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1. Introduction
Water pollution is one of the significant issues in today’s world, which requires dealing with various kinds of toxic 
compounds [1-3]. Particularly, wastewater discharge is one of the major sources of common pollutants as they contain 
various types of chemical byproducts and reagents [4, 5]. Their release into the environment pollutes exposed areas 
and they quickly spread into surrounding sources, including drinking water sources. Some of these molecules, such as 
polycyclic aromatic hydrocarbons (PAHs), are highly toxic and even carcinogenic, and on contact, they can induce severe 
damage on the genome level by transforming a normal cell into a cancer cell [6].

Polycyclic aromatic hydrocarbons (PAHs) are fused aromatic rings that are present naturally in crude oil, gasoline, and 
coal, and they are formed during the combustion of oil, wood, tobacco, and garbage [7, 8]. PAHs are known for their potent 
toxic, mutagenic, and teratogenic properties. Once PAHs are taken up into the body, they undergo enzymatic reactions and 
produce reactive metabolites by the cytochrome P450 (CYP) enzyme. The formed reactive metabolites can later covalently 
bind between the nucleotides of DNA strands (i.e. PAH–DNA adduct), ultimately exerting their carcinogenic effects [9]. 
PAHs are globally present in almost every resource; however, being lipophilic, they are prone to accumulate on organic 
matter. Their presence in water sources was also detected: they exist even in drinking water sources at substantial amounts 
(32.45–733.10 ng/L) [10]. Although their water solubility is very low (0.001–31,000 μg/L), consistent exposure to such low 
concentrations can lead to the induction of carcinogenesis and tumorigenesis. In this regard, PAHs have been found in 
groundwater (1.0-10.0 ng/L), tap water (2.5−9.0 ng/L), surface water (10−830 ng/L), and rain-water (2.7−7.3 ng/L), and 
the critical PAH concentration for cancer risk was reported as 600 ng/L by the World Health Organization (WHO). 
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Several approaches, either specific or nonspecific, for PAH scavenging have already been reported. In the first case, 
PAHs and sorbent materials can interact through particular interactions, such as host-guest, π-π, and molecular docking. 
The latter method relies on hydrophobic interactions between the materials and PAH compounds [11-16]. Although 
nonspecific strategies are considered less efficient than specific ones, previous studies revealed that both methods do 
not significantly differ in performance. Moreover, their response times are comparable for water remediation. The latter 
approach does not require any specific chemistry and functionalization step, and its production on large scales is more 
plausible than other complex sorbent systems. 

Electrospun materials offer many benefits in environmental remediation applications because of their higher surface 
area per unit volume, tunable porosity, interconnected porous structure, and tunable fiber shapes (i.e. beaded, rounded, 
core-shell, hollow, Janus, and ribbon-like) [17, 18, 19, 20, 21]. The electrospinning technique offers handy flexible materials 
with a nanofibrous structure for water treatment and therefore sparked a great interest to remove toxic pollutants, such as 
PAHs, from water. In this regard, various synthetic and natural polymers and their combinations were electrospun into 
nanofibrous materials to be employed for the scavenging of PAH pollutants. In one example, cavitand-based electrospun 
membranes were employed for the removal of several PAHs from water [22]. The authors synthesized benzoquinoxaline-
based cavitands and embedded them in polyacrylonitrile fibers. The resultant fibrous membrane showed a PAH sorption 
capacity of 1.32 mg/g and the sorption kinetics fitted well with the pseudo-second-order model. Another interesting 
electrospun membrane was developed using laccase enzyme, multicopper oxidases, and poly(lactide acid) (PLA) and 
PLA copolymers as carrier polymers [23]. The enzyme activity could be retained significantly after the electrospinning 
process (i.e. >70%) and the nanofibrous membranes exhibited very high PAH sorption capacities (0.9–2.2 mg/g). Huang 
et al. produced hollow Co-MOF-74 incorporated electrospun membranes with hierarchical structures for PAH removal 
[24]. Because of the incorporated Co-MOF-74 particles, polyvinylidene fluoride fibers showed a very high surface area 
(approximately 634 m2/g). The maximum sorption capacity (i.e. calculated through the Langmuir model) of the fibers 
was in the range of 160–214 mg/g for various PAHs. Uyar and colleagues reported native cyclodextrin (CD)-modified 
poly(ethylene terephthalate) (PET) nanofibers for the removal of phenanthrene from water, and they observed no 
substantial improvement in the adsorption capacity of CD-functional ones to the unmodified fibers. The same research 
group also reported CD-grafted electrospun cellulose acetate nanofibers for removing phenanthrene [25]. They observed 
nearly a 10% difference in performance between CD-functional fibers and pristine fibers. In addition to synthetic fibers, 
natural fibers were also employed to scavenge several PAH compounds. For example, Khan et al. used natural cotton-
like fibers (kapok and cattail, both are derived from plants) for PAH removal. They have found that the PAH removal 
performance of kapok fibers was lower than the cattail fibers, and the sorption capacity of both fibers for phenanthrene 
was lower than 200 μg/g [26]. Similarly, Aspen wood fibers were used as natural fibrous sorbents for snaring PAHs with a 
sorption capacity range of 22.5−74 μg per gram dry wood samples [27]. Numerous sorption platforms for PAH removal 
can be found in the comprehensive review of Lamichhane et al. [28]. Despite the presence of many PAH sorbents, efficient, 
straightforward, and environmentally benign sorbent alternatives are always desired for water decontamination from 
PAHs. 

