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1. Introduction
Phthalocyanines (Pcs) settled of four isoindole units bonded by azomethine bridges are considerable tetrapyrrolic macro 
heterocyclic compounds with a delocalized 18-π electrons system [1–3]. Pcs attract considerable attention in the scientific 
world due to their ability to complex with many metals in the periodic table [4], to change their chemical and physical 
properties according to the metal atom and substrate used in complex formation, and to have unique electronic, magnetic 
and optical properties [5–7]. Thanks to these properties, phthalocyanines, and their derivatives are used in optical data 
storage and optoelectronics [8–10], aggregates and organic polymers in dye-sensitive solar cells (DSSC) [11,12], light-
emitting diodes [13,14], gas sensors [15], coordination bonding, where catalysis with redox properties is required and in 
the manufacture of liquid crystals [16], they are also used in many different fields such as the production of conductors 
[17], electrochromic imaging [18], photocatalysts [19], and water splitting [20]. In addition, these compounds can be used 
as photosensitizers in photodynamic therapy applications due to easy design, nontoxic geste in dark, and strong absorption 
in the therapeutic window [21,22]. The photophysical and photochemical properties of phthalocyanines are largely 
dependent on the central metal ion. Complexes formed with diamagnetic metal ions such as Ga3+, Si4+, and Zn2+ help to 
obtain high quantum yields and long lifetime compounds in the exciting ternary state, which are necessary for the activity 
of PDT [23]. The low solubility of Pcs in water and other organic solvents and the increased aggregation tendency limit 
their use in PDT applications. [24]. However, the substitution of Pcs rings with –COOH, SO3H, and quartenized amino 
groups can increase their solubility in water and/or organic solvents. In PDT applications, the drug is administered straight 
into the person’s bloodstream which is a hydrophilic system, hence, it becomes more important that the photosensitizer is 
soluble in water [25,26]. 

Pyridine derivatives are important intermediates with excellent biocompatibility, which can create hydrogen bonds 
with biological macromolecules thanks to basic nitrogen atoms [27]. By quaternizing the amino group, macro rings with 
high water solubility are obtained. Schiff bases are a significant class of organic compounds, and the imine groups in 
these compounds are critical to their biological activity [28]. There is limited study on Pcs containing Schiff base for 
different applications [29], especially their photochemical and photophysical features [30]. This study aims to design 
water-soluble phthalocyanine complexes bearing Schiff base and pyridine groups and investigate spectroscopic and photo-
physicochemical properties of the molecules to show their efficiency in PDT applications. The results are compared with 

Abstract
The novel pyridine bearing schiff base substituted metal-free (9), zinc(II) phthalocyanine (10), and its quaternized derivative (11) were 
designed and synthesized. These phthalocyanines were fully characterized by spectroscopic methods (FT-IR, UV–Vis, MALDI-TOF, 
and 1H NMR).  The photo-physicochemical properties of these phthalocyanines were investigated in both DMSO and DMF for 10 
and in both DMSO and aqueous solution for 11. The addition of pyridine bearing Schiff base groups as peripheral ligands showed an 
improvement in the photophysical and photochemical properties. In addition, a spectroscopic investigation of the binding behavior of 
the water-soluble zinc (II) phthalocyanine complex to bovine serum albumin (BSA) was also studied in this work.

Key words: Photochemistry, photophysics, water-soluble phthalocyanine, pyridine group

Received: 28.01.2022              Accepted/Published Online: 20.05.2022              Final Version: 05.10.2022

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://journals.tubitak.gov.tr/chem/

Turkish Journal of Chemistry Turk J Chem
(2022) 46: 1504-1515
© TÜBİTAK
doi:10.55730/1300-0527.3455Research Article

https://orcid.org/0000-0002-4387-1186
https://orcid.org/0000-0001-9282-7651
mailto:aerdog@yildiz.edu.tr


DÜLGER KUTLU and ERDOĞMUŞ / Turk J Chem

1505

other zinc phthalocyanine containing Schiff base complexes from the literature [29–32]. Bovine serum albumin (BSA) 
is one of the major plasma proteins that contributes significantly to physiological functions and exhibits effective drug-
delivery roles [33,34], hence the investigation of the drugs binding with BSA is of interest. The binding behaviour of the 
quaternized zinc phthalocyanine (11) to BSA protein was also investigated in this work.

2. Experimental 
The experimental parameters (materials, equipment, synthesis, characterization data, photo-physicochemical formulas, 
and photo-physicochemical measurement conditions) were given in the supporting information.
2.1. Binding properties of the quaternized zinc(II) phthalocyanine to BSA protein
The formulas and measurement conditions used to determine the BSA protein binding properties of the quaternized zinc 
(II) phthalocyanine were given in the supporting information. 

3. Results and discussion
3.1. Synthesis and characterization
The chemical synthesis pathway to the complexes used as a starting compound from 2 to 7 is described in Scheme 1. The 
metal-free phthalocyanine bearing acetal group (4) was obtained by treatment of the related phthalonitrile derivative (3) in 
the presence of DBU catalyst in n-pentanol at reflux temperature under argon atmosphere. The metal-free phthalocyanine 
bearing aldehyde group (6) was obtained by applying the acetal deprotection method to 4 in the acetic acid/FeCl3 protection 
system according to the published procedure [35]. The acetal and aldehyde substituted zinc (II) phthalocyanines (5 and 
7) were obtained by treatment of the related metal-free acetal and aldehyde phthalocyanines (4 and 6) in the presence of 
anhydrous Zn(CH3COO)2 as a metal source in anhydrous n-pentanol. 

The novel Schiff base substituted metal-free (9), zinc (II) (10), and water-soluble zinc (II) phthalocyanines (11) were 
obtained by treatment of the related phthalocyanine 4 using as a starting material (Scheme 2). The Schiff base-substituted 
H2Pc (9) was obtained by the condensation reaction between complex 6 and 4-aminomethyl pyridine (8). Then, the 
novel compound 10 was obtained by the reaction of compound 9 with anhydrous Zn(OAc)2  in the presence of DBU 
in n-pentanol. New quaternized zinc (II) phthalocyanine 11 was synthesized by the reaction of 10 with dimethyl sulfate 
which was used as a quaternization agent [24].

