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1. Introduction
Natural bromophenols are commonly found in marine life [1]. Many biological functions including antioxidant [2–5], 
antimicrobial [6,7], and carbonic anhydrase (CA) inhibition have been investigated for them and their derivatives [8–14].

Bromophenols 1-9 seen in Figure 1 are natural bromophenols [2,15–18]. Natural bromophenols 1 and 2 were isolated 
from the Halopitys incurvus algae of the Rhodomelaceae [15] and the red algae of Rhodomelaceae confervoides [16], 
respectively. From these natural bromophenols 1–9, we reported the first synthesis as well as various biological activities 
such as carbonic anhydrase of 3–9 in our previous studies (Figure 1) [5,11,13].

Oxidative stress is associated with an imbalance between the antioxidants and the reactive oxygen species (ROS) 
in the body. This situation is known to cause the development of many chronic diseases [19–21]. The excess formation 
of free radicals and ROS cause degenerative damage to vital cellular molecules including carbohydrates, proteins, 
lipids, and nucleic acids [22–24]. As a result, oxidative stress and ROS are known as important environmental factors 
leading to many chronic diseases such as cancer, cardiovascular diseases, immunodeficiency syndrome, obesity, age-
related pathologies, arteriosclerosis, and diabetes mellitus [25,26]. Even at low concentrations, antioxidants are quite 
effective at counteracting the detrimental effects of both oxidative stress and ROS. Phenolic compounds obtained 
from natural sources, especially those found in plants, exhibit a wide range of biological activity. They have also been 
intensely investigated due to their possible antioxidant and biological abilities [27–29]. Antioxidants are chemicals that 
are preferentially oxidized, preventing or completely inhibiting the oxidation of other oxidizable compounds which, 
once oxidized, may be hazardous effects on food or pharmacological products [30,31]. The most common synthetic 
antioxidants approved for use in food today are butylated hydroxyanisole (BHA) and butylated hydroxytoluene 
(BHT), tertiary-butylhydroquinone, and propyl gallate [32,33]. On account of the serious safety concerns regarding 
petrochemical antioxidants, there is an increasing demand for natural or naturally derived antioxidants due to their 
positive effects on human health [34]. In this way, natural antioxidants and their derivatives play an important role in 
living systems and in human health. Moreover, antioxidants also have an important role as therapeutic effects in many 
chronic diseases [35].
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The synthesis of the bromophenols 1 and 2 is desirable because they are natural products that are potentially vital 
compounds for many biological processes. For this reason, the synthesis of compounds 1 and 2, as well as their derivatives, 
was performed and the resulting compounds were investigated for their antioxidant properties using various bioanalytical 
methods.

2. Result and discussion
2.1. Chemistry
Natural bromophenols 1 and 2 both contain a benzylic acid group, as well as two Br and two -OH groups at varied positions 
around the ring (Figure 1). To obtain these products and derivatives, vanillin (10), 3,5-dimethoxybenzaldehyde (13) and 
(3,4-dimethoxyphenyl)methanol (14) were chosen as starting compounds. Benzyl bromides 11, 12, 15, and 16 are already 
known and were synthesized by established methods in the literature (Scheme 1) [36–40].

According to the known procedure [41], substitution nitrile substituted compounds 17–20 were obtained from their 
corresponding bromides 11, 12, 15, and 16 (Scheme 2). As expected, in 1H-NMR spectra, an upfield shift is shown in the 
benzylic hydrogens of compounds 17–20 owing to the decreased electron-withdrawing nature of the nitrile group. Also, 
all data belonging to them suggested structures (Scheme 2). 

The nitrile groups in the 17–20 were then hydrolyzed under basic conditions (NaOH in the EtOH/H2O) (Scheme 2). 
The obtained compounds are carboxylic acids (21–24), as is evidenced by the appearance of carbonyl groups ranging 
between 170–177 ppm in their 13C-NMR spectra. Furthermore, the appearance of peaks around 10.5 ppm in the 1H-NMR 
spectra of compounds 21 and 24 is indicative of the conversion of these nitrile groups into the corresponding carboxylic 
acid groups (Scheme 2).

Bromophenols are important compounds because of biologically active [1–16]. Bromophenols 1 and 2 are more 
important because they are both biologically active and natural products [15,16]. The compounds 22 and 23 are precursor 
compounds for natural bromophenol compounds 1 and 2.

Finally, the synthesis of bromophenols 1, 2 was performed by treating 22 and 23 with BBr3. Similarly, the reactions of 
the compounds 21 and 24 with BBr3 yielded bromophenol derivatives 25 and 26 (Scheme 2). 

