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1. Introduction
Heterocyclic compounds are a vital part of most of the bioactive molecules used as drugs and are the key motifs for 
the novel drug discovery. The heterocyclic compounds enhance their activity when fused with other ring systems [1–2]. 
Oxadiazoles with plethora of biological applications are identified as important construction motifs for the advance of 
innovative drug design [3–5], thus grabbing the attention of medicinal chemists around the world. With its capability 
to bind with a ligand, the oxadiazole ring can be used as a significant part of the pharmacophore. In certain instances, 
it behaves like a flat aromatic linker that affords the proper orientation of the molecule [6]. In the oxadiazole family, 
1,3,4-oxadiazoles occupied a unique position in medicinal chemistry due to their multi-purpose utility in designing many 
bioactive compounds. In medicinal chemistry 1,3,4-oxadiazole and its derivatives are playing a vital role with broad range 
of biological applications. Oxadiazoles are the bioisostere of compounds with carbonyl function, like carboxylic acids, 
amides, and esters capable to form superior hydrogen bonding interactions with various receptors thereby augmenting the 
biological responses to a notable extent [7–8]. 

Recently, A.M. Rabie reported [9] two antioxidant polyphenolic 1,3,4-oxadiazole motifs, 2,3-tris[5-(3,4,5-
trihydroxyphenyl)-1,3,4-oxadiazol-2-yl]propan-2-ol (CoViTris2020) and 5-[5-(7-chloro-4-hydroxyquinolin-3-yl)-1,3,4-
oxadiazol-2-yl]benzene-1,2,3-triol (ChloViD2020) as the first multi-target SARS-CoV-2 inhibitors (Figure 1),  with greater 
potency than the currently used medicine ivermectin, remdesivir, and favipiravir. The computational docking investigation 
of these two compounds displayed incredible high inhibitory binding affinities with most of the docked SARS-CoV-2/
human proteins. Interestingly, the results of the biological assay showed that CoViTris2020 and ChloViD2020 exhibited 
very high and extremely significant anti-COVID-19 activities (anti-SARS-CoV-2 EC50 = 0.31 and 1.01 μM, respectively), 
representing that they can be very promising parent lead compounds for the design and construction of novel  anti-
COVID-19 agents.

Moreover, 1,3,4-oxadiazoles have engrossed the attention of medicinal chemists as          serotonin receptor (5-HT3) 
antagonists [10], Human Neurokinin-1   (NK1) antagonists [11], benzodiazepine receptor agonists [12], muscarinic 
agonists[13], 5-hydroxytryptamine (5-HT1D) receptor agonists [14], antirhinoviral [15], tyrosinase inhibitory 
compounds[16]. Among the 1,3,4-oxadiazole family 1,3,4-oxadiazoles with substitutions at 2nd and 5th positions are an 
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imperative core of bioactive molecules. These scaffolds are notorious for a variety of pharmacological activities like as 
antiinflammatory and analgesic [17], antibacterial [18], anticancer [19], antiviral [20], antihypertensive [21], herbicidal 
[22], antidiarrheal [23], monoamine oxidase (MAO) inhibitor [24], anti-HIV [25], anticonvulsant, and sedative hypnotic 
activity [26] hypoglycemic activity [27]. Some commercially marketed prominent clinical drugs like Atalurencystic-
fibrosis agent, Furamizole-Zibotentan-anticancer agent, Tiodazosin-antihypertensive agent, and Raltegravir-antiretroviral 
agent (Figure 2) contain 1,3,4-oxadiazole units [28–29]. 

The construction of valuable 2,5-disubstituted-1,3,4-oxadiazoles was achieved by various methods such as 
2-Iodoxybenzoic acid (IBX)/tetraethylammonium bromide (TEAB) [30], Fe(III)/ 2,2,6,6-Tetramethylpiperidin-1-yl)
oxyl (TEMPO) [31], Cu(OTf)2 [32], molecular I2 [33] catalyzed oxidative cyclization of aroyl/acyl hydrazones, one-pot 
reaction of diverse aryl carboxylic acids and benzoyl hydrazides using alumina [34], Ph3P-I2 mediated dehydrative cyclization 
of N-acylbenzotriazoles and ethyl carbazate [35], I2 mediated oxidative C–O/C–S bond formation of semicarbazones [36], 
tosyl chloride/pyridine-mediated cyclization of thiosemicarbazides [37], oxidative annulation of N-acyl hydrazines [38]. 

