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1. Introduction
Glioblastoma continues to be a lethal type of cancer with a low five-year survival rate despite total excision, radiotherapy, 
and chemotherapy [1]. Although researchers conducted various molecular and therapeutic studies, no significant progress 
was achieved in clinical practice. Therefore, animal glioma cell models are essential [2]. Cisplatin is one of the leading 
chemotherapy drugs used to treat several cancers. Although cisplatin is clinically effective in treating different types of 
cancer, its toxicity and the drug resistance of cells limit its use [3]. The discovery of Cisplatin has led to the idea that metal 
complexes may play an important role in chemotherapy. Exploring new types of drugs on medicinal applications remains a 
challenge to minimize toxic side effects, drug resistance, and inadequate solubility limitations of platinum-based drugs [4].

N-heterocyclic carbenes (NHCs) are easily synthesized, chemically modified, and exhibit superior properties ligands. 
The lipophilic end is essential in drug molecules, and to serve this lipophilic end on NHC, it needs to modify chemically. 
Thus, easy chemical modification of NHCs to serve lipophilic end in NHC-based drug molecules is significant. The 
NHCs can form a strong bond with the metal centers that lead to a more stable complex under moisture, heat, and air 
conditions. Due to these superior features, NHCs play an essential role in catalysis, biomedical applications, and functional 
material applications [5-14]. Studies have been focused on the biological application of Ag(I), Au(I), Ru(II), Rh(II), Pt(II), 
Pd(II), and Cu(I)-NHC complexes as antibacterial and anticancer agents [15-52]. Among synthesized NHC complexes, 
significant progress has been made with Ag-NHC and Au-NHC complexes on antibacterial and anticancer applications. 
Ag-NHC complexes remain therapeutically active longer than AgNO3, due to a slow speed deliver of Ag+ ions from high 
stable Ag-NHC complex [53]. Ruthenium-based complexes were used in medical applications due to less toxicity and are 
more capable of overcoming cancer cells’ resistance than Pt-based drugs [54-58]. Benefits of Ru complexes in biological 
applications were reported by different groups [59-64]. The most prominent feature of ruthenium in these studies is that 
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it imitates iron element in binding to biological molecules such as albumin and transferrin [57,64-66]. These ruthenium 
complexes have been designed for DNA-targeting, but ruthenium complexes weakly interact with DNA compared to 
analogous Pt complexes [57,67]. However, DNA targeting is unnecessary for bioactivity because NAMI-A shows an 
extracellular mechanism to inhibit cancer cell motility [68]. KP1019 shows mild in vitro cytotoxicity without targeting 
the DNA of cancer cells [69]. Different research teams have made intensive investigations on anticancer applications 
of ruthenium complexes [70-73]. Burgos et al. investigated antioxidant/prooxidant activity and toxicity of some of the 
ruthenium-arene complexes. They concluded that Ru(II) arene complexes behave as oxidants at low concentrations and 
as prooxidants at high concentrations. However, they reported that the ruthenium complexes could not negatively affect 
the Zebrafish embryos. Therefore, Ru(II)-arene complexes can be considered nontoxic [74-75]. Due to the low toxicity 
of NAMI-A, AziRu, and KP1019 ruthenium complexes and their ability to overcome the resistance of cancer cells to 
drugs, their phase II clinical trials have been started [76-81]. The antiproliferative effects of six Ru-NHC complexes against 
MCF-7 and Caki-1 cancer cell lines were investigated by Tacke et al. (Scheme 1). They found that these complexes showed 
lower and better activity than cisplatin on Caki-1 and MCF-7 cells. They stated that the reason behind these results was 
influenced substituents in the imidazole group. Ott et al. sythesized a series of benzimidazole-based Ru(II)-NHC-(p-
cymene)Cl2 complexes and investigated their behavior on MCF-7 and HT-29 (Scheme 1) [71]. The ruthenium complex, 
which bears benzyl group as N-substituent on the NHC, showed pronounced activities on MCF-7 and HT-29 in low 
micromolar concentrations (Scheme 1) [71]. 

