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1. Introduction
Crystal violet (CV), also known as methyl violet 10B, is a synthetic basic cationic dye having antibacterial, antifungal, 
and anthelmintic properties. It is regarded as a biohazard substance and acts as a mitotic poison and a carcinogen. The 
presence of CV dye in water bodies results in undesirable colorations which, in turn, leads to low light penetrations 
for photosynthetic activities. Removal of CV from industrial wastewater is essential for the mitigation of environmental 
pollution and the safety of human and animal health [1-3]. 

Several physicochemical methods such as adsorption, photochemical degradation, precipitation, electrochemical 
degradation, ion exchange, and biological methods were reported to effectively remove dyes from industrial wastewater 
[4-7]. Among these, adsorption is a reliable method as it has several advantages like ease of operation, high efficiency, and 
low cost of application. Several adsorbents such as activated carbon, clay material, agricultural waste, and biomaterials 
were tested to remove dye from the aqueous solution effectively. MOFs perform better as adsorbents than conventional 
adsorbents in removing dyes from the aqueous solution. Structural diversity, porous structure, large surface area, 
and presence of active sites in the framework are some of the characteristics which make MOFs more advantageous 
for adsorptive removal of dyes from aqueous solution [8-11]. Furthermore, there are several challenges in employing 
bare MOFs for the removal of organic dyes using other methods, especially by photocatalytic degradation which makes 
adsorptive removal by MOFs an attractive choice [12,13]. Several metal-organic frameworks were used for the removal 
of CV dye [14-24]. So far, no study has been reported on the adsorptive removal of CV dye from aqueous solution by 
zirconium-based MOF. 

Metal-organic frameworks (MOFs) are highly ordered porous crystalline materials. In recent years, zirconium-based 
MOFs have attracted the attention of the research community owing to their exceptionally high thermal, hydrothermal, 
mechanical, and chemical stability [25,26]. Based on Pearson’s hard/soft acid/base (HSAB) concept, the ultrahigh stability 
of zirconium-carboxylate MOFs can be attributed to the covalent character of Zr-O bonds [27]. Modulated synthesis 
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strategy has been adopted in the synthesis of Zr-based MOFs since it enhances the reproducibility of the synthesis 
procedures and increases the crystallinity of MOFs [28]. 

Compared to various traditional and newly developed synthetic protocols, ultrasound-assisted synthesis for the 
preparation of MOFs is straightforward, convenient, and highly controllable [29]. Synthesis of MOFs performed under 
ultrasonic conditions is energy efficient and hence an environmentally friendly method [30]. 

Zr-NDC is one of the least studied members of the family of UiO-based MOF. It was synthesized using the solvothermal 
method by Zhang et al. in 2013 [31]. So far, four different Zirconium-2,6-naphthalenedicarboxylate MOFs namely, DUT-
52(Zr) and DUT-84(Zr) by Kaskel group, MIL-140B by Serre group, and Zr6O4(OH)4(NDC)6.xDMF by Maître group have 
been reported in the literature [32-34]. Zr-NDC has exhibited promising applications as luminescent material for sensing 
small molecules, the electroluminescent active material in OLED devices, and catalytic electrodes for highly efficient solar 
light-driven photocatalytic disinfection [35-36]. There is only one published report concerning the ultrasonic-assisted 
synthesis of zirconium-based MOFs [37]. So far, the preparation of Zr-NDC using ultrasound-assisted synthesis was not 
reported in the literature.

In the present study, Zr-NDC was synthesized for the first time using ultrasonication. Modulated synthesis strategy 
was used in the synthesis of MOF. The efficacy of pristine Zr-NDC for the effective removal of CV dye from the aqueous 
solution was investigated. The effect of various parameters such as dye concentration, adsorbent dose, contact time, and 
pH of dye solution on the adsorption was studied to optimize the application of Zr-NDC as an adsorbent in the removal 
of CV dye from aqueous solution. The adsorption isotherms and kinetics of adsorption in the adsorptive removal of CV 
dye by Zr-NDC were also studied. 

