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1. Introduction
The sample preparation process is an essential part of analytical chemistry; it plays a critical role in qualitative and 
quantitative analysis and obeys the rules of green analytical chemistry (GAC). A classic analytical process consists of 
three crucial parts: sampling, preparation of the sample, and analysis. It usually takes 75% of the researcher’s time in 
the preparation stage [1]. During sample preparation, conventional methods sometimes violate the principle of green 
analytical chemistry (GAC). The GAC describes the philosophy of the pro-ecological accomplishments in analytical 
laboratories. The quantitative determination of chemical compounds in trace or ultra-trace analytical samples generally 
requires an initial step of isolating analytes. It is associated with the performance of the analytical techniques, and in some 
cases, it is not sensitive enough for rapid identification at such a low concentration [2–11]. Several modern technological 
approaches have been proposed in this field [12–16]. One such class of compounds called “modern era solvents” is ionic 
liquids (ILs). ILs have been used as sorption constituents in recent decades. The rapid growth of ILs is related to their 
unique characteristics, particularly those properties that are essential from an “environmental” point of view, i.e. low 
flammability, high thermal stability, and negligible vapor pressure due to these unique properties [17,18]. 

2. Ionic liquids
Ionic liquids (ILs) are a new group of solvents with unique features such as tunable physicochemical properties by the 
interchanging of cations and anions, slight vapour pressure, and good capability with a wide range of analysts via nonpolar, 
ionic, or specific interactions that make them an ideal candidate and alternative to traditional organic solvents for the 
sample preparation process. ILs have recognized physical features that raise more interest in present times. Generally, 
a predictable, convenient description of an ILs is a salt with a melting temperature of below 100 °C and is formed from 
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inorganic anions and organic cations. In the reported literature, the simple definition of ILs is typically defined as 
compounds that are entirely composed of ions and have a melting point of less than 100 °C [19]. Different synonyms have 
been declared for ionic liquids. From that, molten salts are the most familiar term. ILs have broad applications in the ionic 
species in the molten state [20]. The difference between ionic liquids and molten salts appears to be only a matter of degree. 
However, the functional distinctions are enough for the liquid salts at room temperature to explain a separately defined 
role. ILs will typically be viewed as ordinary solvents in studies. Such essential characteristics of ILs are often present in 
the ion-ion solid interactions that are not found in molten salts at higher temperatures. In a great diversity of consumer 
and industrial applications, heat-transfer fluids are found. Applications vary from cooling devices at low temperatures to 
high-temperature processing and storage of solar energy. The most popular heat-transfer fluid is potentially steam [21]. 
The industrial applications of ILs are aluminum plating, paint additives, hydraulic ILs compressors, batteries, and solar 
cells [22]. The ILs-based separation and extraction approach is a modern approach that takes the place of volatile organic 
compounds as an extract [23,24]. The properties of ILs make them predominantly suitable for solvent extraction, including 
their combustibility and low volatility, thermal stability, wide liquid range, adjustable functional groups, high conductivity, 
and a wide range of electrochemical applications [25–28]. The ILs have shown excellent performance in the extraction 
techniques used in sample preparation and preconcentration of targeted analytes [29–34]. ILs contain low melting point 
salts. They are generally attained by using large asymmetric cations and faintly coordinating with anions [35]. Researchers 
pay more attention to ILs due to their tunable features such as high chemical and thermal stability, lower vapor pressure, 
and an increased temperature range in the liquid form. The branching and length of alkyl chains and anionic precursors can 
produce “designer solvents” for task-specific applications, such as the extraction of different analytes from real samples [36–
38]. The ILs have been significantly used in solvent-based dispersive liquid-liquid microextraction (DLLME) techniques 
[39]. First, organic salt (ethylammonium nitrate ([EtNH3]NO3) was discovered in 1914 and found to be liquid at 25 °C 
with a low melting point. Usually, organic cations include imidazolium, pyrrolidinium, ammonium, pyridinium, inorganic 
anions, tetrafluoroborate, chloride, bromide, and hexafluorophosphate contain ILs [39–41].Although several analytical 
and industrial processes have been applied to the ILs, their usage in wastewater treatment, particularly in eliminating 
organic pollutants, is limited. Hurley et al. [42] reported ILs using AlCl3 and N-alkylpyridine to heat the solids mixture and 
found a clear, transparent liquid. In particular, ILs have been introduced as an attractive alternative to traditional organic 
solvents in a wide range of chemical and biological procedures [43]. ILs also extract organic and inorganic toxic pollutants 
[44,45]. Over the last few years, the extraction of different metal ions using ionic liquids having appropriate complexing 
agents, including dithizone [46], and various other organic ligands, has been carried out [47]. Toxic metals have been 
removed from the aqueous environment by different methods such as flotation, chemical precipitation, adsorption, 
electrochemical deposition, and ion exchange. These reported methods have some limitations, such as time-consuming, 
selectivity sensitivity, and costly, negatively impacting the environments [48–51]. Liquid-liquid extraction (LLE) has some 
limitations, it is time-consuming, requiring a large amount of solvent during the sample preparation and preconcentration, 
and it has limited applications. Microextraction techniques are ideal candidates for overcome these limitations because 
they are fast, selective, sensitive, and environmentally friendly methods for sample preparation and preconcentration. 
Figure 1 shows general applications of ILs. 

