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1. Introduction
Functional polymeric microbeads have found many practical applications in chemical separation and purification, 
wastewater treatment, bioengineering, materials science, drug delivery systems, and cancer therapy [1-6]. The development 
of polymeric microbeads as heterogeneous organocatalysts has attracted increasing attention due to the advantages such as 
easy product isolation and catalyst reusability. Polymeric microbeads have been successfully applied to a variety of organic 
reactions such as Suzuki Miyaura reaction [7], asymmetric Michael, aldol reactions [8], esterification [9], substitution 
[10] and A3 coupling reactions, which is a three-component coupling of aldehyde, amine and alkyne for the synthesis 
of propargylamines [11]. For example, cinchonidinium salts of core-corona polymer microspheres were applied several 
times in asymmetric alkylations without loss of the enantioselectivity [12]. Shi and coworkers reported the synthesis and 
characterization of a polymer microsphere catalyst [13]. Ionic liquid immobilized catalyst was applied in the Knoevenagel 
condensation of ethyl cyanoacetate and benzaldehyde. The benzaldehyde conversion was maintained at 92% after six 
times reuse. Polymeric microbeads have a great application potential in many other organic reactions as catalysts because 
of their mechanical strength and high surface area. The additional advantage of polymeric microbeads is the ability to 
functionalize their surface area with hydrophobic and hydrophilic groups, which play an active role in catalytic transition 
states.

Osman et al. used N-methacryloyl-L-(+)-tryptophan methyl ester (MATrp) monomer to prepare polymeric 
microbeads for removal [14, 15] and solid phase extraction [16-18] of some aromatic organic contaminants from aqueous 
solutions. Poly(ethylene glycol dimethacrylate N-methacryloyl-L-(+)-tryptophan methyl ester) [poly(EGDMA-MATrp)] 
microbeads were effectively used to remove diethyl phthalate from aqueous solution [19]. The results of these studies 
showed that the microbeads have a high affinity for aromatic compounds owing to hydrophobic interactions such as 
π-π stacking between MATrp residues of cross-linked polymer and target analytes. The importance of π-π interactions 
in transition states (TS) of the catalytic reactions have been emphasized in some recent studies [20-24]. As noncovalent 
interactions have been the main forces effective on catalytic transition states, we decided to investigate the efficiency 
of [poly(EGDMA-MATrp)] polymeric microbeads in an organic reaction containing hydrophobic substrates such as 
chromenes and reveal a mechanistic explanation including π-π interactions. 

Abstract: The cross-linked microbeads with average diameter of 106–300 μm, [poly(EGDMA-MATrp)], were obtained by 
copolymerization reaction of N-methacryloyl-L-(+)-tryptophan methyl ester (MATrp) with ethylene glycol dimethacrylate (EGDMA) 
and successfully applied as a heterogeneous catalyst in conjugate addition reaction of nitromethane to substituted 2-iminochromenes 
in aqueous media. A variety of 2-amino-4-(nitromethyl)-4H-chromene-3-carbonitriles has been synthesized in good yields. Polymeric 
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Chromenes are an important class of heterocyclic compounds, widely distributed in natural products. They possess 
a wide range of biological activities such as anticancer [25], antimicrobial and antifungal [26], antioxidant [27] and anti-
HIV [28]. A number of methods using homogeneous [29-31] and heterogeneous catalysts [32-36] have been developed to 
synthesize functionalized 4H-chromenes owing to their importance. We have reported an enantioselective method using 
a Schiff base-Cu(II) catalyst [37] and a Lewis base catalyzed method for the synthesis of rasemic 2-amino-4-(nitromethyl)-
4H-chromene-3-carbonitriles from 2-iminochromenes [38]. However, this is the first report on the use of a heterogeneous 
catalyst in nitromethane additions to 2-iminochromenes. We also present the crucial role of π-π interactions in transition 
state of the reaction depending on both computational and experimental results.

