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1. Introduction
Today lead-based ferroelectric materials are still preferred in the industry due to their superior properties when 
compared with their alternatives [1–5]. Recently, there are even studies on the implementation of the spontaneous 
electric polarization of PbTiO3 ceramics for photocatalytic applications to be used for the spatial separation of 
photogenerated electrons and holes [6,7]. In this context, the effect of doping should be well determined and carefully 
analyzed. 

In general, the off-centered Ti4+ ions within the oxygen octahedra and other oxygen vacancies as a result of doping 
are attributed to the enhanced material properties [8]. One common mistake is the expected site of the dopant ion to 
be founded in such an ABO3 type perovskite without considering its effective ionic radius. As a rule of thumb, ions 
with similar or closer effective ionic radii are more likely to change place with each other [9]. Therefore, if an ion is 
intended to dope on A site but has a closer effective ionic radius to the ion on B site, then there will be an excess of B 
site ions due to the wrong stoichiometric assumption. This will cause the formation of secondary phases. Moreover, 
synthesis routes would also end up with unwanted secondary phases which deteriorate the material properties 
instead of enhancement [10]. For example, cobalt doped PbTiO3 would be expected to show distinct properties due 
to the magnetic character of the cobalt ion. However, Kumar et al. [11] reported no improvement in the ferroelectric 
properties of the cobalt doped PbTiO3 which were obtained via sol-gel synthesis. The experimental observations are 
still not adequate to understand the reason for this phenomenon-whether result of secondary phases or changes in 
defect chemistry-. This study aimed to go further analysis of cobalt doped PbTiO3 ceramics to enlighten the relation 
between the dielectric properties, the defects, and secondary phases obtained via sol-gel synthesis. In order to track the 
defect structure and secondary phases systematically, a comparative examination was carried out with the undoped 
PbTiO3. When the effective ionic radius of dopant ion Co2+ (0.745 Å) is considered, it is expected to change place 
with Ti4+ ion whose effective ionic radius was reported as 0.605 Å [12]. For this reason, the precursor amounts were 
adjusted to obtain Pb(Ti0.95Co0.05)O3. The magnetic properties and the dielectric loss constant were interpreted with 
the detailed characterization results obtained through X-ray diffraction (XRD), Fourier transformation infrared (FT-
IR) spectroscopy, Raman spectroscopy, thermal analyses, and electron paramagnetic resonance (EPR) spectroscopy. 
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2. Experimental
2.1. Materials
Lead(II) acetate trihydrate (extra pure, Merck), titanium isopropoxide (98%, Acros Organics), cobalt(II) nitrate hexahydrate 
(Carlo Erba), ethanol (absolute analytic, Merck), glacial acetic acid (Merck), and citric acid (%99, Sigma Aldrich) were 
used to obtain the undoped and cobalt doped PbTiO3.
2.2. Sol-gel synthesis
The synthesis was carried out according to the method given by Odabasi [13]. Lead(II) acetate trihydrate 
(Pb(CH3COO)2.3H2O) was dissolved in glacial acetic acid at room temperature. Appropriate dopant precursor (Co(II)
(NO3)2.6H2O was also dissolved in this mixture. In another beaker, titanium isopropoxide (Ti(OCH(CH3)2)4) was added to 
a mixture of glacial acetic acid and ethanol via a syringe. Two solutions were stirred at room temperature for around one h 
and then mixed. Vigorous stirring continued until a clear solution formed. Then, a mixture of citric acid and methanol was 
added to this solution. After a homogenous mixture was obtained, the temperature was raised up to 50 °C and heated for 
about one h. The cobalt doped material turned pink while the undoped material was off-white. All materials were calcined 
in two steps: Firstly, overnight at 100 °C and then at 650 °C for around three h with a heating rate of 50 °C/min. 

3. Results and discussion
3.1. XRD analysis 
The crystal structure was characterized with a Rigaku Miniflex XRD instrument (with a CuKα, λ = 0.154 nm) between 20–
80°. XRD patterns of both materials are given in Figure 1. The Miller indices of the main reflection planes (hkl) for PbTiO3 
perovskite structure are shown according to JCPDS card no. 01-077-2002. The perovskite structure with a tetragonal symmetry 
was obtained for both doped and undoped materials [14,15]. However, both homogenous and inhomogeneous strain effects 
are observed for the cobalt doped PbTiO3. The slight shifts from peak positions for (001), (002), (201), (112) planes point 
out homogenous strain while the broadened peaks at 22–23°, 32–33°, 53°, and 56° show inhomogeneous strain. A similar 
inhomogeneous strain pattern was recorded by Elbasset et al. [16] for cobalt doped PbTiO3 and interpreted as either grain size 
or local disorder effect. On contrary, the formation of a monoclinic PbTi3O7 phase (JCPDS card no. 00-021-0949), which was 
observed for the undoped PbTiO3 around 28.9° and 34.6°, vanished upon cobalt doping [17,18]. Hence, the formation of this 
phase was also mentioned by Lee et al. [18] for PbTiO3 powders synthesized via a similar sol-gel synthesis route. It was recorded 
that the formation of PbTi3O7 phase could be eliminated via calcination temperatures above 600 °C for more than three h. 