In addition to the benzylic acid-containing bromophenols 1, 2, 25, and 26, benzyl nitrile containing bromophenols 
27 and 28 were also sought after due to their important biologic activities. Therefore, their synthesis was carried out by 
treating compounds 18 and 20 with BBr3 (Scheme 3). NMR data of bromophenol derivatives 1, 2, and 25–28 are consistent 
with their structures. 
2.2. Biological activities 
2.2.1. Reducing power results
Reducing power can donate the capacity of bioactive biological compounds that act as reductants and inactivate ROS and 
oxidant agents [42]. Fe3+ reduction ability assay measures the reducing potential of the compounds. Fe3+ ions addition to 
bromophenol derivatives 1, 2, and 17–28 occur in blue colored complex of Fe4[Fe(CN-)6]3. This complex demonstrated 
absorbance at 700 nm [43,44]. As a result of the complex, the yellow color of samples varies from green to blue according 
to the effectiveness of test compounds [45]. In this sense, bromophenol derivatives 1, 2 and 17–28 demonstrated potent 

Scheme 1. Synthesis of benzyl bromides 11, 12, 15, and 16.
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and efficient reducing ability by using the Fe[Fe(CN-)6]3, Cu2+ and Fe3+-TPTZ reduction abilities. For measuring of 
reduction ability of bromophenol derivatives 1, 2, and 17–28, Fe3+-Fe2+ transformation was realized according to Oyaizu’s 
method [46]. As given in Table 1 and Figure 1A, bromophenol derivatives 1, 2, and 17–28, demonstrated efficient Fe3+ 
reducing capability. Since the reducing potencies and radical scavenging capacities of bromophenol derivatives 17–24 are 
relatively lower due to the structure-activity relationship, they will not be considered much in the discussion part. The 
other bromophenol derivatives 17–24 demonstrated moderate Fe3+ reducing ability ranging from 0.253 ± 0.004–0.463 ± 
0.010 when compared to standards. Generally, the antioxidant properties of the test sample are compared with standard 
antioxidants. Many compounds are used as standards for this purpose. In addition, the standard selection and criteria are 
also related to the stability, price, and solubility of the standard antioxidant in the solvent environment [47]. The increased 
absorbance shows the complex formation and increased enhanced reducing effect (Figure 2A). The results clearly show 
that bromophenol derivatives 1, 2, and 17–28 have strong Fe3+ reducing effects with e- donating properties for neutralizing 
free radicals and ROS. They can apply in biochemical and biological systems to reduce oxidative stress or damage.

Aside Fe3+-TPTZ reduction abilities, Cu2+ reducing of bromophenol derivatives 1, 2, and 17–28 are given in Table 1 and 
Figure 2B. A positive correlation was observed between the Cu2+ reducing and bromophenol derivatives 1, 2, and 17–28 as 
concentration-dependently (20–60 μg/mL). At the concentration of 60 μg/mL, Cu2+ reducing capability of bromophenol 
derivatives 1, 2, and 17–28 and standards were declined as following orders (Table 1 and Figure 2B): 1 (1.896 ± 0.002, r2: 
0.6828) > BHA (1.864 ± 0.015, r2: 0.9854) ≈ 25 (1.853 ± 0.003, r2: 0.6573) > Trolox (1.829 ± 0.004, r2: 0.6061) > α-Tocopherol 
(1.795 ± 0.003, r2: 0.9747) > BHT (1.744 ± 0.003, r2: 0.7642) > 26 (1.642 ± 0.002, r2: 0.9589) > 27 (1.538 ± 0.110, r2: 0.9015) 
> 28 (1.609 ± 0.12, r2: 0.9589) > 2 (1.345 ± 0.002, r2: 0.9507). The Fe3+ reducing effects of bromophenol derivatives 1, 2, 
and 17–28 and standards declined as following orders: 28 (1.856 ± 0.002, r2: 0.8206) > 1 (1.775 ± 0.003, r2: 0.8992) > BHA 
(1.744 ± 0.004, r2: 0.7114) ≈ 25 (1.743 ± 0.002, r2: 0.6555) > 26 (1.704 ± 0.002, r2: 0.7336) > 27 (1.663 ± 0.003, r2: 0.8012) > 
Trolox (1.648 ± 0.007, r2: 0.8992) > BHT (1.563 ± 0.003, r2: 0.8358) > α-Tocopherol (1.473 ± 0.003, r2: 0.9499) > 2 (0.877 ± 
0.020, r2: 0.9463). The other bromophenol derivatives 17–24 exhibited weaker Cu2+ reducing capability between in 0.253 
± 0.004-0.445 ± 0.001 when compared to standard reducing agents. The CUPRAC test had low-cost and is a rapid, stable 
and selective assay for different antioxidants, regardless of chemical type and hydrophobicity [48].

Aside Fe3+ and Cu2+ reduction properties of bromophenol derivatives 1, 2, and 17–28, they had powerful reducing 
potentials in FRAP assay (Figure 1C and Table 2). Reducing ability of bromophenol derivatives 1, 2, and 17–28 was found to 
be in descending order of 25 (2.455 ± 0.004, r2: 0.8362) > BHA (2.254 ± 0.004, r2: 0.7435) > BHT (2.146 ± 0.002, r2: 0.8599) 
> 26 (2.016 ± 0.002, r2: 0.7929) > 1 (1.996 ± 0.002, r2: 0.7367) ≈ Trolox (1.993 ± 0.004, r2: 0.9494) > 27 (1.894 ± 0.002, r2: 
0.8755) > 28 (1.605 ± 0.001, r2: 0.8889) > α-Tocopherol (1.497 ± 0.002, r2: 0.8531) > 2 (0.744 ± 0.002, r2: 0.8929). The other 
bromophenol derivatives 17–24 showed relatively weaker Fe3+-TPTZ reducing ability between in 0.304 ± 0.004-0.667 ± 0.002 
when compared to standard reducing compounds. As mentioned in prior reduction assay, high reducing absorbance shows 
high reducing ability of the complex. The FRAP method is realized in an acidic medium to protect iron ions solubility [49].