Considering cisplatins limitation due to the solubility problem, there is intense interest in synthesizing different water-
soluble metal complexes. A fine-tune hydrophilic moiety can provide the water solubility of complexes on the ligands 

 
Scheme 1. Structures of Ru-NHC complexes used against different cancer cell lines.
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[82-86]. Recently, our group reported cytotoxic properties of the Ag-NHC complexes on HeLa, HT-29, and L929 cell lines 
[87]. Among the NHCs, benzimidazole-based silver, gold and ruthenium-NHC complexes have been studied intensely due 
to the benzimidazole structure being a component of many biological structures [88-94]. In our previous study, Ru-NHC 
complexes showed good antiproliferative activity on Caco-1 and MCF-7 cell lines [16]. Encouraged by these results, we 
thought it would be helpful to examine the anticancer activities of the similar ruthenium complexes against different types 
of cancer cell lines to determine the affinity between them.

Herein, we synthesized and investigated the anticancer activity of eight Ru-NHC complexes and one of the Ag-NHC 
complexes with good lipophilic and hydrophilic properties on C6 and HeLa cell lines by a proliferation BrdU enzyme-
linked immunosorbent assay (ELISA) (Scheme 2). These water-soluble Ru-NHC complexes displayed pronounced 
anticancer activity on C6 and HeLa cancer cells.

2. Experimental
2.1. General considerations
All reactions were performed under Ar (argon) gas. Ag-NHC and Ru-NHC complexes were synthesized under the 
exclusion of light. 1H and 13C Nuclear Magnetic Resonance (NMR) analysis were performed by a Bruker Avance III HD 
300 and 400 MHz NMR spectrometer. The FT-IR analyses were performed with a PerkinElmer Spectrum 100 GladiATR 
FT/IR spectrometer. Elemental analyses were recorded by a LECO, CHNS-932 elemental analyzer. The LC/MS-IT-TOFF 
(ESI) electrospray ionization CH3CN/CHCl3. Absorbances were measured by a BioTek- Epoch microplate reader.
2.2. Cell culture
The human cervix adenocarcinoma (HeLa) and rat glioblastoma (C6) cell lines were grown as in the relevant literature 
[87]. All assays were performed in triplicate.  
2.3. BrdU cell proliferation ELISA (BCPE)
BrdU cell proliferation ELISA (Roche, USA) kit based on the detection of BrdU incorporation during DNA synthesis was 
used to measure the compounds’ antiproliferative activity. Cell suspensions containing 3 × 103 cells in 100 mL were pipetted 
into the wells of 96-well cell culture plates (COSTAR, Corning, USA). The test compounds and positive control (Cisplatin, 
Sigma, Germany) were prepared as in the relevant literature [87]. Eight different concentrations of the complexes were 
used. The concentration of complexes and cisplatin was serially increased and their effect on growth inhibition of cancer 
cells was observed.  
2.4. Synthesis
2.4.1. Synthesis of N-alkylbenzimidazole (1a-d) and NHCs (2a–e):
N-alkylbenzimidazoles and NHC precursors were synthesized according to the related literature (Scheme 2) [15, 16, 95-
97]. 2a, 2c, and 2e were synthesized according to the literature [16].
2.4.2. 1-(methylpyridine)-3-(3,5-dimethylbenzyl)-5,6-dimethylbenzimidazolium chloride, 2b: 