The average crystallite sizes were estimated -with the help of Scherrer equation using (101) base peak- as 34.2 nm and 
17.6 nm for undoped and cobalt doped PbTiO3, respectively. The formation of defects as a result of cobalt doping may 
decrease the lattice parameters [19]. The lattice parameters were exploited from JPCDS Card Numbers via HighScore Plus 
software and compared with the calculated lattice parameters in Table. The difference between the expected (according 
to JCPDS Card Number) and calculated lattice parameters would result in phase transition temperature shifts like ±5 °C 
from Curie temperatures [10].

Figure 1. XRD patterns of PbTiO3 (black line) and cobalt doped (red 
line) PbTiO3 (red line) PbTiO3
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The dislocation densities were found as 2.39 × 10–3 nm–2 and 1.21 × 10–2 nm–2 for the undoped and cobalt doped 
PbTiO3 with the help of the Williamson-Hall formula [20]. The very low dislocation density of the undoped PbTiO3 is 
consistent with the similarly calculated lattice parameters. Moreover, the porosity of cobalt doped material was estimated. 
Bulk density (ρb) and X-ray density (ρx) were calculated as 4.504 g/cm3 and 5.692 g/cm3 according to the method given by 
Kumar et al. [11]. The porosity percentage (P%) was evaluated as 20% according to the following formula P% = [1- (ρb / 
ρx)] × 100. 
3.2. Thermal analysis
Thermal analyses were carried out with a Mettler Toledo instrument under N2 atmosphere with a flow rate of 40 mL/min. 
The thermogravimetric analyses (TGA) were carried out between 25 and 900 °C with a heating rate of 10 °C/min. The 
detailed TGA of cobalt doped PbTiO3 was shown in Figure 2(a). In general, ceramics are quite stable at high temperatures 
[10]. As expected, the weight loss percentages were insignificant: 0.6% for undoped and 0.3% for cobalt doped PbTiO3.  as 
shown in Figure 2(a). It was already reported that PbTiO3 ceramics decompose at temperatures higher than 900 °C [10]. 
Hence, PbOx phases are decomposing between the measured temperature ranges [21].  The relatively higher weight loss 
of undoped PbTiO3 was attributed to the decomposition of the PbO2 phase to PbO with the help of the first derivative of 
thermogravimetric (DTG) data as demonstrated in Figure 2(b). Hence, the uncalcined secondary phases like PbO2 start to 
decompose around between 250–350 °C and as temperature increases, PbO phase forms. For cobalt doped sample, even 
though PbO2 was not detected, other PbOx phases were identified [21]. Again, the decomposition of these phases ended 
up with PbO formation.  The PbOx-related secondary phases cause the formation of cation and oxygen defects even if they 
are in minor amounts since they affect the ratio of Pb/Ti ion stoichiometry slightly. 

The differential scanning calorimetry (DSC) measurements were conducted between 25 and 550 °C with a heating 
rate of 8 °C/min again under N2 atmosphere. The Curie temperature at which the tetragonal crystal structure changes to 
the cubic phase is expected at 490 °C for PbTiO3 [10]. However, the detected Curie temperature was around 480 °C for 
the undoped PbTiO3 in Figure 3. A difference of 10 °C from the expected Curie temperature value was attributed to a 
lead deficient (VPb

’’) PbTiO3 material [22]. The formation of PbOx containing secondary phases would end up with such 
cation deficiencies within the perovskite structure. This will also cause the formation of oxygen vacancies (VO) in order 
to balance the crystal charge compensation [21,23]. By this way two negatively charged holes created by cation vacancy 
should be balanced with 2 plus charged oxygen vacancy as shown in Eqn (1) where ⍉ corresponds to the defect-free 
crystal structure.