The structures of the starting compounds 2 and 3 were synthesized according to the published procedure [35] and 
all synthesized compounds were characterized by different spectroscopic methods. The FT-IR spectrum showed the 
formation of 2 due to the characteristic vibrations corresponding to the -C ≡ N vibrational band at 2238 cm–1, the ether 
group (Ar-O-Ar) at 1257 cm–1, as well as tension vibrations at 1691 cm–1 that corresponds to the carbonyl group (-C = O). 
The FT-IR spectrum of 3 showed specific bands at 2956, 2888 cm–1, and 1205, assigned to C-H, and C-O-C respectively. 
After the conversion of phthalonitrile 3 to 4, the monitored -C ≡ N vibration of 3 disappeared, and the -NH band of 
metal-free phthalocyanines appeared at 3288 cm–1 (Figure S1). In the FT-IR spectrum (Figure S2) of acetal-ZnPc (5), 
the disappearance of the -NH vibration peak of compound 4, aliphatic CH vibrations at 2951, 2881 cm–1, and C-O-C 
vibrations at 1107 cm–1 support the formation of compound 5. The disappearance of the C-O-C vibrational band for the 
acetal group in the FT-IR spectrum of compound 4 and the appearance of a new -C=O group vibration band observed 
at 1693 cm–1 proved the formation of phthalocyanine 6 (Figure S4). The disappearance of the –NH vibrational band for 
metal-free phthalocyanine in the FT-IR spectrum of compound 6 proved the formation of phthalocyanine 7 (Figure S4). 
Vibrations belonging to the –N=CH– stretching band were observed at 1642 cm–1 (Figure S5) for 9. Concerning the FT-IR 
spectra of 10 (Figure S6), the disappearance of the -NH vibration verified the formation of the designed compound 10. The 
appearance of a new vibrational band (aliphatic C-H vibrations) (Figure S7) caused by the quaternization was observed at 
2959–2862 cm–1 and verified the formation of the quaternized ZnPc 11.

  The 1H NMR results supplied acceptable data about the proposed configurations of the designed complexes. The 
relative 1H-NMR spectrum of compounds (2, 3, 5, and 7) was consistent with the previously published article [35]. In 
the 1H NMR spectra of 3, the acetal protons were observed at 5.56 ppm and the aromatic protons at 7.50–6.60 ppm. In 
the 1H NMR spectrum of 6, the appearance of the aldehyde protons at 10.05–10.00 ppm was evidence for the formation 
of the described compound. The peak of the azomethine proton, one of the characteristic peaks of these compounds in 
the 1H NMR spectra of Schiff bases, usually resonates in the range of 8–9 ppm. In the 1H NMR spectrum of complex 9, 
the signals of the azomethine group and the pyridine group were detected in the range of 8.73–8.68 ppm and 4.90–4.85 
ppm, respectively and confirming the formation of 9 (Figure S8). The -NH peaks belonging to the H2Pc ring were not 
observed. The presence of signals belonging to the pyridine on the phthalocyanine macrocycle, observed at 9.66 and 8.41 
ppm (Figure S9), was evidence for the formation of the 10, according to the literature [36]. 
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Scheme 1. The synthesis pathways of components used as starting material from 2 to 7. Reaction conditions: i) K2CO3, DMF, rt, 24 h; ii) 
ethylene glycol, PTSA, toluene, 110 °C, 48 h; iii) n-pentanol, DBU, 140 °C, 18 h; iv) THF, acetic acid, FeCl3·6H2O, rt, 24 h; v) Zn(OAc)2, 
n-pentanol, 140 °C, 18 h; vi) Zn(OAc)2, n-pentanol, 140 °C, 18 h. 
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In the 1H NMR spectrum of the quaternized complex 11, the –CH3 protons were observed as a singlet peak at 4.28 ppm 
(Figure S10), identifying the formation of the quaternized product. These results confirmed the structure of compound 
11. In addition to 1H NMR spectrum results, the MALDI-TOF MS data for the substituted metal-free (4, 6, and 9), zinc 
phthalocyanines (5, 7, and 10), and the quaternized derivative 11 are available for the formulations given. The molecular 
ion peaks of synthesized Pcs showed parent ions at m/z: 1170.336 as [M]+ for 3, 1056.094 [M+K+Na]+ for 4, 1236 [M+2H]+ 
for 5, 1057.91 [M+H]+  for 6, 1355.288 [M]+ for 7, 1418.10528 [M]+ for 8, 1939.192 [M+ DIT+K+3H]+ for 9, respectively 
(Figure S11a–S11e). The molecular ion peak values of the fragmentation products of the obtained complexes are also 
indicated in the supplementary file. 
3.2. Photophysical and photochemical studies
3.2.1. Ground state electronic absorption spectra and aggregation studies
The ground state electronic absorption spectra of phthalocyanines and their metal derivatives in the studied solution are 
one of the principal pieces of evidence for their formation. The newly synthesized phthalocyanines for H2Pc (4, 6, and 9) 
and metallophthalocyanines (10 and 11) are detected by the characteristic Q- and B-bands in their electronic spectra. The 
electronic spectral properties of phthalocyanines, determined by the 18π system of the innermost 16-membered ring, 
form the basis of their chemical and electrical properties that metal-free phthalocyanine compounds with D4h symmetry 
corresponding to the π→π* transitions show a single absorption, while nonmetallic phthalocyanines with D2h symmetry 
show two absorptions with equal intensity in the same range [37]. The UV–vis spectrum of H2Pc 4, 6 in DMSO and 9 in 
DMSO and DMSO (plus Triton X-100) and DCM (as an example for 11) was given in Figure S12, its zinc derivative 8 in 
DMSO and DMF, quaternized zinc derivative 11 in DMSO and water (Figure S13), were recorded at room temperature. 
The logarithmic molar absorption coefficient values of the bands are listed in Table 1. In DMSO, the two characteristic 
absorption bands at Q band region of the metal-free phthalocyanines were observed at 669 and 664 (Qx and Qy) nm for 
4, 699 and 666 nm for 6, and 700 and 669 nm for 9, respectively (Figure S13) (Table 1). However, the B-bands for all H2Pc 
compounds were seen between 330 and 355 nm.