Figure 1. The general applications of ILs.
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2.1. Advantages of ILs
The key advantages of ILs when used for the SDME are that they permit the application of longer the sampling time and 
the large volume that has been used, leading to optimized HPLC protocols for sensitive determination [52]. Wang et 
al. reported a new method, the capillary electrophoresis (CE) hyphenated with the SDME, to extract phenols from the 
aqueous environment [53]. In this method, approximately 2.40 nL of 1-butyl-3-methylimidazolium hexafluorophosphate 
([C4MIM][PF6]) has been used as an extraction solvent for the online combination of SDME. The EF was obtained up 
to 107–156, showing a higher sensitivity than the reported methods. The ILs-based SDME have been efficiently used to 
analyze heavy metals from biological and environmental samples [54–56]. HF-LPME-based ILs have been used in the 
LPME [57–64]. ILs are nonvolatile and polar. Reported studies also established that an ILs in the pores of the supported 
membrane could be evacuated, and the supported ILs membrane was moderately stable under the insignificant stirring 
conditions [65,66]. Moreover, ILs have a high affinity toward the polar compounds [67] and the ILs membrane could 
transport some organic compounds selectively [68–72]. Table 1 shows the different applications of ILs based LPME.
2.1. Limitation of ILs
ILs can become persistent pollutants that threaten the environment and are cost-effective, making them unsuitable for 
larger industrial applications such as metal electroplating, electrodeposition, and biocatalyst. As a result, the usage and 
cost issues have been the primary challenges in traditional ILs applications. A variety of issues, including toxicity and 
availability, will limit their practical use for larger-scale applications of other metals and biomaterials. Even though many 
recipes for the synthesis of traditional ILs have been published, not all applied research laboratories have the expertise, 
work practices, and equipment required to complete synthesis due to complicated synthetic processes. Furthermore, it is 
frequently challenging to prepare pure, dried traditional ILs or carry out postsynthesis purification steps [73].

On the other hand, the commercial availability of some traditional ILs has limited small volumes, or the cost of many 
liquids remains prohibitively expensive for applied engineering research. The high cost of synthesis, incompatibility with 
GC due to low volatility, and toxic effects. In general, ionic liquid research will continue to develop as the need for green 
analytical techniques becomes a priority in sample preparation [74].