2. Materials and Methods
All solvents/reagents were obtained commercially from Fluka and Sigma Aldrich and used as purchased. Silica gel F254 
(Merck 5554) precoated plates were used for monitoring. A 400 MHz Bruker NMR spectrometer and a Thermo-Nicolet 
6700 FT-IR spectrometer was used for NMR and FT-IR analysis, respectively. Polymeric microbeads were analyzed with 
scanning electron microscopy (Carl Zeiss/Gemini 300). Melting points (mp) were recorded with an electro thermal digital 
mp apparatus. 2-iminochromenes (1a-m) were synthesized by a pyrrolidine catalyzed method and known compounds 
were characterized according to reported mp and 1H NMR data [37-40]. The 6-I substituted 2-iminochromene (1l) was 
not stable at room temperature so it was used as crude in the addition reaction without isolation but the addition product 
(2l) was isolated and fully characterized.
2.1. Synthesis of [Poly(EGDMA-MATrp)] microbeads
The suspension polymerization technique was used to prepare [Poly(EGDMA-MATrp)] microbeads as described in 
our previous report [14]. EGDMA and MATrp were used as a cross-linker and a monomer, respectively. Polymerization 
mixture was prepared by dispersing the organic phase including EGDMA (5 mL), MATrp (4 mL), and toluene (10 mL) in 
aqueous phase prepared via dissolution of 200 mg poly(vinyl alcohol) (PVA) in deionized water (50 mL). After addition 
of 2,2’-azobisisobutyronitrile (AIBN) (100 mg), the mixture was polymerized at 85 °C with a 600 rpm stirring rate for 8 
h. The unreacted residues were washed with excess amount of water and ethanol. The resulted microbeads were dried 
in a vacuum oven at 50 °C. A Carl Zeiss/Gemini 300 scanning electron microscope was used to monitor the physical 
morphology of the microbeads.
2.2. Synthesis of 2-iminochromenes (1a-m)
Malononitrile (5 mmol) and the corresponding aromatic aldehyde (5 mmol) were dissolved in a mixture of MeOH:H2O 
(3:1) (4 mL) and a catalytic amount of pyrrolidine (0.75 mmol) was added to the mixture. The product precipitated and 
filtered, washed with 3:1 MeOH:H2O and dried in a vacuum oven.

2-Imino-8-nitro-2H-chromene-3-carbonitrile (1i, C10H5N3O3)
Yield 56%; mp 204 °C (decomp.); Rf = 0.48 (ethyl acetate/hexane, 1:1); 1H NMR (400 MHz, DMSO-d6): δ (ppm) 9.37 

(bs, 1H, NH), 8.47 (s, 1H, H4), 8.20–8.17 (dd, J1 = 1.2, J2 = 8.0 Hz, 1H, ArH), 7.90–7.88 (dd, J1 = 1.6, J2 = 8.0 Hz, 1H, ArH), 
7.42 (t, J = 8.0 Hz, 1H, ArH). 13C NMR (DMSO-d6, 100 MHz): δ (ppm) 161.2, 146.7, 146.4, 144.9, 141.6, 134.9, 124.6, 
124.4, 120.5, 105.9. FT-IR (neat):  = 3270, 2238, 1662, 1519, 1231 cm–1. Anal. Calcd. for: C10H5N3O3 (%):C, 55.82; H, 2.34; 
N, 19.53; Found: C, 56.73 ; H, 2.24 ; N, 19.78.

8-Bromo-2-imino-2H-chromene-3-carbonitrile (1j, C10H5BrN2O )
Yield 50%; mp 170 °C (decomp.); Rf = 0.53 (ethyl acetate/hexane, 1:2); 1H NMR (400 MHz, DMSO-d6): δ (ppm) 9.14 

(bs, 1H, NH), 8.38 (s, 1H, H4), 7.87–7.85 (dd, J1 = 1.6, J2 = 8.0 Hz, 1H, ArH), 7.60–7.58 (dd, J1 = 1.6, J2 = 7.6 Hz, 1H, ArH), 
7.20 (t, J = 7.6 Hz, 1H, ArH). 13C NMR (DMSO-d6, 100 MHz): δ (ppm) 150.4, 150.3, 146.5, 137.0, 129.1, 125.4, 119.1, 
114.9, 108.3, 105.2. FT-IR (neat):  = 3292, 3231, 2227, 1663, 1593, 1199 cm–1. Anal. Calcd. for: C10H5BrN2O (%):C, 48.22; 
H, 2.02; Br, 32.08; N, 11.25, Found: C, 49.56; H, 2.06; N, 10.97.
2.3. Synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3-carbonitriles (2a-m)
[Poly(EGDMA-MATrp)] microbeads (5mg) and the corresponding 2-iminochromene (1a-m) (0.25 mmol) were added to 
the solution of nitromethane (0.75 mmol) in 5:1 methanol:H2O (1 mL). The mixture was stirred at room temperature until 
the corresponding 2-iminochromene was consumed. Methanol was removed by rotary evaporator and the crude product 
was extracted to ethyl acetate. The organic phase was dried over Na2SO4, filtered, and concentrated under reduced pressure 
to afford the crude product. Column chromatography was used to purify the crude product. The previously reported 
4H-chromene-3-carbonitriles were characterized using 1H NMR literature data and melting points [37-43].