DMSO is known as a strong coordination solvent that prevents aggregation. However, aggregation was observed for 4, 
6, and 9 in DMSO. Figure S12 showed that the addition of Triton X-100 to the medium did not affect the solubility though 
it decreased the aggregation tendency of 9 in the solvent. The UV–vis spectra of the metal free phthalocyanine (9) showed 
two characteristic absorption bands at Q band region around 697 nm and 672 nm in DCM solution. It was observed that 
the solubility of 9 increased in the absorption spectra in DCM solution, it was not effective on the decrease of aggregation 
tendency and solubility in DMSO. 

The electronic spectra of ZnPc 10 and quaternized ZnPc 11 showed characteristic absorption bands at around 685–707 
nm and 320–370 nm for the Q band and the B band regions which are characteristic of metallophthalocyanines in DMSO 
(Table 1) [38].

The characteristic single absorption band of zinc phthalocyanines for 5, 7, and newly synthesized 8 was observed at 677 
nm, 676 nm, and 675 nm in DMF, respectively (Figure 1, Table 1). The absorption spectra of the quaternized complex 11 
showed a co-surface aggregation in water, as evidenced by the presence of two bands in the Q band region (Figure 2). These 
bands appeared at 675 nm (weak) due to monomeric species and low energy (redshifted) at 638 nm (Table 1) due to aggregate 
species. The incorporation of 11 in water with quantities of TX-100 causes a sharpening of the absorption band at 680 nm, 
which clearly shows the decrease of aggregation after the interaction of the host-guest by the addition of surfactant [39].

Figure 1. The absorption spectra of ZnPcs 5, 7, and 10 in DMF 
(concentration 6.0 × 10−6 M).

Figure 2. The absorption spectra 11 in water solution before and 
after the addition of TX-100.
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The aggregation behavior of Pc is usually represented as a coplanar relationship of oriented rings from monomer state 
to dimer state and depends on many variables (such as concentration, solvent and nature of substituents, metal ions, and 
temperature) [40]. For the metal phthalocyanines, aggregation is often undesirable as it decreases photoactivity [41].

The aggregation behavior of the compounds was studied in DMSO and DMF for 5, 7, and 10  and in water with quantities 
of TX-100 and  DMSO for 11. After the addition of some drops of TX-100 to the aqueous solution of compound 11, the Q 
band at about 640 nm was observed to shift to 680 nm (Figure 2), which are lower energy for compound 11. However, as 
shown in Figure 2, the addition of TX-100 did not completely inhibit the aggregation of 11 in water. Comparing the UV-vis 
spectra of zinc phthalocyanine 11 in water and DMSO (Figure S13), it was observed that it exhibited lower aggregation in 
DMSO, which has a lower polarity than water, while it exhibited an H-type aggregation in water [42]. 

The Beer-Lambert law was followed for all of these complexes at concentrations ranging from 2 × 10–6 to 12 × 10–6 M. 
The results showed that ZnPcs (5, 7, and 10) (in DMF and DMSO) (as an example for 10, in DMSO and DMF was given 
in Figure 3 and Figure S14) and the quaternized derivative of ZnPc 11 in DMSO (Figure 3) did not display aggregation.
3.2.2. Fluorescence spectra
Fluorescence properties of the synthesized phthalocyanine compounds (5, 7, and 10) were investigated in DMSO and 
DMF, the quaternized metallophthalocyanines 11 in water containing TX-100, and DMSO. The absorption, fluorescence 
emission, and excitation spectra of complexes 10 in DMSO and 11 in water containing TX-100 are shown in Figure 4 as 
an example. Fluorescence emission peaks are also listed in Table 1.

Table 1. Spectral parameters of 4, 5, 6, 7, 9, 10, and 11 in different solvents.

Comp. Solvent Q band λmax, 
(nm) log ε Excitation λ

Ex
, 

(nm)
Emission
λEm,(nm)

Stokes Shift
∆

Stokes
, (nm)