This article describes an efficient and reusable approach for scavenging PAHs (i.e. phenanthrene and anthracene) from 
water using an electrospun PCL membrane. Since the membrane is solely made by PCL, it is expected to be biocompatible. 
Unlike many sorbents, PCL-based adsorbents do not release toxic components in depolluted water during their use. PCL 
is a biocompatible and biodegradable polymer that undergoes slow degradation producing caproic acid, succinic acid, 
valeric acid, and butyric acid [29]. PCL is a hydrophobic polymer, and its hydrophobic nature allows its use in various 
structures to scavenge harmful lipophilic molecules from water. In this regard, the shape and size of PCL-based sorbents 
play critical roles in terms of the sorption capacity and an initial response rate; for instance, nano-/micron-sized materials, 
such as fibers, significantly boost the sorption capacity and kinetics because of their higher surface area per unit volume. 
In this regard, there is a single report on the use of PCL fibers for the scavenging of anthracene, benz[a]anthracene, and 
benzo[a]pyrene [30]. However, these three PAHs have very poor water solubility (<22 μg/L) and the sorption performance 
of PCL fibers for higher water-soluble PAHs (e.g., phenanthrene) has not been reported yet. Moreover, the reusability 
of PCL fibers for PAH removal has not been studied either. In this study, an electrospun PCL membrane, for the first 
time, was used for the scavenging of phenanthrene from water. The sorption kinetics for both PAHs (i.e. phenanthrene 
and anthracene) were determined using kinetics models. The reusability of the membrane was tested after washing the 
sorbents with ethanol treatment. The stability of the PCL membrane was explored in water for 3 weeks and in the air at 
room temperature for 3 months.
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2. Materials and methods
2.1. Materials
PCL (Mw = 80 kg/mol) and PAH molecules (i.e. anthracene and phenanthrene) were purchased from Sigma Aldrich. 
Chloroform (≥99.8%), methanol (≥99.8%), and ethanol (≥99.8%) were received from VWR Chemicals and used as 
received.
2.2. Production of electrospun PCL membranes
PCL pellets were dissolved in chloroform: methanol mixture (5:1) under continuous stirring. Thereafter, the solution was 
loaded into a 5-mL syringe fitted with blunt metallic needles. The optimum PCL concentration for bead-free fibers was 
observed at 15% (w/v); therefore, PCL membranes were produced at this concentration. The syringe filled with a PCL 
solution was placed vertically on the syringe pump. The feeding rate was set to 0.5 mL/h. A high-voltage power supply was 
employed to provide 15 kV. The resultant fibers were collected on a metal collector at a 10 cm distance, and the collector 
was covered by aluminum foil. The electrospinning process was carried out at 25 °C (±1) and 45%–50% relative humidity. 
2.3. Methods
The fiber morphology was explored using a scanning electron microscope (Hitachi S3000 N) at 15 kV and a working 
distance range of 5–15 mm. Before the analysis, the samples were coated with a thin gold layer using Edwards S150B Gold 
Sputter Coater. The average fiber diameters (<D>) and their distributions were calculated by analyzing approximately 
50–100 fibers using ImageJ software (National Institutes of Health, Bethesda, USA). Wide-angle X-ray diffraction (XRD) 
analysis was done using an Empyrean setup from PANalytical. A Cu X-ray tube (line source of 12 × 0.04 mm2) provided Cu 
K-alfa radiation with λ = 0.1542 nm. The scans were done with 2θ, the detector axis, moving at twice the rate of the θ-axis 
of the incident beam. Water contact angle measurements were performed using a Dataphysics OCA-30 contact angle 
analyzer. For static contact-angle measurement, 5 μL of water droplets were placed on the fibers, WCAs were recorded at 
least three different positions, and the mean value was given. The phase behavior of the PCL membrane was explored using 
differential scanning calorimetry (DSC, TA Q2000, UK). The PCL membrane was cooled to 0 °C and then heated up to 
120 °C at 10 °C/min under an N2 atmosphere. Afterward, the sample was cooled to 0 °C at 10 °C/min. 
2.4. Sorption experiments
The sorption experiments were performed using aqueous PAH solutions. The PCL membranes (2.5 mg) were treated with 
the solutions of the respective PAHs. The initial concentrations of phenanthrene and anthracene were 1 mg/L and 0.044 
mg/L, which were below the solubility of the respective PAHs in water. During the sorption experiments, a 3 mL sample 
was taken and measured with fluorescence spectroscopy. The measured solution was put back into the treated solution. 
The adsorption capacity for PAHs was calculated using the fluorescence intensity of the respective PAH molecules and the 
weight of the PCL membranes used. The reusability of the PCL membrane was tested after washing the used membrane 
with ethanol, which released the adsorbed PAHs from the membrane’s surface. The membrane was retreated with PAHs 
for 3 h. This cycle was repeated two more times, and sorption capacity was determined by measuring the fluorescence 
intensity of the respective PAH solution. 