2-Amino-8-hydroxy-4-(nitromethyl)-4H-chromene-3-carbonitrile (2e, C11H9N3O4)
Yield 51%; mp 173 °C; Rf = 0.43 (ethyl acetate/hexane, 1:1); 1H NMR (400 MHz, DMSO-d6): δ(ppm) 9.81 (bs, 1H, OH), 

7.06 (bs, 2H, NH2), 6.94 (t, J = 7.6 Hz, 1H, ArH), 6.84–6.81 (dd, J1 = 1.2, J2 = 8.0 Hz, 1H, ArH), 6.70–6.68 (dd, J1 = 0.8, J2 = 
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7.6 Hz, 1H, ArH), 4.74–4.70 (dd, J1 = 5.6, J2 = 12.4 Hz, 1H, CH2NO2), 4.63–4.59 (dd, J1 = 5.6, J2 = 12.0 Hz, 1H, CH2NO2), 
4.24 (t, J = 5.6 Hz, 1H, H4). 13C NMR (100 MHz, DMSO-d6): δ(ppm) 162.3, 145.2, 138.1, 124.5, 120.6, 119.9, 117.6, 115.5, 
80.8, 50.0, 35.0. FT-IR (neat):  = 3473, 3361, 3206, 2189, 1549 cm–1. Anal. Calcd. for: C11H9N3O4 (%):C, 53.44; H, 3.67; 
N, 17.00; Found: C, 53.61; H, 3.68; N, 15.91.

2-amino-8-nitro-4-(nitromethyl)-4H-chromene-3-carbonitrile (2i, C11H8N4O5)
Yield 31%; mp 152–154 °C; Rf = 0.65 (ethyl acetate/hexane, 1:1); 1H NMR (400 MHz, DMSO-d6): δ(ppm) 7.94–7.92 

(dd, J1 = 1.6, J2 = 8.4 Hz, 1H, ArH), 7.71–7.69 (dd, J1 = 1.2, J2 = 8.0 Hz, 1H, ArH), 7.41 (bs, 2H, NH2), 7.38 (d, J = 8.0 Hz, 
1H, ArH), 4.92–4.87 (dd, J1 = 4.8, J2 = 12.8 Hz, 1H, CH2NO2), 4.77–4.72 (dd, J1 = 4.8, J2 = 12.8 Hz, 1H, CH2NO2), 4.45 (t, J = 
4.8 Hz, 1H, H4). 13C NMR (400 MHz, DMSO-d6): δ(ppm) 161.1, 141.8, 138.2, 133.2, 124.6, 124.4, 122.5, 118.9, 80.3, 50.3, 
34.3. FT-IR (neat):  = 3421, 3327, 2190, 1645, 1519 cm–1. Anal. Calcd. for: C11H8N4O5 (%):C, 47.83; H, 2.92; N, 20.28, 
Found: C, 47.18; H, 2.81; N, 18.55. 

2-Amino-6-iodo-4-(nitromethyl)-4H-chromene-3-carbonitrile (2l, C11H8IN3O3)
Yield 38%; mp 196 °C; Rf = 0.35 (ethyl acetate/hexane, 1:2); 1H NMR (400 MHz, CDCl3): δ(ppm) 7.62–7.60 (dd, J1 = 

2.0, J2 = 8.4 Hz, 1H, ArH), 7.49 (d, J = 2.0 Hz, 1H, ArH), 6.80 (d, J = 8.8 Hz, 1H, ArH), 4.83 (bs, 2H, NH2), 4.62–4.58 (dd, 
J1 = 4.8, J2 = 12.4 Hz, 1H, CH2NO2), 4.55–4.50 (dd, J1 = 6.4, J2 = 12.4 Hz, 1H, CH2NO2), 4.30–4.27 (dd, J1 = 4.8, J2 = 6.4 Hz, 
1H, H4). 13C NMR (100 MHz, CDCl3): δ(ppm) 161.8, 149.5, 138.5, 136.6, 121.4, 118.9, 118.7, 88.4, 79.9, 53.2, 34.4. FT-IR 
(neat):  = 3442, 3325, 3209, 2918, 2202, 1649, 1531 cm–1. Anal. Calcd. for: C11H8IN3O3 (%):C, 37.00; H, 2.26; N, 11.77, 
Found: C, 37.16; H, 1.98; N, 11.21.
2.4. DFT calculations
Density functional theory (DFT) with the wB97X-D method as applied in the GAUSSIAN 09 program package was 
conducted for the calculations. Dispersion correction for energy barrier and reaction heat were estimated with the 
wB97X-D method reported by Grimme [44], as DFT poorly describes dispersion effects. All calculations and harmonic 
frequencies to find transition states (one imaginary force constant only) or local minima (all positive force constants) of 
the structures were calculated with the 6-311++G(d,p) basis set in the gas phase.