4 DMSO 669,664 - - - -

5 DMSO[33] 679 5.04 681 691 12
DMF 677 5.60 678 689 12

6 DMSO 699,666 - - - -

7 DMSO[33] 678 5.24 679 690 12
DMF 676 5.77 676 687 11

9
DMSO 700,669 - - - -
DCM 697,672 - - - -

10
DMSO 679 5.00 681 693 14
DMF 675 4.77 676 688 13

11
DMSO 679 4.89 681 693 14
water+TX-100 680 4.62 683 692 12

Figure 3. The absorption spectra of complexes 10 (a) and 11 (b) in DMSO at different concentrations.
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The Stokes shifts of ZnPc complexes were observed in the ∼10–14 nm range. The ZnPcs (5, 7, and 10) indicated similar 
fluorescence behavior in DMF and DMSO. The excitation and absorption spectra were similar to each other and were both 
mirror images of the fluorescence spectra for complexes (5, 7, and 10) in DMSO and DMF. Hence, these results suggested 
that the nuclear configurations of the ground are similar to the excited states and are not affected by the excitation of ZnPcs. 
In water media, while complex 11 was not fluorescent property due to high aggregation tendency it showed fluorescence 
property in DMSO. Also, 9 did not give emission in the studied organic solvents due to its aggregation. Since aggregation 
has no emission behavior, the emission properties of compounds with high aggregation tendency in the solutions are very 
low or not observed [43].
3.2.3. Fluorescence quantum yields
Fluorescent molecules have recently gained importance in PDT applications, as they provide the opportunity to monitor 
how they progress in the body and whether they accumulate in cancer cells. For this reason, the fluorescence properties 
of photosensitizers 5, 7, and 10 were investigated. In addition, due to the low solubility of Compounds 4, 6, and 9 in 
DMSO and DMF solvents and their high aggregation tendency, the fluorescence properties of these compounds could 
not be investigated. Table 2 shows the ΦF of ZnPc complexes (5, 7, and 10) in DMSO and DMF and for the quaternized 
ZnPc 11 in both DMSO and water containing TX-100. The fluorescence quantum yield (ΦF) value of the newly studied 
zinc Pc complex 10 was slightly lower than the unsubstituted zinc Pc (ΦF = 0.20) in DMSO and was also lower than 
its quaternized derivative 11 substituted with quaternized imine conjugated pyridine group in aqueous media [44]. The 
quaternized complex 11 had a high ΦF value in water (plus 0.1 mL TX-100) compared to DMSO due to the aggregation in 
the first solvent. The fluorescence quantum yield of the Schiff base substituted complex 10 was not significantly increased 
compared to compounds 5 and 6 according to the literature [31]. 

As shown in Table 2, ΦF of 5, 7, and 11 in DMF are higher than those for standard ZnPc (ΦF = 0.17) [42]. The novel 
compound 10 showed a lower ΦF value in DMF compared to zinc phthalocyanines (5, 6) in the same solution (DMF) (Table 2).
3.2.4. Singlet oxygen quantum yields
Singlet oxygen causing irreversible destruction of cells within the irradiated tumor area is a measure of the effectiveness of 
the PDT procedure. The amount of singlet oxygen produced is the most important indicator of using it as a photosensitizer. 
Singlet oxygen quantum yield (ΦΔ) is a measure of singlet oxygen generation efficiency and the ΦΔ values were obtained 
using Eq. (5) (given Sup. File). Information about the singlet oxygen measurement conditions was given in the supplementary 
file. Singlet oxygen quantum yields were studied in organic solvents (DMSO and DMF) for the studied ZnPcs (5, 7, 10) 
using 1,3-Diphenylisobenzofuran (DPBF) as a quencher and water (plus 0.1 mL TX-100) for the quaternized ZnPc 11 using 
9,10-anthracenediyl-bis(methylene)dimalonic acid (ADMA) as a quencher. The disappearance of DPBF or ADMA was 
monitored using a UV-vis spectrophotometer in Figure 5 (a) using DPBF in DMSO and Figure 5 (b) using ADMA in water 
plus TX-100 for complex (11). The ΦΔ values of the studied Pcs (5, 7, 10, and 11) and standard ZnPc are listed in Table 2. There 
were no changes in the intensities of the Q band absorptions of the ZnPc derivatives during the ΦΔ determination process.

The ΦΔ value of ZnPc Schiff base bearing 10 was found to be 0.78 in DMSO. This value of 10 was higher than the ZnPc 
Schiff base bearing in the literature [30,31] and Std-ZnPc (ΦΔ = 0.67). Comparing DMSO and DMF, the ΦΔ value of ZnPc 
10 in DMSO is higher than in DMF. This situation may have resulted from the amine group’s attempt to quench the singlet 
oxygen in DMF. The novel ZnPc (10) bearing the Schiff base produced higher singlet oxygen generation in DMF with a ΦΔ 
value of 0.64 compared to the Std-ZnPc (ΦΔ = 0.57), ZnPcs 5 (ΦΔ = 0.58) and 6 (ΦΔ = 0.62).  According to these results, the 
presence of Schiff base as a ligand increases the ΦΔ with the increase of intersystem transition [46,47].
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 The fact that ZnPc 10 has a higher ΦΔ value than its quaternized form 11 in DMSO suggests that the quaternization 
of ZnPc complexes causes a decrease in ΦΔ values. In addition, Table 2 shows that low ΦΔ values were observed for 11 in 
water containing TX-100 compared to DMSO. The absorption of both singlet oxygen and water around 1270 nm has a 
great effect on the lifetime of singlet oxygen. This explains why the ΦΔ value in water is lower than the one in deuterated 
water and DMSO [46]. ΦΔ of 11 showed higher than singlet quantum yields compared to previously studied quaternized 
zinc analogs bearing the pyridine group in DMSO [42].
3.2.5. Photodegradation quantum yields
Photodegradation is a photochemical method used to determine the stability of phthalocyanines under the influence of 
applied light which is critical for molecules designed for use as photosensitizers in PDT. It is expected that the concentration 
of the drug molecule used in photocatalytic applications such as PDT will not change during the treatment process, that is, 
it will be stable. The photodegradation quantum yield (Φd) values for the complexes listed in Table 2 are of the order of 10–4. 
Stable ZnPc molecules showing Φd values between 10–6 and 10–3 have been reported [48]. The change in the absorbance 
values observed in the Q-band during the Φd measurement of 10 and 11 in DMSO is presented in Figure 6. The synthesized 
compounds were found to be less stable than standard ZnPc in DMSO (0.26 × 10–4) and DMF (0.23 × 10–4) [45]. Compared 
with the photodegradation quantum yields of compounds 5 and 6, an increase in the photodegradation quantum yields 
in DMSO and DMF was observed with the incorporation of imine bond-conjugated pyridine groups into the structure. 