 

 

 

Scheme 2. As bromophenols, synthesis of 2-phenylacetic acid derivatives from the corresponding 
bromides via their nitriles. 

 

Br

HO
OH

CO2H

Br

1                                         2                                     3

HO

OH

CO2H

Br
Br

HO
OH

S

Br

O

O

Br

R2

HO
OH

R1

4  R1 
= H, R

2 
= Br                        7                                         8  R = H

5  R1 
= Br, R

2 
= H                                                                   9  R = Me

6  R1 
= Br = Br

Br

OH

N

Br

Br

O O
Br

OH

N

Br
O OR

OHOHO

Scheme 2. As bromophenols, synthesis of 2-phenylacetic acid 
derivatives from the corresponding bromides via their nitriles.

Figure 1. Some natural bromophenols.
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2.2.2. Radicals scavenging results 
DPPH· and ABTS·+ scavenging assays are among the most convenient spectrophotometric scavenging methods. Both 
assays were used to determine the antioxidant abilities and radical scavenging capacities of plants, foods, and beverages 
[50]. The percent inhibition depends on the concentrations of oxidizers such as antioxidants and radicals, the ratios 
of solvent and reagent used, incubation time, temperature, and also the presence of hydrogen, metal, and water in the 
antioxidant test systems [51]. On the other hand, IC50 is called the effective concentration that causes 50% removal of 
oxidants such as radicals in antioxidant studies. It is often used to assess the antioxidant activity [47]. For DPPH radical 
scavenging were found to be in following order: BHT (IC50: 4.12 µg/mL, r2: 0.9690) > 25 (IC50: 4.27 µg/mL, r2: 0.9016) 
> 1 (IC50: 6.41 µg/mL, r2: 0.9961) > 27 (IC50: 6.86 µg/mL, r2: 0.9018) > 28 (IC50: 10.66 µg/mL, r2: 0.9652) > BHA (IC50: 
11.17 µg/mL, r2: 0.9030) > Trolox (IC50: 11.75 µg/mL, r2: 0.8513) > α-Tocopherol (IC50: 23.89 µg/mL, r2: 0.9732) > 2 (IC50: 
30.13 µg/mL, r2: 0.9457) > 26 (IC50: 231.00 µg/mL, r2: 0.9652). On the other hand, the other bromophenol derivatives 
17–24 demonstrated relatively weak DPPH radical scavenging ability and found IC50 values between 17.32–346.50 
µg/mL when compared to standard radical scavengers. A lower IC50 value demonstrates a higher DPPH· scavenging 
ability (Table 2 and Figure 1D). In another study, DPPH radical scavenging activity of nineteen bromophenols from 
Rhodomela confervoides was realized. Among these bromophenols, bromophenols 1 was also studied. It was shown that 
bromophenols 1 had IC50 value of 19.84 µM for DPPH radical scavenging activity. Also, it was demonstrated that the 
metabolites with ortho-dihydroxy groups on the aromatic ring generally display higher activity than the compounds 
having a single free hydroxyl group on the ring [16,52]. The bromophenol derivatives 1, 2, and 17–28 exhibited effective 
ABTS·+ removing ability. As given in Table 2 and Figure 1E, bromophenol derivatives 1, 2, and 17–28 effectively scavenged 
ABTS radicals as concentration-dependently (20–60 µg/mL, p < 0.001). EC50 values of bromophenol derivatives 1, 2, 
and 17–28 in ABTS·+ scavenging assay were found to be in descending order of 25 (IC50: 9.36 µg/mL, r2: 0.6059) > Trolox 
(IC50: 9.36 µg/mL, r2: 0.6119) ≈ 26 (IC50: 9.49 µg/mL, r2: 0.8680) > 1 (IC50: 9.90 µg/mL, r2: 0.6119) > 28 (IC50: 10.19 µg/mL, 
r2: 0.6496) > 27 (IC50: 10.28 µg/mL, r2: 0.6654) > 2 (IC50: 10.66 µg/mL, r2: 0.8511) > BHA (IC50: 14.74 µg/mL, r2: 0.7129) 
> BHT (IC50: 15.75 µg/mL, r2: 0.9986) > α-Tocopherol (IC50: 12.15 µg/mL, r2: 0.7950). On the other hand, the other 

Table 1. Fe3+, Cu2+ and Fe3+-TPTZ reducing ability of bromophenol derivatives 1, 2, and 17–28 and standards at 
60 μg/mL concentration