  (1)
Apart from the undoped PbTiO3, the Curie temperature vanishes for the cobalt doped PbTiO3 in Figure 3. This 
phenomenon was also reported by Odabasi [13]. It might be related to the dislocation density that was estimated 
through the XRD analysis. The higher dislocation density may cause a decrease in detection limits for similar phase 
changes in the DSC analyses. Obviously, a counter exothermic peak at the expected Curie temperature is hindered as 
a result of cobalt doping. In order to resolve the spectrum, modulated DSC with a much slower heating rate should be 
applied [24]. Moreover, a bump between 150 and 250 °C followed by a sharp transition temperature around 305 °C was 
detected for the cobalt doped material. A similar trend at different temperatures was also observed for the undoped 
material. The bump of undoped and cobalt doped PbTiO3 can be seen between 220 and 320 °C. The possible reason 
may be a Pb including secondary phase. The PbTi3O7 phase which was detected via XRD is known to be stable at 
these temperatures and decompose around 700 °C [18]. Another possibility is the pyrochlore (Pb2Ti2O6) phase which 
was mentioned by Lee et al. [18]. Even though the XRD patterns of Pb2Ti2O6 were hard to detect around 30º, in the 
DSC analysis, the sharp peaks at 315, 305, and 257 °C clearly point out the transformation of the pyrochlore phase to 
the tetragonal PbTiO3 [18]. Because cobalt ion was also incorporated into this pyrochlore phase, a slight shift in the 
observed temperature was observed for cobalt doped PbTiO3. Similar observations within the pyrochlore phase were 
reported for variously doped PbTiO3 in literature [25–28]. 

Table. Estimated lattice parameters for tetragonal symmetry.

Material
Lattice parameters (Å)
Database search Calculated
JCPDS card number a = b c a = b c

PbTiO3 01-077-2002 3.9000 4.1500 3.8953 4.1312
Co:PbTiO3 01-078-0299 3.9400 4.0630 3.9005 4.0679
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Figure 3. DSC measurements of undoped (black line) and cobalt 
doped (red line) PbTiO3.
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Figure 4. FT-IR spectra of undoped (black line) and cobalt doped 
(red line) PbTiO3.
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Figure 2. (a)TGA of cobalt doped PbTiO3 (b) DTG of the undoped (black line) and cobalt doped (red line) PbTiO3.
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3.3 FT-IR measurements
The FT-IR measurements were conducted at room temperature, between 450 and 4000 cm–1 via an ATR crystal Thermo 
Scientific instrument. Two main peaks at 503 and 880 cm–1 for the undoped PbTiO3 are seen in Figure 4. These peaks 
were associated with Ti–O and Pb–O bonds, respectively [29–31]. The slight bump around 713 cm–1, which could also be 
detected for cobalt doped PbTiO3, was attributed to six coordinated Ti4+ ion octahedral complexes within the perovskite 
structure [15]. Especially, the undoped and cobalt doped materials have quite similar spectra.  
3.4 EPR spectroscopy
X-Band (9.7 GHz) EPR spectroscopy of doped materials was measured with a Bruker EMX 081 type EPR spectrometer at 
room temperature. Simply, EPR spectroscopy deals with the interaction of electromagnetic radiation with the molecule’s 
dipole moment, which arises from an unpaired electron in its orbital [32–34]. Principally, each paramagnetic ion in a certain 
environment has a characteristic signal. 

The Co2+ ion has three unpaired electrons in its high spin d7 state. The spin Hamiltonian for high spin Co2+ is shown in Eqn.4 
where ꞵe is the Bohr magneton, Bo is the applied external field, g is the g-factor or g tensor, S is the spin state, ꞵn is the nuclear 
magneton, gn is the nuclear g-factor, I is the nuclear spin. A is the hyperfine interaction of the nucleus with the electronic spin 
and D  is the zero-field splitting term that occurs from electron-electron dipole interaction of more than one unpaired electron 
containing system [33,34]. Since S is 3/2 and I is 7/2 for high spin Co2+ ion, splittings in its EPR spectrum are expected.
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 (4)
Typical EPR spectrum examples for cobalt containing systems were given by Abragam & Bleaney and Telser [33,35]. 
Unfortunately, in Figure 5, the expected spectrum seems to vanish under the strong broad peak. A different measurement 
frequency rather than X Band may help to resolve this part.