When the pyridine substituted phthalocyanines were in terms of solvent effect, it was seen that the stability in DMSO 
was higher than that of DMF. Quaternization of pyridine groups caused a decrease in the stability of the ionic zinc Pc 
complex 11. Compound 11 is less stable in water containing TX-100 (Figure S15) than in DMSO. 
3.2.6. Binding properties of quaternized zinc(II) phthalocyanine to BSA protein 
Bovine serum albumin (BSA), is the predominant protein in the blood, it has a very important role in the delivery of 
drugs. One of the studies to determine drug delivery to specific tissues through the bloodstream is the analysis of the BSA 
binding properties of photosensitizers [49,50]. Accordingly, the binding properties of the novel quaternized ZnPc 11 to 
BSA protein were investigated by spectrofluorometric at room temperature in PBS [51] in an aqueous solution. The PBS of 
a fixed concentration of BSA (3.00 × 10–5 M) was titrated with varying concentrations of the 11 solution. BSA was excited 
at 280 nm and the fluorescence emission spectra were reported between 290 and 500 nm for compound 11-BSA solution. 
The fluorescence emission peak of BSA at 348 nm decreased by increasing the phthalocyanine concentrations due to the 
interaction of the phthalocyanine molecules with the tryptophan residues on the BSA protein (Figure 7).

When the fluorescence quenching studies of water-soluble ZnPc and BSA in the literature [51–53] were examined, it 
was understood that compound 11 was more effective in the fluorescence quenching of BSA. The Kq value was obtained 
for 11 and as shown in Table 3, the fact that the value of kq (0.97 × 1013 M–1 s–1) is higher than the recommended value for 
dynamic quenching (1010 M–1 s–1) [53] indicates that the quenching mechanism is static. A bimolecular quenching constant 
(Kq) of 11 was acquired by Equation (6) (in supplementary file) using an approximate fluorescence lifetime of BSA [54]. In 
fluorescence quenching of 11 by BSA in PBS, Stern-Volmer kinetics consistent with diffusion-controlled bimolecular 
reactions were investigated. The fluorescence emission changes in BSA upon binding of complex 11 are observed in Figure 
7. The slope of the graph demonstrated in Figure 7 gave the Stern–Volmer constant (KSV) value indicated in Table 3.

Figure 5. A typical spectrum for the determination of singlet oxygen quantum yield of the complex 11 in DMSO (a) and in water (plus 
0.1 mL TX-100) (b).
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Table 2. Photophysical and photochemical parameters of 5, 7, 10 and 11 in DMSO, DMF, and water (plus TX-100).

Compound Solvent ΦF Φd (10−4) ΦΔ

5
DMSO[33] 0.08 1.0 0.68
DMF 0.23 3.08 0.58

7
DMSO[33] 0.11 0.61 0.78
DMF 0.25 9.11 0.62

10
DMSO 0.12 0.82 0.78
DMF 0.19 11.0 0.64

11
DMSO 0.28 2.01 0.66
water+TX-100 0.14 24.03 0.14

Figure 6. A typical spectrum for the determination of photodegradation quantum yield of complexes 10 (a) and 11 (b) in DMSO.

Figure 7. Fluorescence emission spectral changes 
of BSA [BSA] =  3.00  ×  10−5  M with the addition of 
different concentrations of 11 in PBS [11].: A = 0, B = 
6.6 × 10−7, C = 1.80 × 10−6, 
D = 2.80 × 10−6, E = 4.30 × 10−6, F = 8.64 × 10−6 M.

Table 3. The binding and fluorescence quenching results for the interaction 
of BSA with complex 11 in PBS.

Compound Ksv (105 M–1) kq (1013 M–1 s–1)

11 6.08 6.08
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4. Conclusion
In this study, a novel Schiff base substituted phthalocyanine complex (9 and 10) carrying pyridine moieties and its water-
soluble quaternized derivative (11) were synthesized and characterized. In the synthesis of targeted Pcs, phthalocyanine 
compound with aldehyde functional group, which is suitable for Schiff base reaction by various primary amines, was 
chosen as the starting material. Photophysical and photochemical measurements showed that the Schiff base substituted 
derivative containing pyridine moieties did not affect the singlet oxygen production value in DMSO, but increased in DMF.

When the effect of quaternization on these properties was examined in DMSO and water containing TX-100 for 
PDT applications, it was determined that quaternized phthalocyanine (11) had effective photophysical and photochemical 
properties related to photosensitization, gave more important values in DMSO. 

As a result of the study to define the stability of the Pc molecule under light irradiation, it was determined that the 
newly synthesized phthalocyanine compounds (10 and 11) used in solvent systems (DMSO and DMF for 10, DMSO, and 
water-containing TX-100 for 11) have suitable photodegradation stability.

The interactions between BSA and the quaternized zinc phthalocyanine (11) were also investigated in this study. The 
result of the fluorescence quenching studies of BSA presented that the water-soluble quaternized zinc phthalocyanine 
complex (11) showed strong binding to serum albumin and was easily transferable in blood. Consequently, all these results 
displayed that the novel ZnPc 10 and notably its water-soluble form 11 can be acceptable candidates for PDT of cancer 
treatment.
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Supplementary Information

1. Materials and equipment
Dimethylsulfoxide (DMSO), 1-pentanol, methanol, n-hexane, chloroform (CHCl3), tetrahydrofuran (THF), acetone, 
K2CO3, ethanol, and dimethylformamide (DMF), dichloromethane (DCM), NaHCO3, Na2SO4 were purchased from 
Merck, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,3-diphenylisobenzofuran (DPBF), 9,10-antrasendil-bis (metilen) 
dimalonoik asit (ADMA), 4-hydroxybenzaldehyde, 4-nitrophthalonitrile, ethylene glycol, FeCl3.6H2O zinc acetate, zinc 
phthalocyanine ZnPc), tetrasulfonated zinc phthalocyanine (ZnTSPc), acetic acid were purchased from Sigma Aldrich. 
Column chromatography was performed on silica gel 60 (0.04–0.063 mm).  

FT-IR spectra (KBr pellets) were measured with a Perkin Elmer Spectrum One Spectrometer. Absorption spectra in 
the UV-visible region were obtained with a Shimadzu 2001 UV spectrophotometer. 