Antioxidants
Fe3+ reducing Cu2+ reducing Fe3+-TPTZ reducing

λ700 r2 λ 450 r2 λ 593 r2

BHA 1.744 ± 0.004 0.7114 1.864 ± 0.015 0.9854 2.254 ± 0.004 0.7435
BHT 1.563 ± 0.003 0.8358 1.774 ± 0.003 0.7642 2.146 ± 0.002 0.8599
α-Tocopherol 1.473 ± 0.003 0.9499 1.795 ± 0.003 0.9747 1.497 ± 0.002 0.8531
Trolox 1.648 ± 0.007 0.8992 1.829 ± 0.004 0.6061 1.993 ± 0.004 0.9494
1 1.775 ± 0.003 0.6791 1.896 ± 0.002 0.6828 1.996 ± 0.002 0.7367
2 0.877 ± 0.020 0.9463 1.345 ± 0.005 0.9507 0.744 ± 0.002 0.8929
17 0.312 ± 0.009 0.9023 0.303 ± 0.002 0.7484 0.453 ± 0.002 0.8902
18 0.445 ± 0.001 0.9557 0.506 ± 0.010 0.5767 0.404 ± 0,004 0.9627
19 0.377 ± 0.003 0.9544 0.430 ± 0.009 0.8159 0.407 ± 0.002 0.7252
20 0.355 ± 0.001 0.9542 0.716 ± 0.002 0.7199 0.344 ± 0.002 0.9844
21 0.355 ± 0.003 0.9290 0.666 ± 0.002 0.8792 0.667 ± 0.002 0.8175
22 0.253 ± 0.004 0.9321 0.265 ± 0.001 0.9579 0.304 ± 0.004 0.9683
23 0.302 ± 0.001 0.9460 0.726 ± 0.002 0.8705 0.403 ± 0.003 0.9321
24 0.463 ± 0.010 0.9264 0.665 ± 0.003 0.9843 0.578 ± 0.010 0.8693
25 1.743 ± 0.002 0.6555 1.853 ± 0.003 0.6573 2.455 ± 0.004 0.8362
26 1.704 ± 0.002 0.7336 1.642 ± 0.002 0,9589 2.016 ± 0.002 0.7929
27 1.663 ± 0.003 0.8012 1.538 ± 0.110 0.9015 1.894 ± 0.002 0.8755
28 1.856 ± 0.002 0.8206 1.609 ± 0.120 0.9589 1.605 ± 0.001 0.8889
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bromophenol derivatives 17–24 demonstrated relatively weak DPPH radical scavenging ability and found IC50 values 
when compared to standard radical scavengers. As DPPH in radical scavenging, a lower IC50 value shows higher ABTS·+ 
scavenging ability. In a previous study, it was shown that 2.87 mM TEAC ABTS·+ scavenging ability. In this study, the 
isolated nineteen bromophenols were found effective radical scavenging potential against ABTS cation radicals [16]. 
Already, it is well-known that ABTS radical scavenging properties of antioxidants can attribute H-donating effect [53].

3. Conclusion
As a result, after bromides 11, 12, 15, and 16 were synthesized, the acids including natural products were obtained via the 
corresponding nitriles 17–20. Chronic diseases, mutagenesis, DNA damage, carcinogenesis, and inhibition of pathogenic 
bacterial growth are generally associated with the scavenging of ROS and free radical propagation in living systems. 
Antioxidant activity is used as an effective and common parameter for medicinal bioactive components and newly 

Table 2. Half maximal scavenging concentration (IC50, μg/mL) for DPPH• 
scavenging and ABTS•+ scavenging effects of bromophenol derivatives 1, 2, and 
17–28 and standards.

Compounds DPPH• scavenging ABTS•+ scavenging 

IC50* r2 IC50* r2

BHA 14.74 0.7129 11.17 0.9030
BHT 15.75 0.9986 4.12 0.9690
α-Tocopherol 12.15 0.7950 23.89 0.9732
Trolox 9.36 0.6575 11.75 0.8513
1 9.90 0.6119 6.41 0.9961
2 10.66 0.8511 30.13 0.9457
17 173.25 0.9145 173.25 0.8727
18 231.00 0.7611 346.50 0.9371
19 17.32 0.9865 231.00 0.9134
20 346.50 0.9735 115.50 0.8320
21 231.00 0.8642 173.25 0.9078
22 138.60 0.9851 173.25 0.9722
23 33.00 0.8860 231.00 0.9675
24 138.60 0.9810 138.60 0.8109
25 9.36 0.6059 4.27 0.9016
26 9.49 0.8680 231.00 0.9652
27 10.28 0.6654 6.86 0.9018
28 10.19 0.6496 10.66 0.9652

Scheme 3. Synthesis of bromophenol derivatives 27 and 28 from the compounds 18 and 20.
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synthesized biologically important molecules. For this reason, natural products 1 and 2, including their derivatives 25 and 
26 were synthesized through the conversion of benzyl bromides 11–16 into the corresponding nitriles 17–20 followed by 
base catalyzed hydrolysis and demethylation. In addition to these products, benzyl nitriles 27 and 28 were also synthesized 
through direct demethylation of 18 and 20. Once these bromophenol derivatives were obtained 1, 2, and 17–28 they were 
assessed for their antioxidant ability and compared with established antioxidants including, BHA, α-tocopherol, BHT, and 
Trolox.