3. Results and discussion 
The [poly(EGDMA-MATrp)] microbeads were synthesized according to the literature (Figure 1) [14].

The cross-linked microbeads were obtained in a spherical form with the size range of 106–300 μm in diameter. SEM 
images of the microbeads are shown in Figure 2.

The [poly(EGDMA-MATrp)] microbeads were used as the heterogeneous catalyst in the model reaction between 
nitromethane and 1a (Table 1).

The best results were obtained in aqueous media (entry 4, 5) and the reaction yields were very poor in polar aprotic 
solvents (entry 6-8) and toluene. The catalyst loading was examined in water and 90% yield was obtained with 5 mg use of 
[poly(EGDMA-MATrp)] microbeads (entry 4). Then we investigated the substrate scope of the reaction. As the yields of 
the first experiments performed with substituted 2-iminochromenes in water were moderate, we carried out the reactions 
in a mixture of methanol:water (5:1) (Table 2).

A series of 2-amino-4-(nitromethyl)-4H-chromene-3-carbonitrile (2a-m) was synthesized with moderate to good 
yields (31-95 %) with both, electron-donating and electron-withdrawing substituents on the aromatic ring. In general, 
reactions of the substrates with electron-donating substituents were high yielding in short reaction times (2c, 2d, 2g, 2h) 
while the electron-withdrawing substrates dramatically decreased the reaction rate (2i). These results were attributed to 
the significant role of π-π interactions in aqueous media between substrates and catalyst as the electron withdrawing 
substituents weaken π stacking interactions by decreasing the pi electron density of the aromatic ring. Regardless of inductive 
effects in substituted aromatic rings of 2-iminochromenes, the position of the substituents also affected the reaction yields. 
In general, higher yields were obtained with 6-substituted (2b-d, 2f, 2k) and 7-substituted (2h) 2-iminochromenes while 
lower yields were obtained with 8-substituted 2-iminochromenes (2e, 2g, 2i, 2j). 
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Figure 1. Preparation of poly(EGDMA-MATrp) microbeads.
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Finally, we tested the reusability of the catalyst in the model reaction between nitromethane and 1a (Figure 3). The 
catalyst was centrifuged and separated from reaction medium, washed several times with methanol and air dried after 
each use.

A distinct decrease was not observed in the activity of the catalyst. The final yield of 2a decreased only from 87% to 
81% at the end of fifth reaction run.

We also performed DFT calculations and suggested a transition state (TS) including all noncovalent interactions. The 
related potential energy surfaces (PES’s) and the optimized structures of the intermediates (IM) and TS along the reaction 
pathway are shown in Figure 4, while the relative energies of the reactants, IM, TS, and product are given in Table 3.

When the optimized molecular structures are examined, it is observed that the catalyst coordinates to both 
2-iminochromene and nitromethane molecules through hydrogen bonding. The formation of intermediate 4-IM via 

Table 1. [Poly(EGDMA-MATrp)] catalyzed synthesis of 2-amino-4-(nitromethyl)-4H-chromene-3-
carbonitriles 2aa. Screening of solvents and catalyst loading.

O

CN

NH
CH3NO2

O

CN

NH2

[poly(EGDMA-MATrp)]
solvent, rt

NO2

1a 2a

Entry Solvent Time (h) Yield (%)b

1 methanol 18 68
2 ethanol 24 38
3 2-propanol 24 35
4 water 39 90
5 methanol:water (5:1) 24 87
6 chloroform 96 trace
7 acetone 96 trace
8 tetrahydrofuran 96 trace
9 toluene 96 trace
10c water 100 65
11d water 96 30
12e water 120 -

aReaction conditions: 1a (0.25 mmol), nitromethane (0.75 mmol), [poly(EGDMA-MATrp)] (5mg), 
solvent (1 cm3). bIsolated yields after column chromatography. c1 mg catalyst loading. d10 mg catalyst 
loading. ewithout catalyst.

Figure 2. SEM images of [poly(EGDMA-MATrp)] microbeads.
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Table 2. Conjugate addition of nitromethane to 2-iminochromenesa. Substrate scope.