Recently we have reported some efficient methodologies towards the construction of medicinally important heterocycles 
[39–40]. Moreover, in continuation of our efforts towards the development of therapeutically important heterocyclic 
compounds [41–44], and in view of plethora of bioapplications of 2,5-disubstituted-1,3,4-oxadiazole motifs herein we 
wish to report the construction of various 2-aryl-5-(arylsulfonyl)-1,3,4-oxadiazoles (Scheme). Moreover, the prepared 
compounds are evaluated for their antibacterial and antioxidant properties. 
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Figure 1. Chemical structures of CoViTris2020 and ChloViD2020 [9].
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2. Experimental
2.1. Materials and methods
All the chemicals and reagents were acquired from Aldrich, Merck and utilized with no extra purification. After purchase, 
the solvents are dried prior to use by standard procedure [45]. The melting point of all the prepared compounds was 
recorded using the Cintex melting point apparatus in open capillaries. Precoated thin layer chromatography (TLC) plates 
(0.25 mm, Merck, silica gel 60 F254) were utilized to monitor all the reactions. A Varian-400 spectrometer was used to 
record the NMR (400MHz) spectra.  All our experimental procedures were carried out by using a Centrifuge machine 
(VKSI-Medico) for the construction of the titled compounds.
2.2. General procedure for the synthesis of 2-aryl-1,3,4-oxadiazoles
The preparation of 2-(4-methylphenyl)-1,3,4-oxadiazole (3a) is exemplary for the construction of titled 2-aryl-5-
(arylsulfonyl)-1,3,4-oxadiazoles. In a dried 100 mL two-necked reaction flask 30 mL of dry DMF, 3.5 g of 4-methylbenzoic 
acid (25.0 mmol) and 4.2 g of K2CO3 (30.0 mmol) were added and stirred well.  Next, to this stirred solution, methyl iodide 
(2.5 mL, 30.0 mmol) was added dropwise for 10 min. The total mixture was stirred for 10 h at ambient temperature. Then 
the crude mixture was poured into ice water and extracted with hexane/EtOAc (20:5, v/v). After that, the organic layer was 
evaporated by utilizing a rotator evaporator. Silica gel (60–120 mesh) column chromatography was employed to purify 
the product with hexane/ethyl acetate (10:2, v/v) as eluent giving 4-methylbenzoate (3.4 g) in quantitative yield. Further, 
the obtained 4-methylbenzoate (3.4 g, 25.0 mmol), hydrazine monohydrate (7.5 g, 150.0 mmol), and EtOH (25 mL) were 
placed in a round bottom flask equipped with a condenser. The total mixture was stirred at reflux for 8 h and the reaction 
mixture was cooled to room temperature. Next, the mixture was concentrated using a rotary evaporator. The resulting 
residue was filtered with hexane and dried, affording 2.8 g of benzhydrazide 2a as the product in 90% yield [46]. 
2.3. Preparation of 2-(p-tolyl)-5-tosyl-1,3,4-oxadiazole (6a)
In a 200 mL two-necked flask with triethyl orthoformate (TEOF) (25 mL), benzhydrazide 2a (4 g, 27.0 mmol) was added 
and stirred vigorously at 140 °C for 5 h. At reduced pressure, the formed ethanol and residual triethyl orthoformate were 