In the literature, a similar broad peak was reported for Co3O4 [36] which is obtained through the calcination of CoO 
between 600 and 700 °C [37]. Apparently, CoO phase was formed during sol-gel synthesis and later turned into Co3O4 after 
calcination. This would result in less incorporation of Co2+ ions into the perovskite structure. Moreover, the broadenings 
in the XRD spectrum and thermal analyses of the cobalt doped material most likely arouse from this complicated 
secondary phase. However, it should be noted that the amount of this phase must be quite low and therefore below the 
detection limits of XRD, since during the analyses, the spectrum related to Co3O4 could not be exploited directly but 
just observed in terms of broadenings. Thus, Co3O4 has a spinel structure where Co3+ ions reside in the octahedral site, 
while Co2+ ions reside in the tetrahedral sites [37,38]. Normally, bulk Co3O4 was reported as antiferromagnetic at room 
temperature and Co3O4 nanoparticles were reported as magnetic only at very low temperatures [39]. Therefore, a magnetic 
susceptibility measurement was carried out to verify the incorporation of Co2+ ions into the perovskite structure. The 
magnetic susceptibility was compared with a copper doped PbTiO3, which was synthesized with a similar route [28], and 
shown in Figure 6. A Vibrating Sample Magnetometer (VSM) system was utilized for magnetic measurements at room 
temperature. Even though both materials have low magnetic behavior, when compared with copper doped PbTiO3, cobalt 
doped PbTiO3 exhibits more ferromagnetic behavior. This may arise from the incorporation of cobalt ion into the PbTiO3 
perovskite structure. It should be noted that Co3+ in the Co3O4 phase was reported as diamagnetic due to its splitting in the 
spinel structure while the Co2+ ions have a small contribution to spin-orbit coupling. However, the magnetic susceptibility 
of the cobalt doped PbTiO3 material was found to be higher than Co3O4 susceptibility as reported by Roth [38]. Therefore, 
this behavior was attributed to the incorporation of Co2+ within the targeted structure.
3.4. Raman spectroscopy
Raman spectroscopy was applied to verify the secondary phases detected through all other methods. It was conducted 
with an InVia Qontor model Renishaw instrument at room temperature. Typical PbTiO3 phonon transitions [15,39–46] 
can be seen in Figure 7. After doping with cobalt, most of the transitions vanished or decreased drastically. The broadening 
of Raman lines and larger backgrounds for bulk ceramics were interpreted as an indication of disordered or amorphous 
structures [40].

Moreover, secondary phase-related transitions were found for both PbTi3O7 and Co3O4. For example, the modes 
around 129, 170, 252, 676, 749, and 836 cm−1 were corresponding to the PbTi3O7 phase [47], while the modes around 190, 
474, 530, and 678 cm–1 were attributed to the Co3O4 phase [36,48]. 

Figure 5. X-Band (9.767 GHz) EPR spectra of the cobalt doped 
PbTiO3 measured at room temperature.

Figure 6. Comparison of the magnetic susceptibility 
measurements of cobalt (red) doped PbTiO3 and copper (blue) 
doped PbTiO3 [28] at room temperature.  
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3.6. Dielectric properties
Cobalt doped PbTiO3 pellets (0.6010 cm radius and 0.771 mm thickness) were obtained under 12 MPa pressure at 
room temperature and sintered at 700 °C for two h. Then, the surface of the pellets was coated with gold (Au) via vapor 
deposition (sputtering) technique before electrical measurements. The undoped material was not dense enough to obtain 
a proper pellet. Capacitance (C) and dielectric loss (tan δ) measurements of doped material were taken with an LCR-
meter (INSTEK LCR-816) at a frequency of 1 kHz at room temperature. The capacitance (C) was measured as 1389 pF 
and relative permittivity (dielectric constant) was calculated as 1066. Dielectric loss (tan δ) was estimated as 0.8370. The 
dielectric loss at 1 kHz and dielectric constant were reported as 0.09 and 96.8 for the undoped PbTiO3 capacitors [49]. 
The doping has affected the material’s properties according to the increased values. Hence, the existence of pyrochlore 
phases at surfaces is known to decrease the dielectric constant. High dielectric constant value verifies the pyrochlore-free 
characterization results for cobalt doped material. Besides, the parameters obtained in this study are in good agreement 
with the literature for doped and composite PbTiO3 based ceramics [10,50,51]. Co3O4 phase seems to enhance the dielectric 
constant. However, the existence of Co3O4 phase is thought to be the reason for not obtaining a proper polarization-electric 
field (P-E) loop hysteresis. The distorted banana shape shows a current leakage within the material. A similar P-E behavior 
was also observed by Kumar et al. [11]. It is obvious that the formation of CoO during sol-gel synthesis should be inhibited 
or this phase should be eliminated from the material before calcination so that Co3O4 phase can be avoided to overcome 
this problem.

4. Conclusions
The structural properties of the undoped and cobalt doped PbTiO3 were investigated. Later these properties were used to 
interpret the nonferroelectric behavior of cobalt doped PbTiO3. PbO2, PbTi3O7, Pb2Ti2O6 were detected for the undoped 
PbTiO3, while slight PbOx, Pb2(Tix Co2-xO6) formations were observed for cobalt doped PbTiO3 through XRD, Raman and 
thermal analyses. Additionally, Co3O4 phase was detected through EPR and Raman spectroscopy. The vanishing Curie 
temperature of cobalt doped PbTiO3 points out that a more sophisticated thermal analysis will be necessary to resolve 
the counter exothermic peak. The dielectric constant and dielectric loss for cobalt doped PbTiO3 were estimated in good 
agreement with literature as 1066 and 0.8370, respectively.
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Figure 7. Raman spectra of undoped (black line) and cobalt doped 
(red line) PbTiO3.
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