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1. Introduction
Fluorescence technology, owing to its high sensitivity, efficiency and ease operation, [1,2] has been widely used for sensors, 
[3,4] diagnostics, [5,6] biological imaging [7,8] and light emitting diodes [9,10]. A variety of fluorescent nanomaterials, 
for instance, semiconductor quantum dots (QDs) [11,12], multifunctional nanoshells [13,14], carbon dots [15,16], organic 
fluorescent dyes [17,18], and dye-doped nanoparticles [19,20] have been utilized for these applications. However, the 
applications of these fluorescent materials significantly restricted due to their toxic nature and poor chemical stability. For 
example, the organic fluorescent dyes have high quantum yields and fluorescence intensity. But, they have also limitations 
such as hydrophobicity, concentration-quenching effect and poor photostability in the presence of oxygen [21]. Because 
of this situation, the organic fluorescent dyes have encapsulated into nanoparticles [22,23], micelles [24] or vesicles [25]. 
Although the encapsulation technique efficiently improves the dispersion and emission properties of organic fluorescent 
dyes, leakage of them from host systems is an important problem, due to the organic fluorescent dyes are only physically 
participated [26]. Hence, the development of synthesis route of intrinsically fluorescent nanoparticles with outstanding 
properties such as high fluorescence emission and photostability, good dispersibility in organic and aqueous medium, and 
wide applications is still considered as an ongoing challenge.

Apart from the materials mentioned above, the polyphosphazenes have special properties including highly crosslinked 
structure[27], dispersibility in water and organic media [28], biodegradability [29], and biocompatibility [30]. Therefore, 
highly crosslinked inorganic-organic polyphosphazene nano/micromaterials have been synthesized via polycondensation 
polymerization between hexachlorocyclotriphosphazene (HCCP) [31–33] or octachlorocyclotetraphosphazene (OCCP) 
[34,35] and monomers including two or more amino/hydroxyl/thyol groups [36–38], and their fluorescence applications 
have investigated such as fluorescent sensors to detection of some metal ions (Fe3+, Hg2+) [39, 40], nitroaromatic explosives 
[41], picric acid [42], dopamine [43], drug delivery [44], cell [45,46], and tumour imaging [47]. 

Fluorescein is a type of xanthane dye with yellowish green fluorescence using as generally fluorescence probe for detect 
some metals such as copper, mercury, iron, palladium, cadmium and magnesium in aqueous solutions and living cells, and 
as fluorescent label. However, it has some disadvantages like all solvents cannot be used with it, and also its photobleaching 
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property is not good [48]. Besides, some nanomaterials have been synthesized by encapsulation of fluorescein though its 
leakage from the host [49–51]. 

On the other hands, quercetin is a flavonoid compound and is widely found in vegetables, leaves and fruits. It has 
also anticancer, antiviral and antiinflammatory properties. However, it has a limited clinical use due to its poor water 
solubility and very low bioavailability [52]. Quercetin has been loaded to many kinds of materials such as cubosomes [53], 
nanomicelles [54], silica nanoparticles [55], nanoliposome [56], gelatin films [57], and its anticancer [58, 59], antioxidant  
properties [60, 61] and release profile [62, 63] have been studied. 

In this work, novel highly crosslinked and intrinsically fluorescent polyphosphazene nanospheres were prepared via 
one-pot polycondensation using fluorescein, quercetin and OCCP as monomers and crosslinker, respectively. The leakage 
of fluorescein from the nanospheres prevented due to the monomers bounded to the crosslinked structure covalently by 
nucleophilic substitution. Also, quercetin was loaded to the nanospheres as an anticancer drug besides it is a monomer. 
The nanospheres exhibited well dispersity in aqueous and organic media, high fluorescence emission and photobelaching 
property without further modifications. The synthesized polyphosphazene nanospheres have a great potential for sensors, 
labels, carriers, owing to these outstanding properties. Besides, the prepared fluorescent nanospheres can be used for in 
vivo delivery of quercetin, and cell imaging.

2. Materials and methods
Octachlorocyclotetraphosphazene (OCCP) was used after recrystallized with dry n-heptane. Quercetin, fluorescein, 
triethylamine (TEA), acetone and ethanol were purchased from Sigma-Aldrich and were used without purification.