distilled off. The residue on distillation under high vacuum (about 0.2 mbar) gave the product 2-p-tolyl-1,3,4-oxadiazole 
(3a) in 89% yield [47]. Next, the obtained 2-p-tolyl-1,3,4-oxadiazole (3a, 0.5 mmol) was treated with 4-methylbenzenethiol 
(4a) (1.25 mmol), followed by the addition of FeCl3 (1.25 mmol) and K2CO3 (2 mmol) in DMSO (5 mL). Then the total 
mixture was stirred at 50 °C for 15 h, to obtain the product 2-(p-tolylthio)-5-p-tolyl-1,3,4-oxadiazole 5a in 56% yield. 
Furthermore, the intermediate 5a (1 mmol) was oxidized with mCPBA in the presence of DCM as a solvent at ambient 
temperature for 3h to give 2-(p-tolyl)-5-tosyl-1,3,4-oxadiazole 6a. The remaining final compounds also have been prepared 
in the same procedure.
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Scheme. Synthesis of 2-aryl-5-(arylsulfonyl)-1,3,4-oxadiazoles (6a-j).
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2.3.1. 2-(p-tolyl)-5-tosyl-1,3,4-oxadiazole (6a)
 Yield (80%); White solid, mp. 85–87 °C; IR (KBr, υmax, cm–1): 2990 (Ar = CH str), 2896 (CH str), 1600, 1545, 1497 (Ar C 
= C str), 1449 (C = N str), 1261(N-N str), 1167 (C-O str);  1H NMR (400 MHz, CDCl3) δ ppm: 1H NMR (400 MHz, CDCl3) 
8.29–8.20 (m, 2H), 7.67–7.62 (d, J = 7 Hz, 1H), 7.52–7.49 (m, 3H), 7.37–7.24 (t, J = 0.7 Hz, 1H), 7.17–7.12 (dd, J = 8.5, 0.7 
Hz, 1H), 2.48 (s, 3H), 2.15 (s, 3H); 13C NMR (100MHz CDCl3) 163.0, 151.4, 140.04, 135.7, 131.2, 129.1, 128.0, 127.5, 125.7, 
119.6, 24.5, 21.6; Elemental Analysis: Anal. Calcd. for C16H14N2O3S: C, 61.13; H, 4.49; N, 8.91; S, 10.20; Found: C, 61.44; H, 
4.43; N, 8.79; S, 10.12. LC-MS (m/z): 315.32 (M+1)+.
2.3.2. 2-(4-methoxyphenyl)-5-tosyl-1,3,4-oxadiazole (6b)
 Yield (84%); White solid, mp. 70–72 °C; IR (KBr, υmax, cm–1): 3055 (Ar  C-H str), 2926 (C-H str), 1582, 1486 (ArC = C str), 
1439 (C = N str), 1386, 1372, and 1179, 1138 (C—C(CH3)2 str), 1374(C = N str), 1168 (C-O-C str); 1H NMR (400 MHz, 
CDCl3) δ 7.47–7.40 (m, 3H), 7.29 (s, 1H), 7.17–7.10 (m, 4H), 3.84 (s, 3H), 2.29 (s, 3H); 13C NMR (100 MHz, DMSO-d6 
+CDCl3) δ 154.9, 153.1, 142.7, 133.8, 132.5, 129.8, 129.6, 121.3, 114.7, 55.4, 20.5;  Elemental Analysis: Anal. Calcd. for 
C16H14N2O4S; C, 58.17; H, 4.27; N, 8.48; S, 9.71; Found: C, 58.47; H, 4.08; N, 8.17; S, 9.41; LC-MS (m/z): 331.21 (M+1)+.
2.3.3. 2-(3-isopropylphenyl)-5-tosyl-1,3,4-oxadiazole (6c)
Yield (85 %); Yelllow solid, mp. 103–104 oC; IR (KBr, υmax, cm–1): 2932 (Ar = C-H str), 2836 (C-H str), 1649, 1530, 1488 
(ArC = C str), 1386(C = N str), 1210 (N-N str);  1H NMR (400 MHz, CDCl3) δ 7.64-7.41 (m, 3H), 7.38–7.21 (m, 2H), 7.17 
(d, J = 8.3 Hz, 3H), 2.89-2.84 (m, 1H), 2.44 (s, 3H), 1.22 (d, J = 6.7 Hz, 6H); 13C NMR (100 MHz, DMSO-d6+CDCl3) δ 
151.6, 141.8, 141.2, 136. 0, 132.4, 128.5, 128.2, 128.0, 125.1, 120.2, 117.3, 115.4, 31.9, 22.5, 19.3; Elemental Analysis: Anal. 
Calcd. for C18H18N2O3S: C, 59.46; H, 4.99; N, 12.24; S, 9.34; Found: C, 59.76; H, 4.91; N, 12.17; S, 9.10; LC-MS (m/z): 343.25 
(M+1)+.
2.3.4. 2-(4-nitrophenyl)-5-tosyl-1,3,4-oxadiazole (6d)
 Yield (68%); White solid, mp. 116-118 oC, IR (KBr, cm–1): IR (KBr, υmax, cm–1): 3136 (Ar=C-H str), 2948, 2872 (C-H str), 
1592, 1449, 1439 (ArC = C str),  1534 (N-O str), 1348 (N-O str), 1189 (N-N str); 1H NMR (400 MHz, CDCl3) 8.25–8.20 (m, 