3. ILs-based microextraction process
The advancement and development of novel sustainable analytical processes are crucial for GAC [75–82]. The application 
of state-of-the-art solvents, such as ILs, hyphenated with microextraction methods could be an outstanding approach for 
environmentally friendly sample preparation compared to classical methods. Some of the GAC, such as waste generation 
or minimal, use of safer solvents, and improvement of miniaturized approaches are fulfilled by introducing ILs and 
microextraction in the analytical approach. ILs are widely used in sample preparation methodologies and are commonly 
used in the routine analysis in laboratories to extract and determine analytes at the trace level. Several publications have 
been reported on the ILs based microextraction method. Different microextraction-based methods have been reported, 
such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) [19,83–85]. LPME appeared from 
LLE, one of the most common extraction techniques for inorganic and organic sample preparation, preconcentration, and 
analysis [86]. ILs have been offered as extraction solvents and ion-pairing agents along with the liquid-liquid microextraction 
(LLME) methods for the extraction of metals and organic compounds with a low limit of detection (LOD), the sensitivity 
and selectivity of incomplete analysis and speciation of some metals, and organic compounds [87–89]. Different ILs based 
LLME approaches have been proposed, such as single-drop microextraction (SDME) and dispersive LLME (DLLME) 
vortex-assisted liquid-liquid microextraction (VA-LLME) [90–94].
3.1. ILs-based LPME 
LPME has recently established sample preparation and analytical techniques using negligible amounts of solvent. This 
technique is fast, easy, highly selective and sensitive, and environmentally friendly, and a minimal amount of organic 
solvents has been used. The working protocols are associated with the isolation, preconcentration, sample preparation, and 
introduction in a single step. In ILs-based LPME sample preparation and preconcentration, a small amount of solvents with 
hydrophobic dissolvent in aqueous media (aqueous sample/donor phase) have been used to extract the targeted analyte 
[95,96]. In the advancement of analytical chemistry, the ILs-based LPME process opens a new door in sample preparation 
due to miniaturization, automation, and facilitation. The LPME miniaturized the extraction processes and analysis of 
organic and inorganic compounds [75, 97–103]. The ILs-based LPME techniques have been generally hyphenated with 
different analytical methods, such as atomic fluorescence spectrometry (AFS), atomic absorption spectroscopy (AAS), 
and inductively coupled plasma spectrometry (ICP), to quantify the ultra-trace level of analytes from food, biological, and 
environmental samples [83, 104–116]. Metals have been directly analyzed using the ILs phase with a small amount of 10–
50 μL of organic solvents (ethanol or methanol). While during the extraction of metals, the ILs often reveal high selectivity 
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and high efficiency, metal ions usually separate deeply based upon the kinds of ILs, the metal ions ligands [83, 117–120], 
so different processes have been developed for the separation of analytes from water samples [75]. The extraction and 
precontraction of metals using crown ethers result in crown ether complexes showing high hydrophobicity when retentive 
to present electric charge [121,122]. The neutral complex ligands have been used for the extraction of metals [123,124] 
and are widely used for the elimination of different metals, such as aluminum [125,126], mercury [127], or nickel; for the 
metal extraction of the ILs based on the cationic replaceable group in their structure [128–130]. The ILs-based LPME has 
been used in the different extraction techniques. They are classified into three different methods such as IL-based single-
drop microextraction (IL-SDME), IL dispersive liquid-liquid microextraction (IL-DLLME), and IL-hollow-fiber LPME 
(IL-HF-LPME). A number of modifications have also been introduced for these methods, which exhibit the versatility of 
the technique [131]. Figure 2 represents the general working mechanism of ILs-based LPME process.
3.1.1. ILs-based SDME
Dasgupta’s [131] research group first proposed a method in 1995 containing a liquid droplet as a gas sampling edge to 
extract substances, such as sulfur dioxide and ammonia, from the air [131,132]. Jeannot and Cantwell reported solvent-
based microextraction into a single drop in 1996 to determine the organic compounds [133]. The authors used an 8 
μL drop of organic solvent (n-octane) and thought about hollowing out the Teflon rod occupied in the water sample to 
eliminate 4- methyl acetophenone [134]. He and Lee present a standard micro-syringe for single drop microextraction 
[135]. In current practice, solvent-based microextraction into a single drop is commonly known as SDME. There are 
different formats such as (continuous (cycle) flow, IL-CFME, two-phase direct immersion, IL-DI-SDME), and three-phase 
(headspace, IL-HS-SDME) have been used with ILs as the extractant for the sample preparation before the detection of 
metal ions. SDME method requires a very small volume (1– 3 μL) of solvent and is economically beneficial, fast, and 
easy to operate. It can be applied with a simple device, e.g., a traditional micro-syringe [95, 134, 136]. In 2003, Lin et 
al. reported the application of ILs (1-octyl-3-methylimidazolium hexafluorophosphate) as an extraction solvent in the 
SDME for the extraction objective. The authors applied SDME in both HS and DI modes to extract and preconcentrate 
model compounds. In DI mode, higher enrichment factors (EFs) were attained for the polycyclic aromatic hydrocarbons. 
However, the EF reported for HS-SDME of naphthalene was around three times larger than DI-SDME. For this reason, 
they verified that the HS-SDME was long-lasting compared to the DI-SDME when unstable analytes had been extracted. 
The advancement in the DI-SDME method uses ILs for extraction and preconcentration of metals [52]. 
3.1.2. ILs-based DLLME
DLLME technique was firstly introduced by Rezaee et al., 2006 [137]. The fundamental basis of DLLME includes the addition 
of hydrophobic elimination solvent and dispersive solvent to the water sample. This is the principle for the development of 
a cloudy solution. Over centrifugation, a two-phasic scheme is recognized. DLLME offers high preconcentration factors 
because of the dispersive solvent that results in the establishment of micro-droplets that raise the interaction area of 
the extraction solvent. Zhou et al. reported temperature-controlled IL-DLLME to eliminate pyrethroid pesticides from 