3. Results and discussion
A PCL membrane was produced through the electrospinning of the PCL solution in chloroform: methanol mixture (5:1) 
(Figures 1a and 1b). The electrospun PCL fibers were collected on an aluminum foil. The membrane could easily be 
separated from the foil without any crack development. The dark-field illumination image of the PCL membrane, which 
was spun at a concentration of 15% (w/v), revealed the formation of thick fibers without any beads (Figure 1c). Scanning 
electron microscopy (SEM) analysis of the PCL membrane revealed the formation of microfibers. The mean diameter of 
the fibers was calculated to be 2.74 ± 1.3 μm (Figure 2a). The resultant fibers are rounded and bead-free fiber structures. 
The high-magnification SEM image of the respective fibers demonstrated the formation of wrinkled surface texture. The 
fiber texture might be attributed to atmospheric pressure, which might lead to the collapse of the fast-drying skin formed 
on the jet surface. On the other hand, Pai et al. associated the appearance of wrinkles with the buckling of a cylindrical 
polymer shell under comprehensive radial stress, which resulted from the removal of solvents from the core of the jet 
and a lateral contraction due to the axial tensile stress [31]. The robustness of the membrane was explored through the 
scanning electron microscopy analysis after the membrane was subjected to stretching (Figure 2b). The stretching caused 
the thinning and orientation of the fibers. However, the PCL membrane could maintain its fibrous structure without any 
rupture, demonstrating its robustness. This can be attributed to the extension of entangled chains and their interactions 
with other chains over hydrophobic associations before getting deformed by an external force. With that, the mean fiber 
thickness decreased to 1.47 ± 0.9 μm. PCL membrane is a mechanically robust and flexible material and does not display 
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any crack development easily. The Young’s modulus of the PCL membrane was reported as high as 3.8 ± 0.8 MPa, suggesting 
the high structural integrity of the membrane for their practical applications [32]. In industrial applications, mechanical 
failure of the sorbents is not desired and is the cause of sorbent replacements. Since the electrospun materials are more 
flexible than their nonfibrous counterparts, they will provide desired mechanical properties for their practical applications. 

The crystalline structure of the PCL membrane and film was explored through XRD analysis (Figure 3). The 
sharp crystalline diffraction peaks at approximately 20° and approximately 22° showed main crystalline regions with 
corresponding d-spacing values of 4.37 Å and 3.98 Å, respectively. For many polymers, electrospinning can cause a 
decrease in crystallinity. However, the crystalline structure of the PCL during electrospinning could be preserved, which 
is consistent with the findings of Olivera et al. (2003) [33]. The PCL membrane was also analyzed through the DSC 
measurements using a heating-cooling cycle from 0 to 120 °C. The results revealed the semicrystalline structure of the 
membrane (Figure 4a). The sample showed a melting temperature (Tm) of 61.5 °C and crystallization temperature (Tc) of 
29.6 °C, which are in line with the previous reports on PCL pellets [34].The PCL is a hydrophobic molecule composed of 
repetitive caprolactone segments; thus, the material derived from PCL molecules should possess a hydrophobic character. 
The surface hydrophobicity of the PCL membrane was explored by time-dependent wettability experiments over contact 
angle measurements (Figure 4b). The water droplet stood as a receding sphere with the respective water contact angle of 
124°. Over time, the wettability of the membrane remained almost stable. 