Scanning electron microscopy (SEM–EDX) analysis was made on a ZEISS GeminiSEM 500 electron microscope at 
an accelerating voltage of 3 kV. Perkin Elmer FTIR Spectrometer Spotlight 400 Imaging System was used for Fourier 
transform infrared spectroscopy (FTIR) measurements of the nanospheres, OCCP, quercetin and fluorescein. X-ray 
diffraction (XRD) pattern was recorded by using a Bruker AXS, D8 Advance instrument equipped with Cu Kα radiation at 
40 kV and 40 mA. The UV-vis measurements were recorded by the PG Instruments T60 Model UV-vis spectrophotometer. 
The fluorescence experiments were performed using the LS-55 Fluorescence Spectrometers. Solid-state 31P and 1H-NMR 
spectra were recorded by JEOL ECZ500R Spectrometer operating at 500 MHz.
2.1. Synthesis of the nanospheres and loading quercetin
OCCP (0.1 g; 0.216 mmol), quercetin (0.065 g; 0.216 mmol) and fluorescein (0.072 g; 0.216 mmol) were dissolved in 50 mL 
acetone, under sonication (53 kHz, 150 W) for 15 min. Then, triethylamine (3 mL, TEA) was added slowly to the reaction. 
After 4 h, the reaction medium was centrifuged at 4500 rpm, for 10 min and yellow product was collected. Finally, the 
obtained polyphosphazene nanospheres were washed with acetone, distilled water and ethanol, respectively. They were 
dried under vacuum at 50 °C. The reaction yield was 60%. 

The amount of loaded quercetin in the nanospheres was calculated by UV-vis measurements using calibration curve 
obtained with standard quercetin solutions (Figure S1). After the reaction finished, the absorbance of the filtrate was 
measured at 372 nm to determine amount of unreacted quercetin. The quantity of the loaded quercetin in the nanospheres 
DL (%) could be calculated from the difference between the unreacted quercetin and the totally feeding quercetin, Equation 
(1). Besides, entrapment efficiency EE(%) of quercetin was calculated by Equation (2).

DL(%)=[(MQ–MunQ)/Mnanospheres]×100 Equation (1)

EE(%)=[(TotalQ−ResidualQ)/TotalQ]×100 Equation (2)

Mnanospheres, MQ and MunQ are the mass of the nanospheres, the total quercetin and the unreacted quercetin, respectively.

3. Results and discussion
3.1. Preparation of nanospheres and loading quercetin
The cyclomatrix type, highly crosslinked, intrinsically fluorescent polyphosphazene nanospheres were synthesized via a 
one-pot polycondensation polymerization technique. Two monomers (quercetin and fluorescein) and a crosslinker (OCCP) 
were used in the reaction. The hydroxyl groups on the fluorescein and quercetin were activated by excess TEA which is an 
acid acceptor to absorb the obtaining HCl. The TEA.HCl salts were formed during the reaction and polymerization were 
accelerated [64]. The nanospheres were prepared without further modification at one step, just 4 h using ultrasonic power. 
The reaction pathway and opened crosslinked structure of the nanospheres can be seen in Figure 1. The nanospheres 
are formed by self-assembly polycondensation polymerization. In this mechanism, oligomeric species are formed when 
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quercetin, fluorescein and OCCP reacted in the presence of TEA at first. Then, the primary nucleus particles generate by 
aggregation of the oligomers. After, the primary nucleus particles aggregate together by hydrogen bonds and the stable 
particles are formed. Finally, the highly crosslinked, inorganic-organic hybrid and solid polyphosphazene nanospheres 
are formed by absorbing oligomers and growing in size of the stable particles [65]. The formation mechanism of the 
nanospheres can be seen in Figure S2.

Quercetin was bonded to OCCP covalently by this synthesis mechanism. The drug loading DL (%) and entrapment 
efficiency EE (%) were calculated as 44.60% and 96.77%, respectively. Also, it was determined that the nanospheres 
contained 446 mg g–1 quercetin. As can be seen in Table, DL (%) and EE (%) of quercetin are higher comparing with many 
reports [66–72].
3.2. Characterization of nanospheres
It was seen that the obtained nanospheres are spherical by the SEM images at different magnifications including 10.00, 
30.00, and 50.00 KX in Figures 2a–2c. The average particle size and particle size distribution of the nanospheres were 
determined as 379 nm and 171–477 nm, respectively by dynamic light scattering (DLS) measurements (Figure 2d).

The EDX results of the nanospheres are shown in Figure 3a. It was determined that the nanospheres have 60.06% C and 
21.39% O atoms which indicate including quercetin and fluorescein in their structures. Phosphorus and nitrogen atoms 
belonging to OCCP were identified as 6.05% and 10.53%, respectively. Because of the steric hindrance, the nanospheres 
have only unreacted 1.98% Cl atoms, demonstrated that the nanospheres are highly crosslinked.

The XRD pattern of the prepared nanospheres is shown in Figure 3b. The characteristic wide diffraction peak between 
20 and 30 θ indicates that the nanospheres were amorphous without any crystallization and they were purified well from 
quercetin, fluorescein, OCCP and TEA.HCl salt [73].