Compound 2b was synthesized by the reaction of 1b (1 mmol) and 3,5-dimethylbenzyl bromide (1.1 mmol) [16]. The 
solid was washed with hexane and dried (0.3 g, 85%). M.p: 254 °C. 1H NMR (300 MHz, CDCl3) δ = 11.64 (s, 1H, NCHN), 
8.43 (d, J  = 4.8 Hz, 1H, CH2C6H4N),  7.84–6.88 (m, 8H, C6H2(CH3)2-5,6, CH2C6H4N and C6H3(CH3)2-3,5),  5.96 (s, 2H, 
CH2C6H3(CH3)2-3,5), 5.58 (s, 2H, CH2C6H4N), 2.29 (s, 3H, C6H2(CH3)2-5,6),  2.26 (s, 3H, C6H2(CH3)2-5,6), 2.20 (s, 6H, 
C6H3(CH3)2-3,5).13C NMR (75 MHz, CDCl3) δ = 152.7, 149.4, 142.7, 139.0, 137.7, 137.2, 137.1, 132.6, 130.7, 130.4, 129.7, 
125.5, 123.8, 114.0, 113.0, 52.2, 51.2, 21.2, 20.7, 20.6.
2.4.2.1. 1,3-bis-(2-diethylamino)ethyl)benzimidazolium chloride, 2d
2d was synthesized as brown crystals (0.31 g, 88%) by the reaction of 1d (1 mmol) and 2-(diethylamino)ethyl chloride (1.1 
mmol). M.p: 151 ºC. 1H NMR (300 MHz, CDCl3) δ = 11.08 (s, 1H, NCHN), 8.88 and 7.63 (dd, J  = 3.0 Hz, 4H, C6H4), 4.78 
(t, J = 6.3 Hz, 4H, CH2CH2N(C2H5)2), 3.08 (t, J = 6.3 Hz, 4H, CH2CH2N(C2H5)2), 2.67 (q, J = 7.2 Hz, 8H, CH2CH2N(C2H5)2), 
0.94 (t, J = 7.2 Hz, CH2CH2N(C2H5)2). 13C NMR (75 MHz, CDCl3) δ = 144.1, 131.2, 126.9, 113.4, 51.5, 46.9, 45.6, 11.2.
2.4.3. Synthesis of Ag-NHC complexes (2a-e) 
Complexes 2a-e were prepared as in the relevant literature [16]. Detail of the complexes 3a, 3c, and 3e can be found in the 
related literature [16]. 
2.4.3.1. Chloro[1-(methylpyridine)-3-(3,5-dimethylbenzyl)-5,6-dimethylbenzimidazol-2-yliden] silver(I), 3b. 
Complex 3b was synthesized as brown powder solid (0.37 g, 75%): M.p: 200 ºC. 1H NMR (400 MHz, CDCl3) δ = 8.62 (d, 
J = 2 Hz, 1H, C5H4N), 7.69–6.86 (m, 8H, C6H2-(CH3)2-5,6 and C5H4N), 5.71 (s, 2H, CH2C6H3-(CH3)2-3,5), 5.51 (s, 2H, 
CH2C5H4N), 2.32-2.29 (s, 12 H, CH2C6H3-(CH3)2-3,5, C6H2-(CH3)2-5,6). 13C NMR (100 MHz, CDCl3) δ = 155.0, 149.8, 
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Scheme 2. Synthesis pathway of 1a-d, 2a-e, 3a-e, 4a-h, and 5a-h.
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138.8, 137.3, 134.9, 134.0, 132.5, 130.2, 124.8, 123.3, 121.7, 112.4, 112.2, 55.0, 53.2, 21.3, 20.4 ppm. HRMS (ESI) m/z [M + 
H]+ was calculated for C24H26N3Ag: 437.0657 and found 437.0671.
2.4.3.2. Chloro[1,3-Bis-(2-(diethylamino)ethyl)benzimidazol-2-yliden] silver (I) dihidrochloro, 3d. 
Complex 3d was synthesized as brown solid (0.40 g, 88%). M.p: 205 ºC. 1H NMR (400 MHz, DMSO-d6) δ = 7.80–7.41 
(m, 4H, C6H4), 4.46 (t, J = 6 Hz, 4H, CH2CH2NCH2CH3), 2.80 (t, J = 6 Hz, 4H, CH2CH2NCH2CH3), 2.47 (t, J = 8 Hz, 8H, 
CH2CH2NCH2CH3), 0.83 (t, J = 6 Hz, 12H, CH2CH2NCH2CH3). 13C NMR (100 MHz, DMSO-d6) δ = 133.8, 124.1, 112.5, 
52.9, 47.9, 47.4, 12.4.
2.4.4. Synthesis of Ru-NHC complexes 
The Ru-NHC complexes were synthesized as in the relevant literature [16, 98]. Details of the complexes 5a, 5c, and 5e can 
be found in related literature [16]. 
2.4.4.1. [1-(methylpyridine)-3-(3,5-dimethylbenzyl)-5,6-dimethylbenzimidazole-2-yliden](h6-p-cymene)ruthenium
(II) dichloride.HCl, 5b (C34H39N3Cl2Ru. HCl):
Complex 5b was synthesized in an analogous manner to complex 5a with use of 3b (1 mmol), which gave complex 5b as 
dark orange solid (1.17 g, 84%). M.p.: 229 °C. uC-N = 1413.50 cm–1. 1H NMR (300 MHz, D2O) δ = 8.98 (m, 1H, CH2C5H4N), 
7.60–4.95 (m, 16H, CH2C5H4N, C6H2(CH3)2-5,6, CH2C6H4(CH3)2-3,5, CH2C5H4N, CH2C6H4(CH3)2-3,5, CH(p-cymene)), 
2.36 (m, 1H, CH(i-pr)(p-cymene)), 1.91–1.46 (m, 15H, C6H2(CH3)2-5,6, CH2C6H4(CH3)2-3,5, CH3(p-cymene)), 0.82 (m, 
6H, CH3(i-Pr)). 13C NMR (75 MHz, D2O) δ = 187.7, 155.4, 137.9, 136.3, 133.4, 132.7, 132.3, 124.2, 110.9, 102.7, 87.0, 85.5, 
65.9, 34.4, 31.1, 22.7, 20.5, 19.3, 17.8, 14.0. HRMS (m/z, LCMS-QTOF (ESI)): 599.1498 [M+ - Cl], calcd. for C32H35ClN3Ru 
599.1641. Anal. calcd. for C34H40N3Cl3Ru: C, 58.49; H, 5.78; N, 6.02. Found: C, 58.66; H, 5.84; N, 6.12
2.4.4.2. Dichloro[1,3-bis(2-diethylamino)ethyl)benzimidazol-2-yliden](p-cymene)ruthenium(II).2HCl, 5d (C29H46N4