3H), 7.53–7.48 (m, 3H), 7.24–7.06 (m, J = 3 Hz, 2H), 2.49 (s, 3H); 13C NMR (CDCl3, 100 MHz) 162.6, 158.9, 147.1, 142.6, 
136.0, 131.7, 129.1, 127.9, 126.8, 123.7, 23.2; Elemental Analysis: Anal. Calcd. for C15H11N3O5S: C, 52.17; H, 3.01; F, 15.47; 
N, 7.61; O, 13.03; S, 8.71; Found: C, 52.44; H, 3.78; N, 7.53; S, 8.62; LC-MS (m/z): 346.21 (M+1)+. 
2.3.5. 3-(5-tosyl-1,3,4-oxadiazol-2-yl)benzonitrile (6e) 
Yield (65 %); White solid, mp. 70–71 oC; IR (KBr, υmax, cm–1): 3064 (Ar = C-H str), 2922 (C-H str), 2224 (CN Str). 1601, 
1479, 1450 (ArC = C str), 1400 (C = N str), 1262 (N-N str); 1H NMR (400 MHz, DMSO) δ 7.69 (d, J = 7.5 Hz, 2H), 7.46 (d, 
J=7.7 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.16-7.00 (d, J = 8.6 Hz, 2H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl3 + DMSO-d6) 
δ 165.8, 162.9, 143.6, 143.1, 139.0, 133.8, 132.7, 129.4, 128.9, 121.5, 117.9, 117.5, 114.7, 20.9; Elemental Analysis: Anal. 
Calcd. for C16H11N3O3S: C, 55.80; H, 3.68; N, 13.95; O, 15.93; S, 10.64; Found: C, 56.08; H, 3.65; N, 13.87; S, 10.52; LC-MS 
(m/z): 326.25 (M+1)+.
2.3.6. 2-(4-chlorophenyl)-5-tosyl-1,3,4-oxadiazole (6f)
 Yield (74%); White solid, mp. 119-120 oC; IR (KBr, υmax, cm–1): 3098 (Ar = C-H str), 2960, 2920 (C-H str), 1607, 1530, 
1478 (ArC = C str), 1350 (C = N str), 1238 (N-N str), 766 (C-F str); 1H NMR (400 MHz, CDCl3) δ 7.66 (d, 2H), 7.48 (t, 
J = 9.4 Hz, 2H), 7.27 (d, J = 7.5 Hz 2H), 7.24 (s, 1H), 7.17 (d, J = 8.7 Hz, 2H), 2.33 (s, 3H); 13C NMR (100 MHz, CDCl3 + 
DMSO-d6) δ 151.2, 141.8, 137.0, 132.4, 128.3, 128.2, 127.8, 126.9, 119.9, 118.2, 20.0; Elemental Analysis: Anal. Calcd. for 
C15H11ClN2O3S: C, 53.82; H, 3.31; Cl, 10.59; N, 8.37; S, 9.58; Found: C, 54.09; H, 3.27; N, 8.31; S, 9.82; LC-MS (m/z): 317.21 
(M+1)+.
2.3.7. 2-(4-fluorophenyl)sulfonyl)-5-phenyl-1,3,4-oxadiazole (6g)
Yield (72%); White solid, mp. 96–97 oC; IR (KBr, υmax, cm–1): 3095 (Ar = C-H str), 2955, 2921, 2863 (C-H str), 1626, 1583, 
1494 (ArC = C str), 1383 (C = N str), 1233 (N-N str), 829 (C-Fstr); 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 4.7 Hz, 2H), 
7.31–7.21 (m, 3H), 7.11 (s, 1H), 7.04 (d, J = 6.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 164.6, 160.9, 146.9, 136.5, 128.9, 
127.0, 125.4, 123.6, 119.3, 116.2; Elemental Analysis: Anal. Calcd. for C14H9FN2O3S: C, 55.26; H, 2.98; F, 6.24; N, 9.21; S, 
10.54; Found: C, 54.53; H, 2.93; N, 9.14; S, 10.11; LC-MS (m/z): 305.13 (M+1)+.
2.3.8. 2-((4-methoxyphenyl)sulfonyl)-5-phenyl-1,3,4-oxadiazole (6h)
 Yield (81%); White solid, mp. 92–93 oC; IR (KBr, υmax, cm–1): 3130 (Ar = CH str), 2955 (C-H str), 1614, 1519, 1459 (ArC 
= C str), 1372 (C = N str), 1278 (N-N str), 1172 (C-O-C str); 1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 7.7 Hz, 2H), 7.56-
7.48 (m, 3H), 7.41 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 3.80 ( s, 3H); 13C NMR (100 MHz, DMSO-d6 +CDCl3) δ 
155.1, 153.1, 133.6, 132.2, 131.9, 129.6, 128.6, 120.3, 114.4, 113.5, 55.2; Elemental Analysis: Anal. Calcd. for C15H12N2O4S: 
C, 56.95; H, 3.82; N, 8.86; S, 10.14; Found: C, 57.12; H, 3.78; N, 8.69; S, 9.87; LC-MS (m/z): 317.19 (M+1)+.