2. Experimental section
2.1. Materials and instrumentation
All the chemicals were obtained from Sigma Aldrich and were used without any further purification. Powder X-ray 
diffraction (PXRD) patterns were recorded using a Bruker D8 Advance diffractometer equipped with monochromatized 
Cu Kα radiation (λ = 1.5406 Å) operated at 40 kV and 40 mA. Scanning electron microscopy (SEM) images were taken on 
a JEOL JSM-6390LA instrument. The acceleration voltage was set to 20 kV. Elemental analysis via energy-dispersive X-ray 
spectroscopy (EDS) was performed using an acceleration voltage of 10 kV so that zirconium (Lα = 2.042 keV), carbon (kα 
= 0.277 keV) and oxygen (kα = 0.525 keV) could be qualitatively determined. The elemental analysis for carbon, hydrogen, 
and nitrogen was performed with an Elementar Vario EL III analyzer. The Fourier transform infrared (FT-IR) spectra were 
obtained on Agilent Cary 660 instrument working in the transmission mode in the 400–4000 cm–1 range. Thermogravimetric 
analysis (TGA) measurement was carried out using Perkin Elmer STA 6000 thermal analyzer. Dynamic light scattering 
(DLS) measurements were performed on a Zetasizer (Nano-ZS, Malvern) to determine the hydrodynamic parameters of 
the Zr-NDC MOF particles in water. Nitrogen adsorption-desorption isotherms were obtained on a BELSORP analyzer 
at –196 °C. A Shimadzu UV-2450 spectrophotometer was used to determine the absorbance of dye solutions in the visible 
region. An ultrasonic bath (USC 300, ANM) was used for ultrasonication. Ultrasonic irradiation having a frequency of 40 
kHz with a power of 150 watts was used. To alter the pH of the dye solution, 0.1 M HCl and 0.1 M NaOH solutions were 
used. A digital pH meter (Model 335, Systronics) was used to measure the pH of the solutions. 
2.2. Synthesis of Zr-NDC metal-organic framework
The synthesis of Zr-NDC is outlined in Scheme. Acetic acid was used as the modulator. 2,6-naphthalenedicarboxylic acid 
(320 mg, 1.5 mmol) was added to a solution of ZrOCl2.8H2O (480 mg, 1.5 mmol) in DMF (12 mL) and then acetic acid (2.7 
mL, 45 mmol) was added. The resulting solution was placed in an ultrasonic bath and subjected to ultrasonic irradiation 
of 40 kHz (150 watts) for a period of 3 h. The temperature was monitored during the reaction and was observed to be less 
than 60 °C even after sonication for 3 h. After cooling down to room temperature, the as-synthesized white crystalline 
MOF was recovered by filtration. The solid material was washed three times with 10 mL of DMF followed by ethanol (3 × 
10 mL) and acetone (3 × 10 mL). The material was dried overnight at room temperature and then activated by heating at 
120 °C under a vacuum for 6 h. Under similar reaction conditions, crystalline Zr-NDC MOF was not obtained with the 
formic acid modulator. The attempts to obtain single crystals of MOF were also unsuccessful. 
2.3 Adsorption study
Removal of CV dye from aqueous solution by adsorption was studied using as-synthesized Zr-NDC as the adsorbent. The 
adsorption studies were carried out using variable amounts of MOF, dye solutions having different initial concentrations, 
varying the pH of dye solution, and contact time of MOF with the dye solution. These studies were carried out at a 
temperature of 30 ± 2 °C. A standard solution of the dye was prepared by dissolving 1000 mg of the dye in 1000 mL 
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of distilled water. A set of standard solutions was prepared using the stock solution. The absorbance maximum of dye 
solutions at 590 nm was measured and a calibration curve was plotted. In all the adsorption experiments, 100 mL of dye 
solution was used. The dye solution and MOF were mixed using a magnetic stirrer at 200 rpm. The adsorption efficiency, 

qe (mg g–1), was calculated using Equation 1.

 Equation 1
where Co is the initial dye concentration (mg L–1) and Ce is the dye concentration (mg L–1) at equilibrium. V is the volume 
of the dye solution (L) and M is the mass of Zr-NDC (g). 

Twenty milligrams of Zr-NDC was added to each of the 100 mL dye solutions having a concentration of 10, 20, 30, 40, 
50, 60, 70, 80, 90, and 100 mg L–1. After the time interval of 12 h, the absorbance of each solution was measured and the Ce 
values were determined from the absorbance values using the calibration curve. 

The percentage removal of dye was calculated using Equation 2.

 Percentage removal =  Equation 2
Adsorption isotherms were analyzed using three different adsorption isotherm models: Freundlich, Langmuir, and Temkin 
[38-39]. 