Cl2Ru. 2HCl):
Complex 5d was synthesized in an analogous manner to complex 5a with use of 3d (1 mmol), which gave complex 5d as 
a dark red powder (1.04 g, 75%). M.p.: 238 °C. uC-N = 1470.4 cm-1. 1H NMR (300 MHz, D2O) δ = 7.64-7.42 (m, 4H, C6H4), 
5.89–5.34 (m, 4H, CH(p-cymene)), 4.99–2.85 (m, 16H, CH2CH2NCH2CH3, CH2CH2NCH2CH3, CH2CH2NCH2CH3), 2.42 
(p, 1H, CH(i-pr)(p-cymene)), 2.03 (s, 3H, CH3(p-cymene)), 1.44-0.68 (m, 16H, CH3(i-Pr), CH2CH2NCH2CH3). 13C NMR 
(75 MHz, D2O) δ = 183.5, 135.3, 134.5, 134.0, 128.1, 124.6, 124.4, 113.1, 110.9, 110.3, 94.9, 87.5, 86.3, 85.5, 84.5, 81.1, 58.3, 
57.3, 50.4, 48.6, 47.9, 46.2, 43.9, 42.2, 30.2, 23.2, 21.3, 18.9, 17.1, 11.1. HRMS (m/z, LCMS-QTOF (ESI)): 587.2454 [M+ - 
Cl], calcd. for C29H46ClN4Ru 587.2454. Anal. calcd. for C29H48N4Cl4Ru: C, 50.07; H, 6.96; N, 8.05. Found: C, 50.19; H, 7.10; 
N, 8.19
2.4.4.3. Dichloro[1,3-bis(2-diethylamino)ethyl)benzimidazol-2-yliden](hexamethylbenzene) ruthenium(II).2HCl, 5f 
(C31H50N4Cl2Ru. 2HCl): 
Complex 5f was synthesized an in an analogous manner to complex 5a with use 3d (1 mmol), which gave complex 5f 
as a dark red powder (1.27 g, 88%). M.p.: 205 °C. uC-N = 1457.08 cm-1. 1H NMR (300 MHz, D2O) δ = 7.93–7.42 (m, 4H, 
C6H4), 4.84 (t, J = 7.2 Hz, 4H, CH2CH2NCH2CH3), 3.54 (m, 2H, CH2CH2NCH2CH3), 3.31 (m, 8H, CH2CH2NCH2CH3), 
1.88 (s, 18H, C6(CH3)6), 1.25 (t, J = 7.5 Hz, 12H, CH2CH2NCH2CH3). 13C NMR (75 MHz, D2O) δ = 193.5, 134.6, 130.9, 
128.1, 124.5, 113.1, 110.5, 95.7, 50.4, 49.1, 48.7, 47.9, 43.6, 41.6, 15.3, 15.2, 14.9, 8.3, 8.0. HRMS (m/z, LCMS-QTOF (ESI)): 
615.2764 [M+ - Cl], calcd. for C31H50ClN4Ru 615.2767. Anal. calcd. for C31H52N4Cl4Ru: C, 51.45; H, 7.24; N, 7.74. Found: 
C, 51.56; H, 7.40; N, 7.88.
2.4.4.4. Dichloro[1,3-bis(methylpyridine)benzimidazol-2-yliden]hexamethylbenzene ruthenium(II).2HCl, 5h 
(C31H34N4Cl2Ru. 2HCl):
Complex 5h was synthesized in an analogous manner to complex 5a with use 3a (1 mmol) gave complex 5h as a dark red 
powder (1.20 g, 85%). M.p: 197 °C. uC-N = 1438.50 cm-1.1H NMR (300 MHz, D2O) δ = 8.70–6.93 (m, 12H, CH2C6H4N and 
C6H4), 6.76 (d, J = 3.9 Hz, 1H, CH2C6H4N 2), 5.85 (m, 2H, CH2C6H4N), 1.87 (s, 18H, C6(CH3)6). 13C NMR (75 MHz, D2O) 
δ = 193.5, 156.9, 155.2, 153.6, 149.2, 146.4, 140.2, 139.9, 134.5, 134.2, 126.0, 125.7, 124.0, 123.6, 122.7, 113.5, 111.4, 110.4, 
98.2, 51.6, 51.4, 50.3, 15.1. Anal. calcd. for C31H36N4Cl4Ru: C, 52.62; H, 5.13; N, 7.92. Found: C, 52.74; H, 5.31; N, 8.01.