The polyphosphazene nanospheres were characterised by FTIR spectroscopy by comparing with the FTIR spectra of 
quercetin, fluorescein and OCCP in Figure 4. Because of the highly crosslinked polymeric structure of the nanospheres, 
the wide band is observed between 3600 and 2400 cm–1 (a) that is corresponded to overlapped hydroxyl and aromatic C-H 
bonds. The peak at 1766 cm–1 (b) is attributed to the lactone ring (carbonyl group) of the fluorescein [74]. The carbonyl 
peak of quercetin is seen at 1603 cm–1 (c) [75]. The absorption at 1490 cm–1 (d) is corresponded to C-C stretching band. 
The peaks at 1307cm–1 (e) and 1144, 1110 cm–1 (h, i) are belonged to asymmetric stretching and symmetric stretching of 
C-O-C which indicate the presence of fluorescein and quercetin in the nanospheres. The P=N and P-N bonds of the OCCP 
rings are seen at 1240, 1208 cm–1 (f, g) and 952, 895 cm–1 (k, l), respectively. The sharp peak at 998 cm–1 (j) is attributed 
to the P-O-Ar that is showed the bonding between fluorescein, quercetin and OCCP. Besides, the peak at 490 cm–1 (m) 
is corresponded to P-Cl bond which indicates the nanospheres have a few amounts unreacted chloride atoms owing to 
steric hindrance. The all FTIR results demonstrated that quercetin and fluorescein were bonded to the OCCP to form the 
crosslinked structure. 

To explain the substitution on OCCP and crosslinked structure of the synthesized nanospheres, solid-state NMR spectra 
(31P and 1H-NMR) were acquired (Figure 5). In the solid-state 31P-NMR spectrum of the nanospheres, two broad peak 
appeared at –3.35 and 30.00 ppm, indicating the presence of −N=P(−R1)2, −N=P(−R2)2, −N=P(−R1)(−R2) and −N=P(−
Cl)2, −N=P(−R1)(−Cl), −N=P(−R2)(−Cl), respectively (Figure 5a). The spectrum signals are broad due to the overlapping 
of resonance signals of phosphorus atoms that have similar chemical environments. In addition, due to containing five 
hydroxyl groups of quercetin, binding in different combinations between quercetin and OCCP is possible. It is thought 

Table. Comparison of reported results for drug loading and entrapment efficiency of quercetin.

Materials DL (%) EE (%) Reference

Chitosan NPs 11.17 13.01 [66]
Lecithin-chitosan NPs 2.45 48.5 [67]
Micelles 8.2 45.3 [68]
Niosomes 1.65 94.67 [69]
Liposomes - 72.5 [70]
Quinoa starch NPs 26.62 - [71]
Halloysite-based carriers 1.96 - [72]
Polyphosphazene nanospheres 44.60 96.77 This study
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that the crosslinked structure is not fully substituted with fluorescein and quercetin because of the steric hindrance effects 
of the monomers. Therefore, the formed crosslinked structure is quite complex and difficult to completely explain [76]. 
Besides, the solid-state 1H-NMR spectrum can be seen in Figure 5b.  In the solid-state 1H-NMR spectrum, two broad 
signals are seen at 9.79 and 3.58 ppm attributed to Ar-H and Ar-OH, respectively. It is seen that, some hydroxyl groups of 
fluorescein and quercetin could not react due to steric hindrance.

The UV-vis spectra of the nanospheres, quercetin and fluorescein were compared in ethanol (Figure 6a). The 
quercetin and fluorescein showed maximum absorption bands at 256, 374, 457, and 485 nm, respectively. The synthesized 
nanospheres exhibited wide absorption owing to their highly crosslinked structure and showed maximum absorptions at 
228, 283, and 396 nm.

 1 

Figure 1. The reaction pathway of the polyphosphazene nanospheres. 

 1 

Figure 2. The SEM images of the nanospheres at different magnifications a) 10.00 
KX, b) 30.00 KX, c) 50.00 KX, d) the particle size distribution of the nanospheres.
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3.3. Fluorescence properties of nanospheres
The fluorescence emission spectra of the nanospheres, fluorescein and quercetin in ethanol were measured to compare their 
fluorescence behaviour (Figure 6b). The nanospheres and fluorescein exhibited strong emission peaks at 519 and 515 nm 
when excited at 470 nm, respectively. The fluorescence emission peak of the nanospheres is red-shifted probably because 
the connected fluorescein and quercetin changed the energy gap for the electron transition of fluorescein and quercetin in 
the nanospheres [46]. However, quercetin did not show fluorescence emission when excited at 470 nm. Besides, the OCCP 
rings are nonconjugated systems for electron transfer and are photochemically inert. Because, they have alternating P−N 
single and double bonds without any resonance [42, 77]. 

They isolate monomer moities in the nanospheres. Therefore, the electron and energy transfer between the monomer 
moities were effectively blocked [43].

 1 

Figure 3. EDX results and XRD pattern of the nanospheres. 