Freundlich adsorption isotherm is expressed as Equation 3.

 Equation 3
Here KF is the Freundlich constant and n is the constant whose value indicates how favorable the adsorption process is. 
Langmuir isotherm is represented by Equation 4. 

 Equation 4

Here qm is the maximum adsorption capacity (mg/g) of the adsorbent (Zr-NDC) with the highest concentration of dye 
(100 mg L–1) used in the adsorption experiment and KL is the Langmuir adsorption constant. 

Temkin isotherm is given by Equation 5.

 Equation 5

Here BT is the adsorption heat constant (J) and KT is the equilibrium binding constant 
(L mg–1).
2.4 Adsorption kinetics
For the kinetic study, 100 mL of dye solution having a concentration of 10 mg L–1 and 20 mg of Zr-NDC as adsorbent 
was used. At the desired time (t), the dye solutions were withdrawn and the absorbance was measured. The dye amounts 
adsorbed at time t, qt (mg g–1) was calculated using Equation 6. 

 Equation 6

Here Ct is the dye concentration (mg L–1) at time t (min). 
Three kinetic models, pseudo-first-order, pseudo-second-order, and intraparticle diffusion were applied to study the 

rate of removal of dye in the adsorption process [40]. The three models are expressed as Equations 7–9.
Pseudo-first-order kinetics,

 Equation 7
Pseudo-second-order kinetics,

 Equation 8

Intraparticle diffusion kinetics,
 Equation 9 

Here k1 (min–1), k2 (g mg–1 min–1) and ki (mg g–1 min–1/2) are the rate constants for pseudo-first-order, pseudo-second-order, 
and intraparticle diffusion respectively. C is the intraparticle diffusion constant. 

3. Results and discussion
3.1. Characterization of Zr-NDC 
The pristine Zr-NDC was characterized using different characterization techniques. The MOF was highly crystalline and 
the crystals had spherical morphology with homogenous size distribution as evident from PXRD patterns and SEM images 
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in Figures 1a and 1b. The sharp and high-intensity peak below 2θ of 10° in PXRD patterns indicated the formation of 
the Zr-NDC metal-organic framework [41]. The PXRD patterns of Zr-NDC did not exactly match with the simulated 
DUT-84(Zr), and DUT-52(Zr) patterns. Based on the comparison between simulated and as-synthesized PXRD patterns 
of DUT-84(Zr) and DUT-52(Zr) MOFs reported earlier, we confirmed the formation of Zr-NDC MOF. A comparison 
between PXRD patterns before and after adsorption by Zr-NDC indicates that the MOF framework was stable after the 
adsorption of CV dye. The energy-dispersive X-ray spectroscopy (EDS) result of Zr-NDC is given in Figure 1c. In the 
spectrum, peaks corresponding to carbon, oxygen, and zirconium were identified based on the energies of emitted x-rays 
from these elements. Using the SEM images, the diameters of nearly 50 Zr-NDC particles were measured with ImageJ. The 
obtained values were plotted in the form of a histogram fitted with Gaussian distribution as presented in Figure 1d. The 
average diameter of MOF particles was 67 nm with a standard deviation of 10 nm.

Scheme. Schematic diagram for the synthesis of Zr-NDC MOF and its adsorption of CV dye from aqueous solution.

Figure 1. Characterization of Zr-NDC MOF with different methods (a) Comparison of the 
experimental PXRD patterns of Zr-NDC MOF with the simulated DUT-52(Zr) and DUT-84(Zr) 
and PXRD pattern after CV adsorption. (b) SEM image. (c) EDS spectrum. (d) Particle size 
distribution of Zr-NDC MOF particles from SEM images.
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The FT-IR spectrum of Zr-NDC recorded in the region 400–4000 cm–1 was compared with that of 
2,6-naphthalenedicarboxylic acid (free organic linker) in Figure 2a. There were significant differences observed among 
the two FT-IR spectra. The C=O stretching vibration observed in the free organic linker (1684 cm–1) was shifted to a lower 
wavenumber in the MOF spectrum, and two strong bands observed at 1406 and 1600 cm–1 can be attributed to symmetric 
and asymmetric stretching vibrations of carboxylate ions which were due to the reaction between organic linkers and the 
metal ions. The absorption bands in the region 2500–3000 cm–1 corresponding to the stretching vibrations of the O-H bonds 
in the free organic linker were no longer present in the MOF spectrum. The absorption band at 556 cm–1 and 453 cm–1 were 
ascribed to the asymmetric stretching vibration of Zr-(OC) and bending vibration of (OH)-Zr-(OH) bonds respectively. 
Based on the previous reports, the C=O stretching frequency observed at 1654 cm–1 corresponds to DMF. Since, in liquid 
DMF, this characteristic band was located around 1675 cm–1, the shifting of the absorption band to a lower wavenumber 
suggests that the DMF molecules were coordinated to the metal nodes of the Zr-NDC through the carbonyl groups [42,43].