3. Results and discussion
The synthesis pathway for the Ag-NHC and Ru-NHC complexes is presented in Scheme 2. The Ag-NHC complexes 3b 
and 3d were synthesized in good yields of 75% and 88%, respectively, by the reported procedure [95-97]. The Ru-NHC 
complexes were synthesized by transmetalation reaction in DCM from 3a-e complexes, respectively. Transmetalation 
is one of the most general methods for preparing a wide range of transition metal complexes due to its mild reaction 
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conditions and generating air-stable intermediates. The transmetalation reaction of Ag(I)-NHC with corresponding 
Ru(II)-arene dimer under the exclusion of light at room temperature led to corresponding Ru-NHC complexes. The 5b, 
5d, 5f, and 5h (Ru-NHC.nHCl) complexes were synthesized in moderate to good yields of 84%, 75%, 88%, and 85%, 
respectively, by adding HCl-diethyl ether solution to the DCM solution of the 4b, 4d, 4f, and 4h complexes. Synthesized 
complexes are well soluble in polar solvents such as H2O, DCM, DMF, DMSO, CH3OH. The stability of 5c, 5e, and 5g 
complexes was tested by 1H NMR spectroscopy and it was seen that Ru(II)-NHC complexes showed high stability without 
structural decomposition against oxygen and moisture during two weeks (Figures 1, S1, and S2). Structural descriptions 
of the complexes were performed by 1H NMR, 13C NMR, HRMS (Figure S3-S10), elemental analysis, and melting point 
determination.

