoting effect than water-soluble copper phthalocyanine containing sulfonate groups, and it caused less oxidative 
damage than metal-containing derivatives in C. vulgaris, so it may be more suitable for commercial use.

Radic et al. [46] reported a high negative correlation between photosynthetic pigments and MDA. In our study, the 
chlorophyll-a increased at higher concentration. This explained the decrease of MDA in these concentrations. Also, the 
proline content may have decreased due to the free radicals formed, in both applications. 

In conclusion, this compound caused less oxidative stress in C. vulgaris than in A. platensis because the eukaryotic cell 
structure of C. vulgaris has a more complex detoxification mechanism. The antioxidant molecules of A. platensis was not 
adequate for the inactivation of the synthesized phthalocyanine compound (SPC), and it caused lipid peroxidation and 
increased H2O2 content. However, C. vulgaris could respond by its antioxidant system, and the increase of free radicals 

Figure 4. MDA (a), H2O2 (b) and proline (c) contents of A. platensis supplemented 
with the phthalocyanine compound (SPC) (0-1.5 ppb). Data are the means ± SE of 
three replicates.

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00775-021-01860-0&casa_token=r32CprF88-4AAAAA:4Fip5g3WvKa4r-tp_RYAuI7yXQo0pCd6o6r1VLPSvYy8NlsaIPHw8GHUJz-xAMlls_HmMDLMxdFa2MvjPw
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Figure 5. Total SOD (a), GR (b) and APX (c) activities of C. vulgaris supplemented 
with the phthalocyanine compound (SPC) (0-8 ppb). Data are the means ± SE of three 
replicates.
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was prevented. It can be said that this synthesized phthalocyanine compound (SPC) can be used as an algaecidal at the 
aforementioned concentrations for A. platensis and C. vulgaris organisms. In addition, the compound can be used for 
growth-stimulation in commercial cultures of C. vulgaris.
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Figure 6. MDA (a), H2O2 (b) and proline (c) contents of C. vulgaris supplemented 
0-8 ppb with the phthalocyanine compound (SPC). Data are the means ± SE of three 
replicates
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