Figure 2b shows the thermogravimetric data for the Zr-NDC. The TGA curve was similar to DUT-84(Zr) curve. 
Three distinct mass loss regions were observed in the thermogram. Mass loss from 40 to 140 °C could be attributed to the 
volatilization of adsorbed water. Further increase in the temperature leads to a weight loss of 15% due to the cleavage of 
coordinated DMF and ethanol molecules. The framework decomposition starts above 460 °C. Pure ZrO2 is formed as the 
final solid product due to the decomposition of the organic linker and acetic acid from the framework. The characteristic 
decomposition pattern observed in the TGA curve supports the composition of the synthesized Zr-NDC. From TGA 
analysis, it was evident that the pristine Zr-NDC was defective and there were missing organic linkers in the MOF structure. 
Acetic acid and DMF are coordinated to the metal as compensating ligands to compensate for the loss of coordination due 
to the missing organic linkers. FT-IR spectroscopy and elemental analysis data also support these facts. 

Elemental analysis: Found, %: C, 38.13; H, 2.10; N, 1.42. Zr6O4(OH)4(NDC)4(CH3COO)(C2H5OH)3 (DMF)2. Calculated, 
%: C, 39.68; H, 3.36; N, 1.49.

To explore the solution-based applications of MOF particles such as drug delivery, Zr-NDC particles were characterized 
in solution with DLS [44]. The particle size distribution of Zr-NDC is shown in Figure 2c. Of Zr-NDC particles, 91.5% are 
distributed at 1230 nm with a polydispersity index (PDI) of 0.368. The bigger size of MOF particles in the solution state 
compared to the solid state can be attributed to the presence of aggregates of particles in the solution. Figure 2d illustrates 
the nitrogen adsorption-desorption isotherms of Zr-NDC. The BET surface area, pore volume, and average pore diameter 
were found to be 226.7 m2/g, 0.47 cm3/g, and 8.29 nm respectively. 

Figure 2. (a) FT-IR spectrum of Zr-NDC MOF (top) and 2,6-NDC (bottom). (b) TGA curve 
of Zr-NDC MOF. (c) Particle size distribution of Zr-NDC MOF from DLS. (d) N2 adsorption-
desorption isotherms of Zr-NDC MOF at 77 K.
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3.2. Effect of initial dye concentration
Using 20 mg of Zr-NDC adsorbent, the adsorption experiment was carried out by varying the initial concentration of CV 
dye in the range of 10–100 mg L–1. The equilibrium time for adsorption was 12 h. The effect of the initial concentration 
of dye on the adsorption by Zr-NDC was shown in Figure 3a. The percentage removal of dye decreased from 99.45% to 
90.84% with the increase in the initial concentration of dye from 10 mg L–1 to 100 mg L–1. As reported in the earlier study, 
the decrease in the percentage removal of dye can be attributed to the saturation of adsorption sites with the initial dye 
concentration of 10 mg L–1 [14]. 
3.3. Effect of Zr-NDC dose
The effect of the Zr-NDC dose on the percentage removal of CV dye in the adsorption experiments was shown in Figure 3b. 
In the adsorption experiments, a Zr-NDC dose of 5,10,15,20, and 25 mg was added to 100 mL of 10 mg L–1 CV dye solution. 
The percentage removal of dye was increased from 39.21% to 99.45% with the increase in the dose of Zr-NDC from 5 mg to 20 
mg due to the increase in surface area of the MOF. Maximum dye removal percentage was achieved with 20 mg of MOF dose. 
3.4. Effect of contact time 
The variation in the percentage of dye removal with the contact time was shown in Figure 3c. Initially, there was a sharp rise 
in the percentage of dye adsorbed onto the Zr-NDC surface with contact time. Afterward, there was a gradual slowdown 
in the percentage of dye adsorbed with time. With the increase in contact time, there will be a decrease in the number of 
active sites on the surface of Zr-NDC leading to a decrease in the extent of adsorption. The equilibrium time for adsorption 
was found to be 12 h. The maximum dye removal percentage achieved was found to be 99.45%. 
3.5. Effect of pH
pH is one of the key factors affecting the efficiency of adsorbents in the removal of dye from the aqueous solution. Earlier 
studies revealed that variation in pH of the solution will alter the surface properties of the adsorbent and the degree of 
ionization of the absorptive molecules [45]. To study the effect of the pH of the solution, adsorption experiments were 
carried out with an initial CV dye concentration of 10 mg L–1 and Zr-NDC adsorbent dose of 20 mg at a temperature of 30 
± 2 °C for 12-h equilibrium time. The variation in percentage removal of dye by adsorbent with the change in the pH of the 
solution is shown in Figure 3d. There was a gradual increase in percentage removal with the increase in pH of the solution 
from 3.0 to 9.0. The dye uptake was maximum at a pH of 9.0. The study was carried out in the pH range from 2 to 10 only 
as zirconium-based MOFs are prone to decomposition in strong alkaline solutions [27]. 