Fluorescence spectra were done using a Varian Eclipse spectrofluorometer using 1 cm pathlength cuvettes at room 
temperature.  1H NMR spectra were recorded in D2O (water soluble zinc phthalocyanine) and DMSO-d6 ( metal free and 
zinc phthalocyanine) solutions on a Varian 500 MHz spectrometer. 

Photo-irradiations were done using a General Electric quartz line lamp (300 W). A 600 nm glass cut off filter (Schott) 
and a water filter were used to filter off ultraviolet and infrared radiations respectively. An interference filter (Intor, 700 nm 
with a bandwidth of 40 nm) was additionally placed in the light path before the sample. Light intensities were measured 
with a POWER MAX5100 (Molelectron detector incorporated) power meter. The mass spectra were acquired on a Bruker 
Daltonics (Bremen, Germany) MicroTOF mass spectrometer equipped with an electrospray ionization (ESI) source. The 
instrument was operated in positive ion mode using a m/z range of 50–3000. The capillary voltage of the ion source was set 
at 6000 V and the capillary exit at 190 V. The nebulizer gas flow was 1 bar and drying gas flow 8 mL/min.

2. Photophysical and photochemical studies 
2.1. Fluorescence quantum yields 
Fluorescence quantum yields (ΦF) were determined by the comparative method (Eq. 1) [S1],

	 (1)

where F and FStd are the areas under the fluorescence emission curves of the samples and the standard, respectively. A and 
AStd are the respective absorbances of the samples and standard at the excitation wavelengths, respectively. 2n and 2

Stdn  are 
the refractive indices of solvents used for the sample and standard, respectively. Unsubstituted ZnPc (in DMSO) (ΦF = 
0.20) [S2], (in DMF) (ΦF = 0.17) [S3], was employed as the standard.  Both the samples and standard were excited at the 
same wavelength. The absorbance of the solutions at the excitation wavelength ranged between 0.04 and 0.05. 
2.2. Singlet oxygen quantum yields 
Singlet oxygen quantum yield (Φ∆) determinations were carried out using the experimental set-up described in the literature 
[S5–S8]. Quantum yields of singlet oxygen photogeneration were determined in air (no oxygen bubbled) using the relative 
method (Eq. 2) with ZnPc as reference. 1,3-Diphenylisobenzofuran (DPBF) for organic solvent and 9,10-antracenediyl-
bis(methylene)dimalonoic acid (ADMA) for aqueous solution were used as chemical quencher for singlet oxygen, using 
equation 2 

	
(2)

where  is the singlet oxygen quantum yields for the standard ZnPc (  = 0.67 in DMSO) and =0.56 in DMF) 
[S8], and  ZnTSPc    ( Std

ÄÖ   =  0.30 in aqueous solution in the presence of Triton X) [S9]. R and RStd are the quencher 
photobleaching rates in the presence of the samples and standard, respectively. Iabs and Std

absI  are the rates of light absorption 
by the samples and standard, respectively. Typically, a 3 mL portion of the respective unsubstituted ZnPc, ZnTSPc or 
synthesized phthalocyanines (5, 7, 10, and 11) solutions containing the singlet oxygen quencher was irradiated in the Q 
band region with the photo irradiation set-up described in the references [S5,8]. To avoid chain reactions induced by the 
quenchers (DPBF or ADMA) in the presence of singlet oxygen, the concentration of the quenchers (DPBF or ADMA) was 
lowered to ~3 × 10−5 M [S10]. Solutions of the sensitizer (C = 1 × 10−5 M) containing the quencher (DPBF or ADMA) were 
prepared in the dark and irradiated in the Q band region. DPBF degradation at 417 nm and ADMA degradation at 380 nm 
were monitored. The light intensity of 1.74 × 1015 photons s–1 cm–2 was used for Φ∆ determinations. 
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2.3. Photodegradation quantum yields 
Photodegradation quantum yield (Φd) determinations were carried out using the experimental set-up described in the 

literature [S6–S7]. Photodegradation quantum yields were determined using formula 3,

	 (3)

where “C0”and “Ct” are the sample concentrations before and after irradiation respectively, “V” is the reaction volume, “NA”, 
the Avogadro’s constant, “S”, the irradiated cell area and “t”, the irradiation time, “Iabs” is the overlap integral of the radiation 
source light intensity and the absorption of the samples. A light intensity of 5.35 × 1015 photons s–1 cm–2 was employed for 
Φd determinations.

3. Binding properties of quaternized zinc(II) phthalocyanine to BSA protein
The binding of quaternized zinc (II) phthalocyanine complex (11) to BSA was studied by spectrofluorometry at room 
temperature in PBS solution. The PBS of a fixed concentration of BSA (3.00 × 10–5 M) was titrated with varying concentrations 
of the 11 solution. BSA was excited at 280 nm and the fluorescence emission spectra were recorded between 290 and 450 
nm. The steady diminution of the fluorescence emission of BSA with the increase in the 11 concentrations was recorded. 
The fluorescence intensity for BSA decreased by addition of the quaternized zinc (II) phthalocyanine (11) solutions and 
these reductions were related to quaternized phthalocyanine concentrations by the Stern-Volmer relationship (Equation 
4): 

BSA
BSA0
SVBSA

F  = 1 + K [Pc]
F

	 (4)

and BSA
SVk  is given by Equation 5: 

	 (5)
where BSA

0F and FBSA are the fluorescence intensities of BSA in the absence and presence of quaternized phthalocyanine 
(11); BSA

SVK , the Stern-Volmer quenching constant; kq, the bimolecular quenching constant; and τF(BSA), the fluorescence 
lifetime of BSA (τF(BSA) = 10 ns) [S14-S16]. The BSA

SVK  values were obtained from the plots of BSABSA
0 F/F  versus [Pc] and 

the kq values can be determined from Equation 5.