4. Experimental section
4.1. General procedures
Chemicals (including solvents) used in the experiments and data of the synthesized compounds (such as NMR and HRMS) 
were performed as previously stated. [14,54]. Reagent benzyl bromides 11, 12, 15, and 16 were prepared in known ways 
in the literature [36–40]. 
4.2. Synthesis
4.2.1. Synthesis of 2-(3-bromo-4,5-dimethoxyphenyl)acetonitrile (17): Standard procedure for the substitution reaction 
with KCN
KCN (315 mg, 4.84 mmol) was added to the stirred solution of bromide 11 (500 mg, 1.61 mmol) in EtOH (20 mL). 
After refluxing of the solution at 80 °C for 16 h, termination of the reaction, removal of the solvent under vacuum and 

Figure 2. Different antioxidant assay for bromophenol derivatives 1, 2, and 17–28: A. Fe3+ reducing 
method, B. Cu2+ reducing method, C. Fe3+-TPTZ reducing method, D. DPPH· scavenging method, 
E. ABTS•+ scavenging method.



BAYRAK et al. / Turk J Chem

1411

extraction of reside with EtOAc (2 × 20 mL) were performed, respectively. Then, combination and drying over Na2SO4 of 
organic phases and evaporation of the solvent under vacuum were carried out. After purification of the residue by column 
chromatography on silica gel (10 g) using EtOAc:hexane (1:9) eluent, the product 17 (270 mg, 65%, white solid) was 
obtained. Mp: 76–77°C; 1H NMR (400 MHz, CDCl3): 7.08 (s, 1H, ArH), 6.80 (s, 1H, ArH), 3.88 (s, OMe, 3H), 3.84 (s, OMe, 
3H), 3.68 (s, CH2, 2H); 13C NMR (100 MHz, CDCl3): 154.26, 146.58, 127.04, 124.31 (CH), 118.31, 117.61 (C). 111.54 (CH), 
60.84 (OMe), 56.43 (OMe), 23.28 (CH2); IR (CH2Cl2, cm–1): 2939, 2251, 1570, 1491, 1416, 1274, 1141, 1046 cm–1; HRMS 
(m:z): calcd. for [C10H10

79BrNO2]
+: 254.9895; found 254.9896, Rf: 0.51; EtOAc:hexane: (3:7). 

4.2.2. Synthesis of 2-(2,3-dibromo-4,5-dimethoxyphenyl)acetonitrile (18)
Using standard procedure written in 4.2.1, the product 18 (280 mg, 65%, yellow solid) was obtained. Mp: 121–122 °C; 1H 
NMR (400 MHz, CDCl3): 7.08 (s, 1H, ArH), 3.91 (s, OCH3, 3H), 3.87 (s, CH2, 2H), 3.86 (s, OCH3, 3H); 13C NMR (100 
MHz, CDCl3): 153.09, 147.83, 127.10, 122.78, 117.00, 117.06, 112.51 (CH), 60.83 (OCH3), 56.60 (OCH3), 26.72 (CH2); IR 
(CH2Cl2, cm–1): 2930, 2246, 1652, 1477, 1412, 1378, 1322, 1265, 1210, 1058, 1002; HRMS (m:z): calcd. for [C10H9

79Br2NO2]
+: 

332.9000; found 332.9003; Rf: 0.5; EtOAc:hexane: (15:85)
4.2.3. Synthesis of 2-(2,6-dibromo-3,5-dimethoxyphenyl)acetonitrile (19)
Using standard procedure written in 4.2.1, the product 19 (650 mg, 75%, yellow solid) was obtained. Mp: 198–199 °C; 1H 
NMR (400 MHz, CDCl3): 6.53 (s, ArH, 1H), 4.18 (s, 2H), 3.92 (s, OCH3, 6H); 13C NMR (100 MHz, CDCl3): 156.48, 131.62, 
115.76, 105.50, 96.96 (CH), 56.73 (2 OCH3), 26.25 (CH2); IR (CH2Cl2, cm–1): 2935, 2246, 1574, 1453, 1339, 1220, 1080, 
1068 cm–1; HRMS (m:z): calcd. for: [C10H9

79Br2NO2]
+: 332.9000; found 332.9001; Rf: 0.46; EtOAc:hexane: (3:7).

4.2.4. Synthesis of 2-(2,3,6-tribromo-4,5-dimethoxyphenyl)acetonitrile (20)
Using standard procedure written in 4.2.1, the product 20 (530.00 mg, 80%, white solid) was obtained. Mp: 161–162°C; 1H 
NMR (400 MHz, CDCl3): 4.22 (s, CH2, 2H), 3.92 (s, OCH3, 3H), 3.91 (s, OCH3, 3H); 13C NMR (100 MHz, CDCl3): 152.60, 
151.28, 127.88, 122.88, 122.45, 120.76, 115.63, 61.24 (OCH3), 61.20 (OCH3), 28.22 (CH2); IR (CH2Cl2, cm–1): 2935, 2246, 
1372, 1092, 1047, 1008 cm–1; HRMS (m:z): calcd. for: [C10H8

79Br3NO2]
+: 410.8105; found: 410.8108; Rf: 0.74; EtOAc:hexane: 