 

Figure 2. represents the working mechanism of ILs-based LPME.



UZCAN et al. / Turk J Chem

1764

aqueous solutions [138]. The temperature was optimized up to 70 °C for a complete dissolution of [C6MIM][PF6] ILs to 
boost the separation of the analyte into the ILs phase. The ILs were then centrifuged or cooled for the phase separation 
of the sample. Zhou et al. proposed another method without using heat, just using ultrasonication in order to improve 
the dissolution [139]. Liu et al. used acetone and methanol with [C6MIM][PF6] to prepare ILs as extraction solvents, 
and acetonitrile was used as a dispersive solvent to extract different heterocyclic insecticides, such as chlorfenapyr, 
fipronil, hexythiazox, and ibuprofen. Valcarcel et al. proposed a new DLLME-based method that used a syringe to prevent 
centrifugation [140–142]. 
3.1.3. ILs-based HF-LPME
HF-LPME could be performed in two-phase and three-phase modes. In the two-phase mode, the aqueous immiscible 
organic solvent is used to fill both walls’ pores and the hollow-fiber lumen. This mode has been used for the elimination 
of hydrophobic analytes. The targeted analytes are eliminated from the water samples in the three methods through the 
water-immiscible organic solvent immobilized in the hollow fiber pores into the aqueous acceptor phase present in the 
hollow fiber lumen. In this circumstance, the analyte must exist in two forms: in a nonionic form on the sample side to 
be eliminated into the membrane, and in an ionic arrangement on the acceptor side to be irreversibly confined. This is 
commonly attained by pH adjustments in the two aqueous phases. Therefore, the process is mainly well-suited for ionizable 
analytes such as weak alkaline and acidic media. The sample volume in HF-LPME ranges between several hundred µL and 
more than 1 L, whereas the volume of acceptor solution in most cases ranges up to 2–25 µL [143–146].