O

CN

NH
CH3NO2

O

CN

NH2

[poly(EGDMA-MATrp)]

MeOH:H2O, rt

NO2

1 2
R R

O

CN

NH2

NO2

O

CN

NH2

NO2

2a
87%, 24h

2b
76%, 26h

O

CN

NH2

NO2

2c
59%, 3h

t-Bu

O

CN

NH2

NO2

2d
77%, 4h

t-Bu

t-Bu

O

CN

NH2

NO2

2e
51%, 22h

OH
O

CN

NH2

NO2

2f
67%, 19h

HO

O

CN

NH2

NO2

2g
58%, 4h

OCH3

O

CN

NH2

NO2

2h
76%, 6h

H3CO

O

CN

NH2

NO2

2i
31%, 117h

NO2

O

CN

NH2

NO2

2j
56%, 27h

Br
O

CN

NH2

NO2

2k
95%, 24h

O

CN

NH2

NO2

2l
38%, 55h

O

CN

NH2

NO2

2m
73%, 28h

Cl I

aReaction conditions: 1a (0.25 mmol), nitromethane (0.75 mmol), [poly(EGDMA-MATrp)] (5mg), MeOH:H2O (5:1) (1 
cm3). bIsolated yields after column chromatography.

Figure 3. Catalyst reuse; reaction conditions: 1a (0.25 mmol), 
nitromethane (0.75 mmol), [poly(EGDMA-MATrp)] microbeads 
(5 mg), MeOH:H2O (5:1) (1 mL).

Figure 4. Potential energy diagram & geometry transformations 
between compound 1-R and compound 6-P, optimized 
geometries of the reactants, IN, TS, and product calculated by 
WB97XD/6-311G++(d,p).
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nucleophilic attack of nitromethane to 2-iminochromene substrate is the first step of the mechanism. The transition state 
(3-TS) formed in this step determines the rate of the reaction and plays a key role in the mechanism. 

The optimized structure of the 3-TS molecule in the rate-determining step of the reaction is depicted in detail in Figure 
5. The catalyst molecule coexists with the 2-iminochromene with a NH ⋅⋅⋅⋅ O (catalyst) hydrogen bond with a length of 
1.975 Å, while it forms a hydrogen bond between the nitromethane molecule and the NH ⋅⋅⋅⋅ O (nitromethane) atoms 
(1.981 Å length) on the other hand. In addition, π-π interactions at a distance of 3.360 Å between the aromatic rings of 
the catalyst and the 2-iminochromene molecules play an important role in the stability of the transition state. The energy 
barrier (Ea) of this step is 63.26 kJmol−1. The distance between C4 carbon atom of 2-iminochromene and carbon atom of 
nitromethane is calculated as 1.998 Å. The calculation of the single negative frequency at –548 cm–1 in 3-TS supports the 
correct optimization of the molecule. The second step of the reaction is the proton transfer step, and it takes place rapidly 
over 5-TS. The energy barrier in this step is calculated to be 48.99 kJmol−1.

When the reaction mechanism is considered as a whole, the formation energy of the product 6-P is calculated as –68.93 
kJmol−1. 

In conclusion, cross-linked microbeads, [poly(EGDMA-MATrp)], were successfully applied as a heterogeneous 
catalyst in conjugate addition reactions of nitromethane to substituted 2-iminochromenes. Experimental results 
revealed the activating role of hydrophobic interactions in aqueous reaction medium. We obtained the best results with 
2-iminochromene substrates having electron rich aromatic rings that is able to form stronger stacking interactions with 
the catalyst. DFT calculations also revealed the significant role of π-π interactions as well as hydrogen bonding in the 
reaction mechanism. Polymeric microbeads were very durable and reused 5 times without a significant loss of activity. The 
design and synthesis of polymeric microbeads with more effective chiral microenvironments for asymmetric synthesis is 
under investigation. 
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Table 3. Negative frequency and relative energy values calculated by WB97XD/6-311G++(d,p) level.

Species Energy (a.u.) Relative energy (kJ/mol) Negative frequency (cm–1)

1-R –1653.29621195 0.00 -
2-R –1653.28266504 35.56 -
3-TS –1653.27211882 63.26 –548
4-IM –1653.28994310 16.45 -
5-TS –1653.27755360 48.99 –1217
6-P –1653.32244695 –68.93 -

Figure 5. Optimized structure and intermolecular interactions 
(<3.5 Å) of the 3-TS complex molecule.
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