(3:7).
4.2.5. Synthesis of 2-(3-bromo-4,5-dimethoxyphenyl)acetic acid (21): Standard procedure for the hydrolysis reaction 
A solution of 17 (500 mg, 1.95 mmol) in EtOH (12 mL) and H2O (8 mL) was added to NaOH (780 mg, 19.52 mmol). After 
the reaction was allowed to stir for 24 h at 100 °C and was cooled to RT, removal of the solvent under vacuum, and then 
acidification of the reaction mixture with addition of cold HCl solution (1.0 M, 0 °C) until pH of the solution adjusted 
to 2.0 were performed. Respectively, extraction of the mixture with EtOAc (2 × 20 mL), combination and drying over 
Na2SO4 of organic phases and evaporation of the under vacuum, removal of the solvent under vacuum, and the product 
21 (430 mg, 80%, yellow solid) was obtained. Mp: 106–107 °C; 1H NMR (400 MHz, CDCl3): 10.68 (s, CO2H, 1H), 7.05 
(s, ArH, 1H), 6.77 (s, ArH, 1H), 3.85 (s, OCH3, 3H), 3.83 (s, OCH3, 3H), 3.56 (s, CH2, 2H); 13C NMR (100 MHz, CDCl3): 
177.63 (CO), 153.83 (C), 145.97 (C), 130.41 (C), 125.72 (CH), 117.85 (C), 113.09 (CH), 60.80 (OCH3), 56.33 (OCH3), 
40.65 (CH2); IR (CH2Cl2, cm–1): 3446, 1646, 1569, 1490, 1273, 1142, 1046 cm–1; HRMS (m:z): calcd. for: [C10H11

79BrO4]
+: 

273.9841 found 273.9842, Rf: 0.23; EtOAc:hexane: (3/7).
4.2.6. Synthesis of 2-(2,3-dibromo-4,5-dimethoxyphenyl)acetic acid (22)
Using standard procedure written in 4.2.5, the product 22 (420 mg, 80%, yellow solid) was obtained. Mp: 140–141°C; 
1H-NMR (400 MHz, CDCl3): 11.40-10.00 (m, COOH), 6.84 (s, ArH, 1H), 3.86 (s, CH2, 2H), 3.86 (s, OCH3, 3H), 3.84 (s, 
OCH3, 3H); 13C-NMR (100 MHz, CDCl3): 176.68 (CO), 152.69 (C), 147.29 (C), 130.91(C), 122.05 (C), 118.51 (C), 114.40 
(CH), 60.74 (OCH3), 56.45 (OCH3), 43,26 (CH2); IR (CH2Cl2, cm–1): 3447, 1634, 1472, 1424, 1381, 1310, 1263, 1202, 1163, 
1060, 1004; HRMS (m:z): calcd. for: [C10H10

79Br2O4]
+: 351.8945, found 351.8955; Rf: 0.17, EtOAc:hexane: (3:7).

4.2.7. Synthesis of 2-(2,6-dibromo-3,5-dimethoxyphenyl)acetic acid (23)
Using standard procedure written in 4.2.5, the product 23 (495 mg, 78%, white solid) was obtained. Mp: 235–236 °C 
(231–232 °C) [55]; 1H-NMR (400 MHz, acetone-d6): 6.71 (s, ArH, 1H) 4.02 (s, CH2, 2H), 3.82 (s, OCH3, 6H); 13C-NMR 
(100 MHz, acetone-d6):  170.29 (CO), 157.11 (2 C), 136.82 (C), 106.52 (2 C), 97.46 (CH), 57.04 (2 OCH3), 42.93 (CH2); IR 
(CH2Cl2, cm–1): 3330, 1702,1574, 1427, 1330, 1217, 1096 cm–1; HRMS (m:z): calcd. for: [C10H10

79Br2O4]
+: 351.8946; found: 

351.8951; Rf: 0.45; MeOH:CH2Cl2:(5:95).
4.2.8. Synthesis of 2-(2,3,6-tribromo-4,5-dimethoxyphenyl)acetic acid (24)
Using standard procedure written in 4.2.5, the product 24 (250 mg, 60%, white solid) was obtained. Mp: 162–163 °C; 
1H-NMR (400 MHz, CDCl3): 10.80–10.30 (m, CO2H, 1H), 4.27 (s, CH2, 2H), 3.90 (s, OCH3, 3H), 3.90 (s, OCH3, 3H); 
13C-NMR (100 MHz, CDCl3): 175.62 (CO), 151.43 (C), 150.65 (C), 131.37 (C), 123.29 (C), 121.55 (C), 121.21 (C), 60.89 
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(OCH3), 60.86 (OCH3), 44.10 (CH2); IR (CH2Cl2, cm–1): 3444, 2935, 1703, 1651, 1395, 1285, 1093, 1010; HRMS (m/z): 
calcd. for: [C10H9

79Br3O4]
+: 429.8051, found 429.8057, Rf: 0.30; EtOAc/Hexane: (3/7).