4. Applications of ILs based microextraction 
ILs-based SDME has various biological and environmental applications [53, 147–156]. In 2003 Liu et al. firstly reported 
the use of ILs in the SDME [147]. Three ILs containing the 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM] 
[PF6]), [PF6

−] anion, [C8MIM] [PF6], and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM] [PF6]) have been 
used as the extraction phase hyphenated with high performance liquid chromatograph (HPLC) to the determination of 
polycyclic aromatic hydrocarbons (PAHs) from the water samples. Compared to 1-octanol, larger micro-droplets were 
formed using [C8MIM] [PF6], subsequent in different orders of magnitude increase in the EF. Future, a 10 µL droplet of 
ILs was occupied in the sample solution, resulting in the percentage recoveries between the 90% and 113% of two main 
4-nonylphenol and 4-tert-octylphenol (alkylphenols) in the aqueous environment. 

5. Conclusion and future directions 
The novel and tunable chemical and physical properties of ILs enable the preparation and design of highly selective ILs 
for the selective and sensitive analysis of targeted analytes. The researchers have been paying more attention to the design, 
synthesis, and cost-effective environmentally friendly method to prepare ILs. The preparation design of cost-effective 
and more functional ILs will be a goal in the ILs-based LPME process. As mentioned above, one of the most challenging 
applications of ILs is applied in the microextraction methods as mediators, intermediate solvent and extractants, and 
desorption solvent. The ILs-based microextraction methods have promising properties and advantages that are not only 
used in microextraction techniques but will be enhanced by the separation techniques such as liquid and electrophoresis 
or gas chromatography will expand their applications. The applications of ILs in the LPME of the toxic environmental 
samples have had significant development during the last decades, from their use as cosolvent to their tremendous role 
as solvents and reagents. New designs have led to a wide range of specific applications of ionic liquids and more selective 
approaches. That increases the effectiveness of traditional extractants in complex matrices like environmental and food. 
These solvents have been integrated into all LPME approaches, although DLLME and HF*LPME have seen remarkable 
advancement. ILs have enabled new modes of operation in DLLME of environmental pollutants such as in situ, TC-
DLLME, USA-DLLME, AA-DLLME, and EA-DLLME. Task-specific ILs (TSILs) in HF-LPME have been a reliable method 
for metal speciation from complicated matrices. ILs can widen the use of LPME to extract polar analytes with a low 
detection limit. New ILs-based ion-pairing compounds will likely soon be mercantile existing to assist the detection of 
analytes using ESI-MS. Overall, ILs have come up as versatile and unique solvent materials with many advantages and 
will continue to gain more attention from the mass spectroscopy and separation science societies. Finally, improvements 
in instrumental procedures have been made to adapt to the ILs matrix, including the invention of lab-on-a-disk metal 
determination. In the future, LPME developments include the focused development of TSILs with increased selectivity 
for metallic species and deep eutectic solvents based-liquid phase micro extraction (DES-LPME). Finally, research on 
optimizing instrumental determination and incorporating microfluidic technologies may enable the wider use of IL-
LPME in metals.
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Abbreviations 
AAS   Atomic Absorption Spectroscopy
AFS  Atomic Fluorescence Spectrometry
AlCl3   Aluminum Trichloride
DI-SDME  Direct Immersion Single Drop Microextraction 
DLLME   Dispersive Liquid-Liquid Microextraction
EFs   Enrichment Factors 
 GAC  Green Analytical Chemistry
GC   Gas Chromatography
HF-LPME  Hollow Fiber-based Liquid-Phase Microextraction
HPLC   High-Performance Liquid Chromatography
ICP  Inductively Coupled Plasma Spectrometry
IL-DLLME Liquid-Liquid Microextraction 
IL-HF-LPME IL-hollow-fiber LPME
ILs  Ionic Liquids 
IL-SDME  IL-based Single-Drop Microextraction 
LLME  Liquid-Liquid Microextraction 
LOD   Limit of Detection
LPME   Liquid Phase Microextraction 
PAHs   Aromatic Hydrocarbons
SDME  Single Drop Microextraction 
SPME  Solid-Phase Microextraction
TSILs   Task-Specific ILs 
VA-LLME  Vortex-Assisted Liquid-Liquid Microextraction
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