4. Synthesis 
4.1. 4-(4-formylphenoxy) phthalonitrile (2) and 4-[4-(1,3-Dioxolan-2-yl)phenoxy]phthalonitrile (3)
The preparation of 2 was carried out by reaction of 4-nitrophthalonitrile and 4-hydroxybenzaldehyde (1) according to the 
published literature [S13]. 4-[4-(1,3-Dioxolan-2-yl)phenoxy]phthalonitrile (3) was obtained for protecting the aldehyde 
group with ethylene glycol according to the published literature [S13]. The obtained spectroscopic data are in accordance 
with the literature. 
4.2. Tetrakis[4-(1,3-dioxolan-2-yl)phenoxy]phthalocyanine (4)
4-(4-(1,3-dioxolan-2-yl)phenoxy)phthalonitrile (3) (800 mg, 3.42 mmol) was mixed with a catalytic amount of DBU (a 
couple drops ) in 2.5 mL of n-pentanol. After the reaction mixture was degassed in the argon system at room temperature, 
the reaction temperature was increased to 140 °C. It was stirred under Ar atmosphere for 18 h at this temperature. The 
crude product was precipitated by adding methanol/water (1/1) mixture to the mixture cooled to room temperature. The 
precipitate formed (3) was collected by centrifugation, washed with methanol several times to dissolve any unwanted 
organic impurity and dried in vacuum. Yield: 2.08 g (98%). UV-vis (DMSO): λmax nm (log ε) 700 (5.04), 669 (4.32), 350 
(4.86). FT-IR νmax /cm–1 (KBr pellet): 3288 (-NH), 3063 (Ar., C-H), 2951, 2881(Aliph., C-H), 1602–1505 (Ar., C=C), 1470–
1391 (Aliph., C-C), 1221 (Asym., Ar-O-Ar), 1107 (C-O-C), 1009 (Sym, Ar-O-Ar), 925,740. 1H NMR (DMSO-d6): δ = 
7.33–6.64 (b, 47H, ArH), 4.88 (d, 4H), 3.90 (d, 16H), MS (MALDI-MS) m/z:  Calc: 1170.121; Found: 1170.336 [M]+. 
4.3. Tetrakis[4-(1,3-dioxolan-2-yl)phenoxy]phthalocyaninato zinc(II) (5)
Acetal substituted phthalocyanine (800 mg, 0.648 mmol) (4) was dissolved in 2 mL dry n-pentanol and anhydrous Zn 
(OAc)2 (194 mg, 0.648 mmol) was added to the reaction media. The mixture was heated at 140 °C and stirred 18 h at this 
temperature. After the reaction mixture was left to cool into the room temperature, n-hexane was added (30 mL) and the 
precipitate was filtered. The obtained spectroscopic data are in accordance with the literature [S13].

https://www.sciencedirect.com/topics/chemistry/fluorescence-spectroscopy
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4.4. Tetrakis[4-(4-formylphenoxy)]phthalocyanine (6)
Acetal substituted phthalocyanine (800 mg, 0.648 mmol) (4) was dissolved in 5 mL of THF and stirred in acetic acid/
FeCl3.6H2O (catalytic amount) for 1 day at room temperature according to the published literature [S13]. The mixture was 
precipitated by adding water (15 mL). The precipitate (6) formed was separated by centrifugation, washed with hot water, 
methanol and dried in a vacuum oven. Yield: 475 mg (70%). UV-vis (DMSO): λmax nm (log ε) 700 (5.04), 669 (4.32), 350 
(4.86). FT-IR νmax /cm–1 (KBr pellet): 3287 (-NH), 3063–3035 (Ar., C-H), 2828–2735 (O=C-H), 1693 (-C=O), 1592–1500 
(Ar., C=C), 1470–1394 (Aliph, C-C), 1227 (Asym, Ar-O-Ar), 1153 (Sym, Ar-O-Ar). 1H NMR (CDCl3): δ = 10.05–10.00 (d, 
4H, O=C-H). MS (MALDI-MS) m/z: Calc: 994.108; Found: 1056.094 [M+Na+K]+.

4.5. Tetrakis[4-(4-formylphenoxy)phthalocyaninato zinc(II) (7)
Aldehyde substituted phthalocyanine (800 mg, 0.758 mmol) (6) was dissolved in 2 mL dry n-pentanol and anhydrous 
Zn(OAc)2 (247 mg, 0.758 mmol) was added to the reaction media. The mixture was heated at 140 °C and stirred 18 h at 
this temperature. After the reaction mixture was left to cool into the room temperature, n-hexane was added (30 mL) and 
the precipitate was filtered. The obtained spectroscopic data are in accordance with the literature [S13].

4.6. Tetrakis [4-(4-methoxybenzylidene)-1-(pyridin-4-yl) methanimin] phthalocyanine (9)
Tetrakis [(4-formylphenoxy)]-phthalocyanine (4) (200 mg, 2.02 mmol) was dissolved with 15 mL dichloromethane and 
4-(aminomethyl)pyridine (8) (130 mg, 10 mmol) was added dropwise. After the reaction mixture was degassed in the 
argon system at room temperature, the reaction temperature was increased to 35 °C. It was stirred under Ar atmosphere for 
20 h at this temperature. The solvent of the mixture, which was cooled to room temperature, was removed by using a 1/10 
rotary system, methanol was added to the reaction vessel and the crude product was precipitated. The precipitate formed 
(9) was centrifuged, washed with methanol, and dried in a vacuum oven. Yield: 225 mg (88%). UV-vis (DMSO): λmax nm 
(log ε) 700 (5.04), 669 (4.32), 350 (4.86). FT-IR νmax /cm–1 (KBr pellet): 3287 (-NH), 3062–3029 (Ar., C-H), 1642 (C=N), 
1596 (Ar., C=C), 1501–1396 (C-C), 1223 (Asym., Ar-O-Ar), 1090 (C-N), 1046 (Sym., Ar-O-Ar). 1H NMR (DMSO-d6): δ 
= 8.72–8.71 (m, 4H, CH2), 8.54–8.37 (d, 16H, ArH), 7.76–7.71 (d, 8H, ArH), 7.55 (s, 3H, ArH), 7.36–7.34 (d, 17H, ArH). 
MS (MALDI-MS) m/z:  Calc: 1355.146; Found: 1355.288 [M]+.