BODDAPATI et al. / Turk J Chem

770

2.3.9.  2-(2-ethylphenyl)-5-tosyl-1,3,4-oxadiazole (6i)
Yield (81%); White solid, mp. 98–99 oC; IR (KBr, υmax, cm–1): IR (KBr, υmax, cm–1): 3066 (Ar C-H str), 2956, 2932 (C-H str), 
1589, 1560, 1512(ArC = C str), 1340 (C = N str), 1216 (N-N str); 1H-NMR (400 MHz, CDCl3) δ 7.64 (d, 2H), 7.41 (d, J = 
8.5 Hz, 2H), 7.38-7.34 (m, 2H), 7.14 (d, J = 8.2 Hz, 2H), 2.62-2.58 (q, 2H), 2.45 (s, 3H), 1.16 (t, J = 7.7 Hz, 3H); 13C NMR 
(100 MHz, DMSO-d6 + CDCl3) δ 163.7, 151.5, 141.6, 136.2, 135.7, 132.3, 128.2, 128.0, 126.4, 122.7, 120.1, 117.0, 26.2, 21.4, 
19.2; Elemental Analysis: Anal. Calcd. for C17H16N2O3S: C, 58.17; H, 4.27; N, 8.48; S, 9.71; Found: C, 58.36; H, 4.75; N, 8.38; 
S, 9.59; LC-MS (m/z): 329.27 (M+1)+.

2.3.10. 2-(3,4-dimethylphenyl)-5-tosyl-1,3,4-oxadiazole (6j)
 Yield (84%); White solid, mp. 61–62 °C; IR (KBr, υmax, cm–1):  IR (KBr, υmax, cm–1): 3032 (ArC-H str), 2926 (C-H str) 