The resonance of the C2 proton and C2 carbon of 2b and 2d in the 1H and 13C NMR were observed at 11.64, 11.08 152.7, 
and 144.1 ppm in CDCl3, respectively. The loss of the C2 proton in 1H NMR and downfield shift of the C2 carbon to a new 
area in 13C NMR spectra of Ag-NHC indicate the formation of Ag-NHC complexes. However, the C2 carbon of 3b and 3d 
was not observed in 13C NMR spectra. We think the fast interconversion in the NMR time scale between the mono-carbene 
and bis-carbene structures causes the C2 carbon to be invisible in 13C NMR spectra.  According to Lin and coworkers [98], 
since the carbene-silver bond is labile in solution, the resonance of the carbene carbon, which is expected to be observed 
in the 13C NMR, may not be observed. In the 13C NMR spectrum of 5d, 5d, 5f, and 5h complexes, the carbene carbons 
dramatically shift downfield to 187.7, 183.5, 193.5, and 193.5 ppm in the 13C NMR spectra indicating the formation of 
5d, 5d, 5f, and 5h complexes, respectively. The LCMS-QTOF spectra were verified in the 5b, 5d, and 5h complexes. The 
calculated and experimental LCMS-QTOF values are compatible with each other and confirm the proposed complex 
structures. NMR spectra of newly synthesized compounds and HRMS spectra are given in the supporting information 
part. 

Cytotoxic activities of synthesized Ru-NHC complexes were investigated on C6 and HeLa cell lines. Figures 2 and 3 
and Table present the inhibition and IC50 values of 3a and 5a-h on C6 and HeLa cell lines, respectively. The synthesized Ru-
NHC complexes are both soluble in H2O and stable in the DMSO-d6 over the testing period. The Ru(II)-NHC and Ag(I)-

 
Figure 1. The stability test of complex 5c in DMSO-d6 during 15 days by 1H NMR spectroscopy.
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NHC complexes except showed moderate (5d), good (3a, 5a, 5f, 5h) and excellent (5b, 5c, 5e, 5g) activity when compared 
to cisplatin, which exhibited an IC50 value of 136 ± 0.74 mM and 126 ± 0.57 mM against C6 and HeLa, respectively. 
However, when the structures of the complexes are examined, it is seen that structural differences cause antiproliferative 
activity differences in different cancer cell types. For example, N-substituents on the NHC and type of arene group led 
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Figure 2. The antiproliferative effects of 3a and 5a-h complexes on C6 cells 
analyzed by BCPE.

Figure 3. The antiproliferative effects of 3a and 5a-h complexes on HeLa cells 
analyzed by BCPE.

Table. The IC50 values of 3a and 5a-h on C6 and HeLa cell lines.

IC50 (mM) C6 HeLa

3a 106.1 ± 0.2 126.6 ± 0.6
5a 97 ± 0.9 90.6 ± 0.2
5b 14.2 ± 0.5 11.1 ± 0.5
5c 16.2 ± 0.4 13.7 ± 0.3
5d 159.1 ± 0.4 122 ± 0.4
5e 24.2 ± 0.7 22.8 ± 0.8
5f 95.1 ± 0.4 89.7 ± 1.0
5g 37.3 ± 0.9 17.3 ± 0.8
5h 90.6 ± 0.7 46.8 ±  0.5
Cisplatin 136 ± 0.7 126  ± 0.6

The IC50 (mM) ± S.E. [a]S. E. = Standard error
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to a difference in ruthenium complexes antiproliferative activity against both cancer cell lines. The complexes, which 
are bearing asymmetric N-heterocyclic carbene ligand, showed excellent antiproliferative activity; methylpyridine and 
2-diethylaminoethyl groups provide a moderate  antiproliferative activity while 3-methoxybenzyl, 3,5-dimethylbenzyl, 
2-aminoethyl and isopentyl groups led to high (IC50 for HeLa: 5b, 11.1 ± 0.5; 5c, 13.7 ± 0.3; 5e, 22.8 ± 0.8; 5g, 17.3 ± 0.8; 
5h, 46.8 ± 0.5; IC50 for C6: 5b, 14.2 ± 0.5; 5c, 16.2 ± 0.4; 5e, 24.2 ± 0.7; 5g, 37.3 ± 0.9; 5h, 90.6 ± 0.7 mM) antiproliferative 
activity. However, the displacement of the p-cymene arene group by hexamethyl benzene increases the antiproliferative 
activity of 5f. Complexes 5c and 5g, which are structurally identical except the arene group, showed a difference in the 
antiproliferative activity on C6 and HeLa cells. In both cell lines, the 5c complex showed much better antiproliferative 
activity than the 5g complex. The situation in the antiproliferative activities of the 5a and 5h complexes also changes in line 
with this trend, and complex 5h showed slightly better activity than complex 5a. The type of arene ligand also affected the 
antiproliferative activities of Ru(II)-NHC complexes because of the s-donor-p-acceptor ability of arene’s and NHC’s [60, 
99]. This work gives us some useful info about the effect of the metal center’s genus on antiproliferative activity. Complex 
3a is an analog of complex 5a except for the metal genus. When the antiproliferative activities of these two complexes are 
compared in the same cancer cells, it is seen that complex 5a has shown better activity. This result may be an indicator of 
how important the metal genus is in anticancer activity. 