Figure 3. Factors affecting the adsorption of CV dye onto Zr-NDC MOF (a) Initial 
concentration of CV dye. (b) Amount of Zr-NDC MOF dose. (c) Contact time. (d) pH 
of the solution.
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3.6. Adsorption isotherms
The three most widely applied isotherm models, Freundlich, Langmuir, and Temkin, were applied to find out the 
adsorption performance of Zr-NDC. Adsorption isotherm models were used to provide information about the mechanism 
of adsorption, evaluation of the performance of the adsorption process, and capacity of Zr-NDC as an adsorbent. These 
three adsorption isotherms were represented by Equations 3–5. The isotherm data were fitted to the three models to 
determine the best fit for the adsorption data. Freundlich, Langmuir, and Temkin’s linear plots are shown in Figures 4–6. 
The adsorption isotherm parameters for the three models are listed in Table 1. Langmuir model (R2 = 0.9880) was the best 
fit compared to Freundlich (R2 = 0.9525) and Temkin (R2 = 0.9034) models. Hence, the Langmuir adsorption of CV dye 
from aqueous solution onto Zr-NDC can be best described by the Langmuir adsorption isotherm model. From the slope of 
the plot in Figure 5, the calculated maximum adsorption capacity (qm, cal) of the Zr-NDC adsorbent was found to be 458.71 
mg g–1. This value was very close to the experimental maximum adsorption capacity (qm, exp) value of 454.20 mg g–1. From 
the intercept of the plot, KL was found to be 1.172. 

Figure 4. Linear plot for Freundlich adsorption isotherm. Figure 5. Linear plot for Langmuir adsorption isotherm.

Figure 6. Linear plot for Temkin adsorption isotherm.
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An important characteristic of the Langmuir adsorption isotherm, separation factor (RL) was calculated using Equation 10. 

 Equation 10

Here Co is the highest initial dye concentration (mg L–1) and KL is the Langmuir constant. 
With the highest concentration of dye (100 mg L–1) used in the adsorption experiment, the calculated value of RL 

was 0.00846. Since the RL obtained was between 0 and 1 (0 < 0.00846 < 1), the adsorption process was favorable [14]. 
The results indicate that the Zr-NDC surface was covered by a single layer of CV dye molecules and the active sites were 
homogeneously distributed on the Zr-NDC adsorbent surface. 