,1585, 1548, 1492(ArC = C str), 1374 (C = N str), 1212 (N-N str); 1H NMR (400 MHz, CDCl3) δ 7.79 (d, 2H), 7.66 (d, 2H), 
7.37–7.34 (m, 2H), 7.01 (d, J = 7.5 Hz, 1H), 6.83 (d, J = 7.3 Hz, 1H), 2.46 (s, 3H),  2.33 (s, 3H), 2.12 (s, 3H); 13C NMR (100 
MHz, CDCl3 + DMSO-d6) δ 164.3, 162.7, 136.8, 135.3, 133.6, 130.2, 129.5, 129.3, 129.2, 126.0, 125.1, 121.1, 22.3, 20.5, 20.4; 
Elemental Analysis: Anal. Calcd. for C17H16N2O3S: C, 61.13; H, 4.49; N, 8.91; S, 10.20; Found: C, 61.45; H, 4.44; N, 8.83; S, 
10.09; LC-MS (m/z): 329.30 (M+1)+. 
2.4. Procedure for antibacterial activity [48]:
DMSO solution of all the prepared compounds at a concentration of 1mg/mL was prepared individually. In sterile 
Mueller Hinton medium each bacterium was inoculated and kept at 37 oC for 24 h to develop inoculums. The bacterial 
suspension was diluted by utilizing sterile saline to regulate the turbidity to the 0.5 McFarland standards. Next, on sterile 
Mueller Hinton agar plates, diluted suspension (200 µL) of every pathogen was inoculated. Wells were punched in the 
agar medium. Next, 100 µL of every compound solution was placed in a separate well with a micropipette. In addition, to 
check the activity of DMSO against the pathogenic culture, 100 µL of pure DMSO solution was also placed in a well and 
the entire petri dishes were incubated at 37 oC for 24 h. A clear zone around the well was regarded as positive results. The 
antimicrobial potency of the examined compounds was calculated after inclusive incubation. Finally, the zone of inhibition 
was calculated and recorded in millimetres (mm).
2.5. Procedure for antioxidant activity:
Ai Lan Chew et al. method [49] was used to determine the 2,2-Diphenyl-1-picryl hydrazyl (DPPH) free radical scavenging 
activity of the various extracts. The crude extracts in diverse concentrations viz., 25 μg/mL, 50 μg/mL, 100 μg/mL, and 
200 μg/mL were prepared in dimethyl sulphoxide (DMSO). 1 mL of every concentration was mixed with 4 mL of 0.004% 
(w/v) solution of DPPH prepared in CH3OH. The reaction mixture was set aside in dark for incubation for 30 min. CH3OH 
was used as control and ascorbic acid was employed as positive control. The absorbance was calculated at 517 nm. The 
following formula was used to determine the DPPH scavenging activity (%). DPPH scavenging activity (%) = [(AO–AS)/
AO] × 100, where, AO = absorbance of the control, AS = absorbance of the plant sample.

3. Results and discussion
3.1. Chemistry
In current study, the authors illustrated the construction of novel 2-aryl-5-(arylsulfonyl)-1,3,4-oxadiazoles as presented 
in Scheme. Initially, diverse aryl acids were treated with hydrazine monohydride in presence of base K2CO3 to give the 
respective aryl hydrazides, which undergo cyclization in presence of  triethylorthoformate (TEOF) in ethanol to form the 
corresponding 2-aryl-1,3,4-oxadiazoles in 56%–68% of yields.  Next, the obtained 2-aryl-1,3,4-oxadiazoles were treated 
with various thiophenols in presence of FeCl3 using K2CO3 as a base in DMSO to give the respective C-S cross-coupled 
product 2-thioaryl-5-aryl-1,3,4-oxadiazoles 5a-j. Finally, the compounds 5a-j on oxidation with mCPBA in DCM yield 
the respective 2-aryl-5-(arylsulfonyl)-1,3,4-oxadiazoles 6a-j in moderate to good yield (65%–85%). 

Various 2-aryl-5-(arylsulfonyl)-1,3,4-oxadiazoles (Figure 3) were obtained using  diversely substituted aryl hydrazides 
and thio phenols. Compounds bearing phenyl ring with electron donating groups like –CH3, –OCH3, -Et, and -CH(CH3)2 
obtained at higher yields contrast to those with electron withdrawing groups like –CN,–NO2 and weak electron withdrawing 
groups like fluorine and chlorine. 