The exact mode of action (MOA) of Ru-based complexes is unknown; as a result, a lot of Ru-containing drugs are still 
under development. Ru-complexes can imitate the iron-binding to serum transferrin which solubilizes and transports iron 
in the plasma thereby inhibiting their toxic delivery of iron. Additionally, numerous oxidation states, kinetics and different 
MOA provide many advantages over Pt-based complexes. For example, at physiological conditions, the Ru is known to 
be stable II, III, and IV oxidation states. The slow ligand exchange rates of the Ru-compounds make them suitable for 
biological applications. The good cytotoxicity of the Ru-complexes is due to their strong binding with DNA.  Studies 
showed that some Ru-compounds could produce mutagenic effects, inhibit the replication of DNA, induce SOS repair, 
and decrease the synthesis of RNA thereby suggesting a DNA interaction [100]. In addition, according to our previous 
work [16], molecular docking calculations of similar Ru-NHC complexes showed anticancer activity by binding to DNA.

These observations point out that (a) the modification or fine-tune of the steric and electronic properties of NHCs 
through the N-substituents is crucial, (b) the arene type and metal center genus have a significant influence on the 
antiproliferative activity of complexes, and (c) complexes have properties that facilitate their cellular uptake into cells. 

4. Conclusions
A series of Ru-NHC complexes have been prepared, spectroscopically characterized, and antiproliferative activity of 
complexes was examined on C6 and HeLa cells by a proliferation BrdU ELISA assay. The cytotoxic activities of complex 
5b and 5c on C6 and HeLa cell lines are 7-9 times better than those of cisplatin and 2-10 times better than their analogous 
ruthenium complexes. Complexes 5b, 5c, and 5e have shown excellent low micromolar activity against C6 and HeLa cell 
lines. Additionally, other ruthenium and silver complexes have shown better activity on every concentration than cisplatin 
except complex 5d. The lower IC50 values of the Ru-NHC complexes 5b, 5c, 5e are most likely to be attributed to the better 
solubility in H2O due to asymmetric NHCs. In addition, better solubility of complexes in H2O enhanced cellular uptake 
of complexes into the cell. This finding indicates that type of N-substituents on NHC and arene groups may improve the 
activity and selectivity. In this manner, the availability of effective drugs will lead to powerful medical treatment, and 
consequently, the number of surgical treatments will decrease, and life processes will increase.
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Figure S1. The stability test of complex 5e in DMSO-d6 during 14 days by 1H NMR spectroscopy. 
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Figure S2. The stability test of complex 5g in DMSO-d6 during 14 days by 1H NMR spectroscopy. 
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Figure S3. The 1H NMR and 13 NMR spectra of 2b.  
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Figure S4. The 1H NMR and 13 NMR spectra of 2d.  
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Figure S5. The 1H NMR and 13 NMR spectra of 3b.  
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Figure S6. The 1H NMR and 13 NMR spectra of 3d.  
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Figure S7. The 1H NMR, 13 NMR and HRMS spectra of 5b.  
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Figure S8. The 1H NMR, 13 NMR and HRMS spectra of 5d. 
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Figure S9. The 1H NMR, 13 NMR and HRMS spectra of 5f. 
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Figure S10. The 1H NMR and 13 NMR spectra of 5h. 

 