The adsorption capacity of Zr-NDC for the adsorption of CV dye was compared with various other MOF adsorbents 
reported in the literature as shown in Table 2. The maximum CV dye adsorption capacity of Zr-NDC was higher than the 
adsorption capacity of most of the other MOF adsorbents.
3.7. Kinetics studies
To study the adsorption kinetics, three kinetic models, pseudo-first-order, pseudo-second-order, and intraparticle diffusion 
were used. These three models were represented by Equations 7–9. The linear plots for the three models were presented 
in Figures 7–9. The kinetic parameters for the three models are listed in Table 3. Based on the linear regression coefficient 
value (R2), it was found that the pseudo-second-order kinetic model is the best fit for the adsorption kinetics data obtained 
in the present study. The value of R2 (0.9960) for the pseudo-second-order kinetic plot is higher than the R2 values of linear 
plots of the other two kinetics models. The calculated maximum adsorption capacity (qm, cal = 52.49 mg g–1) was in good 
agreement with the experimental value (qm, = 52.49 mg g–1). The pseudo-second-order rate constant was determined to 
be 6.52 × 10–4 g mg–1 min–1. The results obtained in the kinetics studies suggest that the adsorption of CV from aqueous 
solution onto the Zr-NDC surface proceeds via chemisorption [16]. 
3.8. Adsorption mechanism
Based on the analyses of adsorption isotherm data, it is clear that the Zr-NDC has a good adsorption capacity for 
CV. Even though a detailed study is necessary to understand the adsorption mechanism, based on the earlier studies, 
the adsorption may be primarily due to the electrostatic interaction between anionic Zr-NDC and the cationic CV 
[46]. CV is a cationic dye that usually exists in a positive form. Therefore, any adsorbent having a negative framework 
will be in electrostatic interaction with CV. With the increase in pH of the solution, there was an increase in the 
adsorption capacity of the Zr-NDC adsorbent. This indicates that at higher pH values, the Zr-NDC surface carries the 
negative charge which benefits the adsorption of cationic CV dye through electrostatic interaction. A similar adsorption 
mechanism via electrostatic interaction has been reported [47]. π-π interactions between planar naphthalene rings in 
the skeleton of Zr-NDC and benzene rings in the CV may be another possible mechanism to explain the adsorption of 
CV onto Zr-NDC. 

Table 1. Isotherm parameters for adsorption of crystal violet on Zr-NDC MOF.

Concentration of dye (mg L–1)
qe, exp
(mg g–1)

Freundlich isotherm Langmuir isotherm Temkin isotherm

Co Ce n KF
(mg g–1) R2 qm

(mg g–1
)

KL
(L mg–1) R2 BT

(J)
KT
(L mg–1) R2

10 0.055 49.725

2.54 201 0.9525 458.71 1.172 0.9880 13.7 0.01926 0.9034

20 0.19 99.05
30 0.33 148.35
40 0.73 196.35
50 1.92 240.4
60 3.54 282.3
70 5.69 321.55
80 7.062 364.69
90 8.215 408.92
100 9.16 454.2
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Table 2. Comparison with other MOF adsorbents for adsorption of crystal violet dye.

MOF adsorbent Adsorption capacity (mg g–1) Reference

Zr-NDC 454.2 Present work 
Fe-BDC 9.286 [14]
Cu3(BTC)2 0.29 [15]
H2dtoaCu 165.83 [16]
IFMC-2 2.4 [17]
Cd-based 221 [18]
Zn-based 54.50 [19]
BUT-29 832 [20]
Zr-based loaded on PU foam 63.38 [21]
Sr-based phosphotungstic acid 237 [22]
Cu-based Not reported [23]

Figure 7. Linear plot of pseudo-first-order kinetics of CV 
adsorption.

Figure 8. Linear plot of pseudo-second-order kinetics of CV dye 
adsorption.

Figure 9. Linear plot of intraparticle diffusion kinetics of CV dye 
adsorption.
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4. Conclusions
This study reports the successful synthesis of Zr-NDC for the first time using environmentally friendly ultrasonic-assisted 
synthesis. The reaction conditions were optimized for the synthesis of Zr-NDC via modulated synthesis approach using 
30 equivalents of acetic acid. The removal of CV dye from aqueous solution using pristine Zr-NDC was investigated. A 
study of adsorption kinetics and adsorption isotherm models revealed that pseudo-second-order kinetics and Langmuir 
adsorption isotherm model best describe the adsorption of CV dye onto Zr-NDC. The maximum equilibrium adsorption 
capacity (454.2 mg g–1) was achieved with the CV dye having an initial concentration of 100 mg L–1. Zr-NDC was found to 
be a highly efficient adsorbent for the removal of CV dye from aqueous solution. 
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Table 3. Kinetic parameters for adsorption of crystal violet on Zr-NDC MOF.

Ci 
(mg L–1)

qe, exp
(mg g–1)

Pseudo-first-order kinetic model Pseudo-second-order kinetic model Intraparticle diffusion model

qe, cal
(mg g–1)

k1 
(min–1) R2 qe, cal

(mg g–1)
k2 
(g mg–1 min–1) R2 ki 

(mg g–1 min–1/2) C R2

10 49.72 38.61 0.0158 0.9368 52.49 0.0006522 0.9960 2.1843 17.25 0.9658
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