The structure of all the prepared compounds was attributed with IR, NMR (1H and 13C), and LC-MS spectral analyses 
and the spectroscopic and analytical data was in complete agreement with the anticipated structures. For example, in the 
IR spectrum of compound 6h, the appearance of a peak at 2224 (s) cm–1 indicates the presence of –C ≡ N group, formation 
of distinguishing peaks at 3064 (w) cm–1, 1111 (s) cm–1 owing to Ar C-H, and C-O-C groups of oxadiazole frame. The 
appearance of IR peaks at 1400(s) cm–1 and 1262 (w) cm–1 are due to –C = N and N-N stretching’s. Next, IR peaks at 
1607(m), 1569 (s), and 1531 (w) cm–1 are due to aromatic C = C stretching. Further, a peak of 2922(s) cm–1 characterize the 
–C-H stretching of CH3 group, asserted the formation of title compound 6h.
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Next, the emergence of a signal in the 1H-NMR spectrum of 6h at chemical shift value d 3.80 ppm as a singlet, integrating 
for three protons were assigned to -O-CH3 group, doublets at d 7.78, 7.41 ppm integrating for two protons, multiplet at d 
7.56–7.48 ppm integrating for three protons and another doublet at d 6.85 ppm integrating for two protons were assigned 
for aromatic protons. Moreover, the 13C-NMR spectrum of compound 6h revealed the presence of 11 different carbons 
in the compound. The peak at d 55.0 ppm has been allocated to the methoxy carbon. The signals at d 155.1 and 153.1 
ppm were due to the carbon of C-O core nuclei respectively. The signals at d 133.6–113.5 ppm have been consigned to 
the aromatic carbons of the compound. All the above spectral data indicate that compound 6h is 2-((4-methoxyphenyl)
sulfonyl)-5-phenyl-1,3,4-oxadiazole.  Moreover, the evolution of molecular ion peak at 317.19 (M+H)+ in the mass spectrum 
(EI) supported the formation of compound 6h.
3.2. Biological evaluation
3.2.1. Antimicrobial activity
The well diffusion method [48] was used to study the in vitro bacterial growth inhibition activity of the test compounds 
6a-j on gram-positive bacterial strains Pseudomonas aeruginosa, Enterobacter aerogenes, Escherichia coli and gram-negative 
bacterial strains Bacillus cerus, Staphylococcus aureus, Bacillus subtilis. The antibacterial activity screening outcome reveals 
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that the compounds 6b, 6c, 6e, 6i, and 6j are active against all the six bacterial strains examined with a good zone of 
inhibition values (Table 1). The compounds 6j, 6i, and 6e were found to inhibit the growth of Pseudomonas aeruginosa with 
Zone of inhibition values 22mm, 19mm, and 16mm respectively. The compounds 6j, 6c, 6e, and 6f showed good activity 
against Enterobacter aerogenes with a consecutive zone of inhibition of 23mm, 19mm, 18mm, and 18mm. Test compounds 
6j and 6i with a zone of inhibition of 20 mm and 15 mm, effectively inhibit the growth of microorganism Escherichia 
coli. Compounds 6c and 6j exhibited good activity against the gram-negative organisms Bacillus cerus, Staphylococcus 
aureus, and Bacillus subtilis with a zone of inhibition range of 19–23 mm and 18–22 mm consecutively. In addition, the 
antibacterial screening (Table 1) discloses that the titled compounds are more potent against the gram-negative bacteria 
compared to gram-positive bacteria.

Based on the zone of inhibition values, next the minimum inhibitory concentration (MIC) value (mg/mL) was 
determined for the compounds that showed significant growth inhibition zones with the use of serial dilution method 
and the MIC values recorded in Table 2. The MIC results indicate that most of the tested compounds displayed variable 
inhibitory effects on the growth of tested bacterial strains. The MIC was deduced by following the method and guidelines of 
the Clinical and Laboratory Standard Institute (CLSI) (Table 2). In this study, the MIC was determined for the most potent 
selected antimicrobial compounds 6b, 6c, 6e, 6i, and 6j. The investigation reveals that the MIC value of test compounds 

Table1. Antibacterial activity in Zone of inhibition (mm) of the final compounds (6a-6j).

Compound

Diameter of Zone of Inhibition in mm

Microorganism

Gram –Ve Gram +Ve

PAa (-) EAb(-) ECc (-) BCd (+) SAe (+) BSf(+)

6a 11 13 - 16 - 14
6b 12 16 11 14 10 18
6c 10 19 12 23 13 19
6d - 13 - - - 15
6e 16 18 11 15 14 20
6f - 18 - 14 - 13
6g - 17 10 - 11 -
6h 12 17 - 13 - 12
6i 19 17 15 16 11 19
6j 22 23 20 21 18 22
Streptomycin (Standard) 32 33 29 33 29 32

PA a- Pseudomonas aeruginosa; EAb- Enterobacter aerogenes; ECc-Escherichia coli;
BCd - Bacillus cerus; SAe- Staphylococcus aureus; BSf- Bacillus subtilis; -: No inhibition.