4.2.9. Synthesis of 2-(3-bromo-4,5-dihydroxyphenyl)acetic acid (25): Standard procedure for the demethylation 
reaction with BBr3
A solution of BBr3 (728 mg, 2.91 mmol) in CH2Cl2 (10 mL) was added to a stirring solution of the compound 21 (400 mg, 
1.45 mmol) CH2Cl2 (5 mL) under N2 (g) at RT, and then the mixture was stirred at the same condition for 16 h. Termination 
of the reaction mixture and then slow addition of H2O (3 mL) over 15 min at 0 °C, removal of the solvent under vacuum, 
the addition of H2O (15 mL) again and extraction of the mixture with EtOAc (2 × 25 mL) were done, respectively. After 
combination and drying over Na2SO4 of organic phases and evaporation of the solvent under vacuum were performed, the 
bromophenol 25 (290 mg 85%, brown solid) was obtained.

Mp: 166–167°C; 1H-NMR (400 MHz, acetone-d6): 8.70–8.50 (m, OH, 1H), 8.00–7.85 (m, OH, 1H), 6.96 (d, J = 2.0 
Hz, ArH, 1H)), 6.83 (d, J = 2.0 Hz, ArH, 1H)), 3.48 (s, CH2, 2H); 13C-NMR (100 MHz, acetone-d6): 172.24 (CO), 145.79 
(C), 142.02 (C), 127.69 (C), 124.39 (CH), 115.90 (CH), 109.13 (C), 39.48 (CH2); IR (CH2Cl2): 3523, 3309, 3204, 1702, 
1496, 1434, 1289, 1093 cm–1; Rf: 0.25, MeOH:CH2Cl2: (5:95). HRMS (m:z): calcd. for: [C8H7

79BrO4-H]+: 244.9449; found 
244.9454;
4.2.10. Synthesis of the natural product 2-(2,3-dibromo-4,5-dihydroxyphenyl)acetic acid (1)
Using standard procedure written in 4.2.9, the natural product 1 (310 mg, 85%, brown solid) purified from EtOAc:hexane 
was obtained. Mp: 157–158 °C, (156–157 °C) [15]; 1H-NMR (400 MHz, acetone-d6): 6.97 (s, ArH, 1H), 3.75 (s, CH2, 2H); 
13C-NMR (100 MHz, acetone-d6): 170.94 (CO), 144.59 (C), 127.86 (C), 117.36 (C), 117.24 (CH), 116.57 (C), 112.77 (C), 
42.01 (CH2); IR (CH2Cl2): 3275, 1471, 1403, 1277, 1217, 1192, 1066, 1023; Rf: 0.40, MeOH:CH2Cl2: (15:85). HRMS (m:z): 
calcd. for: [C8H7

79Br81BrO4-H]+: 324.8534; found 324.8549.
4.2.11. Synthesis of 2-(2,6-dibromo-3,5-dihydroxyphenyl)acetic acid (2)
Using standard procedure written in 4.2.9, the natural product 2 (148 mg, 80%, brown solid) was obtained. Mp: 151–152 
°C (191 °C) [16]; 1H-NMR (400 MHz, acetone-d6): 9.10-8.65 (s, OH, 2H), 6.60 (s, ArH, 2H), 3.98 (s, CH2, 2H); 13C-NMR 
(100 MHz, acetone-d6): 170.38 (CO), 154.70 (2 C), 136.65 (CH), 104.66 (2 C), 103.28 (C), 42.99 (CH2); IR (CH2Cl2): 
3616, 3445, 3199, 1706, 1432, 1200, 1093 cm–1; Rf: 0.42; MeOH:CH2Cl2: (15:85); HRMS (m:z) calcd for [C8H7

79Br2O4 - H]+: 
322.85546; found: 322.85543. 
4.2.12. Synthesis of 2-(2,3,6-tribromo-4,5-dihydroxyphenyl)acetic acid (26)
Using standard procedure written in 4.2.9, the bromophenol 26 (230 mg, 82%, white solid) was obtained. Mp: 190–191 
°C; 1H-NMR (400 MHz, acetone-d6): 7.00–6.60 (m, OH, 3H), 4.16 (s, CH2, 2H); 13C-NMR (100 MHz, acetone-d6): 170.76 
(CO), 144.51 (C), 144.01 (C), 128.49 (C), 118.31 (C), 113.99 (C), 113.57 (C), 44.22 (CH2); IR (CH2Cl2): 3525, 3305, 3212, 
1652, 1401, 1197, 1093 cm–1; Rf: 0.17, MeOH:CH2Cl2: (15:85); HRMS (APCI–TOF) (m:z) calcd for [C8H4N

79Br2
81BrO2 - 

H]-: 402.76392; found: 402.76672.
4.2.13. Synthesis of 2-(2,3-dibromo-4,5-dihydroxyphenyl)acetonitrile (27)
Using standard procedure written in 4.2.9, the bromophenol 27 (95.0 mg, 69%, brown solid) was obtained. Mp 158–159 
°C; 1H-NMR (400 MHz, acetone-d6): 9.18 (bs, OH, 1H), 8.60 (bs, OH, 1H), 7.14 (s, ArH, 1H), 3.95 (CH2, 2H); 13C-NMR 
(100 MHz, acetone-d6): 145.27 (CN), 144.67 (C), 123.52 (C), 117.62 (C), 115.71 (CH), 115.47 (C), 113.67 (C), 25.32 (CH2); 
IR (CH2Cl2): 3517, 3445, 3354, 1647, 1628, 1413, 1093; HRMS (m:z) calcd for [C8H5