 1 

Figure 4. The FTIR spectra of the nanospheres, OCCP, 
fluorescein and quercetin.
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 1 
Figure 5. a) Solid-state 31P-NMR spectrum and b) solid-state 1H-NMR spectrum of the nanospheres.

The fluorescence emissions of aqueous dispersions of the nanospheres (5 mg mL–1) were measured at different pH 
between 3 and 10. It is seen that the fluorescence emissions of the nanospheres can change depending on pH in Figure 
7a. The hydroxyl groups of the fluorescein and quercetin, and nitrogen atoms of the OCCP in the nanospheres have lone 
pair electrons. In basic medium, hydroxyl groups and nitrogen atoms can transfer electrons to fluorescein and quercetin 
moities. Therefore, the nanospheres exhibited higher fluorescence emissions at basic medium. However, in acidic medium, 
because of the protonation of hydroxyl groups and nitrogen atoms, the electron transfer is eliminated and the weakened 
fluorescence emission peaks are seen. Consequently, the optimum pH was determined as 8.0 [39]. Also, the photographs of 
the nanospheres in pH 8.0 under daylight and UV 365 nm light can be seen in Figures 7b and 7c as colourless and green, 
respectively. 

 1 

Figure 6. The UV-vis spectra a) and the fluorescence spectra 
b) of the nanosphers, fluorescein and quercetin in ethanol.
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In Figures 8a and 8b, the steady-state excitation and fluorescence emission spectra of the nanospheres in pH 8.0 at room 
temperature are showed, respectively. As can be seen, the maximum emission peak appears at 512 nm with a maximum 
excitation wavelength of 470 nm.

The photobleaching property of the synthesized nanospheres at pH: 8.0 was investigated. The nanospheres exhibited 
outstanding photobleaching stability under UV-vis irradiation at 470 nm during 60 min (Figures 9a and 9b). It was known 
that the photostability of fluorescein and quercetin is not good. However, the nanospheres gain excellent photobleaching 
property when they fastened to the OCCP. The highly crosslinked and organic-inorganic hybrid structure effectively retard 
photobleaching. The nanospheres have the potential to be used in sensor applications due to the photobleaching property. 

Moreover, the photographs of the dispersions of the nanospheres in different solvents (1.0 mg mL–1) such as ethanol, 
acetone, acetonitrile, water, pH: 5.5 and 7.4 buffer solutions are presented in Figure 10. The nanospheres have excellent 
solvent resistance and dispersion ability in both organic and aqueous solvents due to the highly crosslinked and inorganic-
organic hybrid structure.

 1 

Figure 7. a) The fluorescence spectra of the nanospheres at different pH. The 
photographs of the nanospheres in pH 8.0 b) under daylight and c) UV 365 nm 
light.

 1 

Figure 8. Excitation (a) and fluorescence emission (b) spectra of the nanospheres in pH 8.0.



METİNOĞLU ÖRÜM / Turk J Chem

1276

 1 

Figure 9. a) Fluorescence spectra of the nanospheres (30 mg mL–1 
aqueous dispersion at pH: 8.0) with excitation wavelength at 470 
nm at various irradiation times (0–60 min). (b) The fluorescence 
intensity of the nanospheres, versus UV-vis irradiation time (470 
nm).

 1 
Figure 10. The photographs of the nanospheres dispersed 
in different solvents (1.0 mg mL–1), including ethanol, 
acetone, acetonitrile, water, pH: 5.5 and 7.4 buffer solutions. 

4. Conclusion
In summary, the novel inorganic-organic hybrid, crosslinked and intrinsically fluorescent polyphosphazene nanospheres 
with an average diameter is 379 nm were successfully generated by self-assembly polycondensation polymerization. 
The fluorescein as an organic fluorescent dye and the anticancer drug, quercetin were reacted with OCCP to obtain the 
nanospheres. The one-pot synthesis procedure was easy and rapid. The obtained nanospheres were characterised by 
SEM, EDX, DLS, XRD, FTIR, solid-state 31P-NMR, solid-state 1H-NMR and UV-vis techniques. Quercetin was loaded 
to the fluorescent nanospheres covalently. The drug loading, DL (%) and entrapment efficiency, EE (%) of quercetin were 
calculated as 44.6% and 96.77%, respectively. Also, the fluorescence properties of the nanospheres were investigated. The 
optimum pH was defined as 8.0. The formation of a highly crosslinked structure led to enhancement of the outstanding 
optical properties, fluorescent intensity, photobleaching stability and solvent resistance. Hence, the nanospheres have a 
great potential both as a nanocarrier for delivery of quercetin, and as chemical or biological sensors, fluorescent labels.  
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Figure S1.The calibration curve obtained with standard 
quercetin solutions.

Figure S2. The self-assembly and formation mechanism of the 
nanospheres.