Table 2. MIC values of most potent titled compounds (µg/mL).

Entry E. aerogenes(-) B. subtilis(+)

6b 114 150
6c 160 180
6e 132 120
6i 103 75
6j 98 72
Streptomycin 30 25
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is in the range of 132–98 µg/mL against Enterobacter aerogenes and 72–150 µg/mL against Bacillus subtilis. Among the 
test compounds, 6j exhibited potent antibacterial activity with a minimum inhibitory concentration value of 98 µg/mL 
against Enterobacter aerogenes, and 72 µg/mL against Bacillus subtilis. Compound 6i disclosed the minimum inhibitory 
concentration values of 103 µg/mL and 75 µg/mL against Enterobacter aerogenes, and against Bacillus subtilis. However, all 
the test compounds are less potent than the reference drug streptomycin.
3.2.2. Antioxidant activity 
The in vitro antioxidant activity of the prepared compounds 6a-6j was evaluated by a standard literature protocol [49]. 
For this, different extracts were tested for their 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity 
according to the literature protocol. Dissimilar concentrations of the crude extracts with 25μg/mL, 50 μg/mL, 100 μg/mL, 
and 200 μg/mL concentrations were examined, by using ascorbic acid as a standard positive control. This investigation 
outcome is shown in Table 3. 

The antioxidant activity screening outcomes (Table 3) reveal that all the prepared oxadiazole motifs showed good 
antioxidant activity.  The title compounds 6a-6j exhibited concentration reliant increase in antioxidant activity, i.e. their 
antioxidant activity was increased as the concentration increased. Compounds 6j and 6b displayed the highest and lowest 
antioxidant activities at the concentrations of 100 µg, 50 µg, and 25µg, respectively. But, compounds 6f and 6a exhibited 
utmost and least antioxidant activity respectively at the concentration of 200 µg. The compound 6c displayed almost 
similar antioxidant activity at the concentration of 200 µg. All the remaining eight compounds except 6a and 6b, exhibited 
more than 40% level of antioxidant properties at 200 µg concentration. However, in comparison with standard ascorbic 
acid, all the prepared compounds displayed significantly lower antioxidant activity at all the tested concentrations.

From the results of antibacterial and antioxidant studies, it was assumed that  (i) presence of electron donating 
functionality at 2nd and 5th position of benzene ring in 6j is responsible for significant activity against the tested bacterial 
strains because the presence of +I effect groups in benzene ring system amplifies the lipophilicity and thus enhance cell 
penetration rate, that is accountable for antibacterial drug efficiency; (ii) the physicochemical characters such as position 
and kind of substituent on the aromatic ring of sulphoxide influence the antimicrobial activity of the examined compounds; 
(ii) presence of the electron donating groups are also responsible for their better antioxidant activities also; (iii) the electron 
withdrawing nitro group is responsible for the moderate antioxidant activity of compound 6d.

4. Conclusion
A sequence of 2-aryl-5-(arylsulfonyl)-1,3,4-oxadiazole scaffolds were synthesized and evaluated for their antibacterial 
and antioxidant activities. The data obtained from spectroscopic techniques like IR, NMR, and LC-MS affirmed the 
structure of all the obtained compounds. The antimicrobial screening outcome of all these titled compounds revealed that 
the examined compounds 6j, 6c, and 6i were the most potent among all prepared compounds. Moreover, the obtained 
compounds exhibited good antioxidant activity also. The target compounds 6j and 6i showed the highest antioxidant 
activity.

Table 3. Antioxidant activity of titled compounds 6a-j.

Sample Antioxidant activity (%)

25 μg 50 μg 100 μg 200 μg

6a 21.42 23.52 27.52 31.52
6b 16.78 21.67 24.67 33.67
6c 25.67 29.54 33.54 54.54
6d 31.12 35.73 42.13 46.13
6e 30.56 34.45 39.45 47.45
6f 31.19 35.19 40.19 55.19
6g 32.72 34.12 36.78 43.12
6h 27.34 32.34 37.34 40.34
6i 34.65 37.65 39.65 42.65
6j 40.23 45.45 47.78 48.46
Ascorbic acid 78.74 86.06 92.81 93.25
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