79Br81BrNO2 + H2O + H]+: 325.8850; 
found: 325.87671.
4.2.14. Synthesis of 2-(2,3,6-tribromo-4,5-dihydroxyphenyl)acetonitrile (28)
Using standard procedure written in 4.2.9, the bromophenol 28 (120.0 mg, 65%, brown solid) was obtained. M.p: 193–194 
°C; 1H-NMR (400 MHz, acetone-d6): 4.15 (s, CH2, 2H); 13C-NMR (100 MHz, acetone-d6): 145.50, 144.43, 124.28, 117.61, 
116.88, 114.04, 112.84, 28.06 (CH2); IR (CH2Cl2): 3521, 3312, 2324,1404, 1092 cm–1; Rf: 0.42, MeOH:CH2Cl2: (5:95); HRMS 
(APCI – TOF) (m/z) calcd for [C8H4NBr3O2 + Na]+: 405.76899; found: 405.78860.
4.3. Biological assay (Antioxidant activity)
Fe3+-reducing effects of the compounds were realized by Fe3+(CN-)6 reducing [46] as given previously [56]. Cu2+ reducing 
effect of the bromophenol compounds was realized according to a prior study [57] as detailed given [58,59]. FRAP method 
of the bromophenol compounds is realized by reducing of Fe3+-TPTZ complex in an acidic environment [60]. The DPPH 
radical removing effects of the bromophenol compounds were done according to the method of Blois [61] as given 
previously [62–64]. ABTS radical scavenging of bromophenol compounds is performed according to Gulcin’s methods 
[65–67]. The radical scavenging capacities (RSC) of the bromophenol compounds were calculated as follows: RSC (%) = 
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(1-Ac/Ad) × 100 [4,68,69]. Where Ac and Ad are the absorbances of control and the compounds. IC50 was obtained from 
the graph, which plotted inhibition percentage against the bromophenol compounds concentrations (μg/mL) [35,70,71].
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1H-NMR spectrum of the compound 17 (400 MHz, CDCl3)
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13C-NMR spectrum of the compound 17 (100 MHz, CDCl3).

HRMS spectrum of the compound 17.
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1H-NMR spectrum of the compound 18 (400 MHz, CDCl3).
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13C-NMR spectrum of the compound 18 (100 MHz, CDCl3).

HRMS spectrum of the compound 18.
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1H-NMR spectrum of the compound 19 (400 MHz, CDCl3).
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13C-NMR spectrum of the compound 19 (100 MHz, CDCl3).

HRMS spectrum of the compound 19.
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1H-NMR spectrum of the compound 20 (400 MHz, CDCl3).
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13C-NMR spectrum of the compound 20 (100 MHz, CDCl3).

HRMS spectrum of the compound 20.
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1H-NMR spectrum of the compound 21 (400 MHz, CDCl3).
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13C-NMR spectrum of the compound 21 (100 MHz, CDCl3).
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HRMS spectrum of the compound 21.
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1H-NMR spectrum of the compound 22 (400 MHz, CDCl3).
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13C-NMR spectrum of the compound 22 (100 MHz, CDCl3).
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HRMS spectrum of the compound 22.
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1H-NMR spectrum of the compound 23 (400 MHz, acetone-d6).
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13C-NMR spectrum of the compound 23 (100 MHz, acetone-d6).

HRMS spectrum of the compound 23.
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1H-NMR spectrum of the compound 24 (400 MHz, CDCl3).
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13C-NMR spectrum of the compound 24 (100 MHz, CDCl3).

HRMS spectrum of the compound 24.
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1H-NMR spectrum of the compound 25 (400 MHz, acetone-d6).
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13C-NMR spectrum of the compound 25 (100 MHz, acetone-d6).
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HRMS spectrum of the compound 25.
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1H-NMR spectrum of the natural product 1 (400 MHz, acetone-d6).
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13C-NMR spectrum of the natural product 1 (100 MHz, acetone-d6).
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HRMS spectrum of the compound 1.
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1H-NMR spectrum of the natural product 2 (400 MHz, 
acetone-d6).

13C-NMR spectrum of the natural product 2 (100 MHz, 
acetone-d6).

HRMS spectrum of the compound 2.
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1H-NMR spectrum of the compound 26 (400 MHz, acetone-d6).
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13C-NMR spectrum of the compound 26 (100 MHz, acetone-d6).

HRMS spectrum of the compound 26.
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1H-NMR spectrum of the compound 27 (400 MHz, acetone-d6).
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13C-NMR spectrum of the compound 27 (100 MHz, acetone-d6).
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HRMS spectrum of the compound 27.
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1H-NMR spectrum of the compound 28 (400 MHz, acetone-d6).
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13C-NMR spectrum of the compound 28 (100 MHz, acetone-d6).

HRMS spectrum of the compound 28.