4.7. Tetrakis [4-(4-methoxybenzylidene)-1-(pyridin-4-yl) methanimin] phthalocyaninato zinc(II)  (10) 
Tetrakis [4-(4-methoxybenzylidene)-1-(pyridin-4-yl) methanimin] phthalocyanine (9) (180 mg, 0.12 mmol) and Zn(OAc)2 
(36 mg, 0.12 mmol) were mixed in 2 mL of n-pentanol. After the reaction mixture was degassed in the argon system at 
room temperature, the reaction temperature was increased to 140 °C. The crude product was precipitated by stirring 
under Ar atmosphere for 18 h at this temperature. Then, the crude product which was cooled to room temperature was 
precipitated by adding hexane. The precipitate formed (10) was centrifuged, and washed successively with cold methanol 
and ethanol to remove unreacted starting materials and dried in a vacuum oven. Yield: 187 mg (78%). UV-vis (DMSO): 
λmax nm (log ε) 679 (5.00), 613 (4.24), 355 (4.48). FT-IR νmax/cm–1 (KBr pellet): 3030 (Ar, C-H), 1643 (C=N), 1597 (Ar, 
C=C), 1484–1391 (C-C), 1255 (Asym, Ar-O-Ar), 1087 (C-N), 1043 (Sym, Ar-O-Ar). 1H NMR (DMSO-d6): δ = 9.04–8.95 
(s, 4H, HC=N), 8.77–8.46 (m, 13H, ArH), 8,22–7.80 (m, 18H, ArH), 7.60–7.24 (m, 13H, ArH) and 4.86–4.83 (d, 8H, CH2). 
MS (MALDI-MS) m/z: Calc: 1418.396; Found: 1418.105 [M]+. 

4.8. Tetrakis [4-(4-methoxy benzylidene)-1-(pyridin-4-yl) methanimin] phthalocyaninato zinc(II) sulfate (11) 
This complex was prepared according to the method previously reported by Smith et al. [S14]. Compound 9 (155 mg, 
0.109 mmol) was heated to 120 °C in freshly distilled 2 mL DMF and excess dimethylsulphate (0.1 mL) was added drop-
wise using a micro syringe. The mixture was stirred at 120 °C for 10 h. After this time, the mixture was cooled to room 
temperature and the product was precipitated with hot acetone and collected by filtration. The green solid product was 
washed successively with acetone, ethanol, ethyl acetate, DCM, THF, chloroform, n-hexane and diethylether. The resulting 
hygroscopic product was dried over phosphorous pentoxide Yield: 118 mg (65%). UV-vis (DMSO): λmax nm (log ε) 679 
(4.89),615 (4.52), 351 (4.86). UV-vis (Water + Triton X-100): λmax nm (log ε) 680 (4.03), 612 (4.38), 364 (4.26). FT-IR νmax/
cm–1 (KBr pellet): 3038 (Ar., C-H), 2959–2862 (Aliph., C-H), 1601–1469 (C=C), 1392–1334 (C-O), 1165 (Asy., S=O), 1042 
(Sym., S=O), 1013, 768. 1H NMR (D2O): δ = 8.68 (s, 2H), 8.10 (s, 2H), 7.77 (d, 6H), 7.42 (d, 12H), 7.31 (d, 14H), 7.10 (d, 
12H), 4.28 (s, 12H, CH3), 3.54 (s, 12H, CH2). MS (MALDI-MS) m/z: Calc. 1671.015; Found: 1939,192 [M+DIT+K+3H]+ . 
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Figure S1. FT-IR spectrum of compound 4. Figure S2. FT-IR spectrum of compound 5.

Figure S3. FT-IR spectrum of compound 6. Figure S4. FT-IR spectrum of compound 7.

Figure S5. FT-IR spectrum of compound 9. Figure S6. FT-IR spectrum of compound 10. 
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Figure S7. FT-IR spectrum of compound 11.

Figure S9. 1H NMR spectrum of compound 10.

Figure S8. 1H NMR spectrum of compound 9.
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Figure S10. 1H NMR spectrum of compound 11.

Figure S11 (a). MALDI TOF MS spectrum of compound 4. (The molecular 
ion peak value of the fragmentation product (M-C2H6O]+ :1125.785)

Figure S11 (b). MALDI TOF MS spectrum of compound 6. (The molecular 
ion peak value of the fragmentation product (M-2(CHO)+10H]+: 949.736).
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Figure S11 (c). MALDI TOF MS spectrum of compound 9 (The 
molecular ion peak value of the fragmentation product [M-(C7H9N)]+: 
1262.349 and ([M-2(C7H9N)]+:1173.104).

Figure S11 (d). MALDI TOF MS spectrum of compound 10 
(The molecular ion peak value of the fragmentation product 
[M-(C7H9N)+2H)]+: 1323.926 and ([M-2(C7H9N)]+:1233.178).

Figure S11 (e). MALDI TOF MS spectrum of compound 11 
(The molecular ion peak value of the fragmentation product 
[M-(C25H3S2O8N3)+Na+H]+: 1173.005.
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Figure S12. UV-vis absorption spectra of metal-free 
phthalocyanines 4, 6, and 9 in different solvents (amount of 
addition of Triton X-100: 0.1 mL in DMSO). 

Figure S13. UV-vis absorption spectra of complex 11 in water 
([11]=1.0 × 10–6 M)
 and DMSO ([11] = 6.0 × 10−6 M).

Figure S14. Absorption spectra of complex 10 at different 
concentrations in DMF.

Figure S15. A typical spectrum for the determination of 
photodegredation. This figure was for complex 11in 0.1 mL TX-
100 added water (initial [11]= 24 × 10–6 M).
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