Figure 1. (a) A cartoon scheme of the electrospinning system employed 
for the production of the electrospun PCL membrane, (b) optical images of 
the fibers after the electrospinning process, and (c) a dark-field micrograph 
of the PCL membrane. Scale bar, 100 μm. cPCL= 15% (w/v) in chloroform: 
methanol mixture (5:1).
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The sorption properties of the PCL membrane were tested with PAH molecules (i.e. anthracene and phenanthrene) in 
water (Figure 5). From the time-dependent adsorption of the PAHs, the sorption capacity of the PCL membrane for each 
PAH molecule was calculated. The PCL membrane showed a higher sorption capacity for phenanthrene than anthracene. 
This could be ascribed to the high-water solubility of phenanthrene (i.e. 1.4 mg/L) compared to anthracene (i.e. 0.045 
μg/L) at the levels they were treated with the fibers. The sorption capacities of the membrane were found to be 173 μg/g for 
Ant and 560 μg/g for Phen. Even though PAH sorption data fit well with both pseudofirst-order kinetic and pseudosecond-
order kinetic models, experimental sorption capacity was much closer for the pseudofirst-order kinetic model with higher 
R2 values (Table 1). The PAH sorption capacity of the membrane was compared with different PAH sorbents (Table 2). 
The sorption capacity of the PCL membrane was higher than natural fibers but lower than the adsorbents, which rely on 

Figure 2. Scanning electron microscopy images of the PCL fibers (cPCL=15 % w/v) at different magnifications before (a) and after (b) 
stretching of the fibers. Insets show the size distribution of the respective fibers.

Figure 3. Wide-angle X-ray diffraction (XRD) 
patterns of the PCL membrane and film. 
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specific interactions, such as host-guest complexation with CDs and π–π interactions with DNA strands (Table 2). Keeping 
in mind the biocompatibility, biodegradability, and ease to fabricate, PCL fibers seem to be promising materials to be 
employed for PAH removal. The PAH sorption performance of the nanofibrous PCL membranes was compared with the 
performance of the previously reported PCL fibers. In this regard, Dai et al. used PCL for the removal of anthracene and 
found the equilibrium sorption performance as 78.6 μg/g, which is much lower than the equilibrium sorption capacity 
reported in this work (i.e., 173 μg/g) (30).

Figure 4. (a) DSC curves of the PCL membrane during a heating-cooling cycle. (b) Time-
dependent WCA measurements of the PCL membrane. The inset photo shows a water droplet 
on the PCL membrane, and the initial contact angle was measured as 124°. The x-axis “number 
of measurements” denotes the fastest measurements possible.

Figure 5. PAH sorption performance of the PCL membrane from water. Sorption capacity of the 
PCL membrane for (a) Phe and (b) Ant as a function of time. Pseudo-first-order kinetic model fit 
for (c) Phe and (d) Ant. Pseudo-second-order kinetic model fit for (e) Phe and (f) Ant.
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The PCL membrane could be reused for PAH sorption after exposure to ethanol, which released the adsorbed PAHs from 
the membrane surface. Afterward, the membrane retreated with a phenanthrene solution of an identical concentration. 
After the 3-h treatment, the intensity of the solution was comparable to the first use, while after the 3rd repetition, a slight 
decrease in the sorption performance was observed (Figure 6). This demonstrated the reusability of the PCL membrane 
for PAH removal from water bodies.

One of the most intriguing characteristics of the PCL membranes is their intrinsic stability in water under mild 
conditions. Although PCL is a biodegradable polymer, its degradation in aqueous solutions takes a long time due to the 
gradual hydrolysis of ester bonds. Furthermore, its degradation is highly dependent on the incubation temperature. The 
PCL membrane was subjected to hydrolysis at 25 °C for 3 weeks. After 3 weeks of incubation in water, the fibers in the 
PCL membrane became swollen, interlinked, and degraded to some extent. Due to the hydrophobic nature of the PCL, the 
primary degradation pathway of PCL could be attributed to hydrolysis-induced bulk erosion, meaning the loss of material 
from every side. This is in line with the literature where PCL degradation occurred as the random hydrolytic breakage of 
the ester linkages in the PCL structure [35, 36]. With that, the swelling of fibers occurred to some extent, and the fibrous 
structure became obscure and exhibited a film-like structure as seen in Figure 7a. On the other hand, the degradation of 
the PCL membrane was much lower for the membrane left in the air for 3 months. No apparent degradation was observed 
in the morphology of the respective membrane (Figure 7b).

Table 1. Kinetics parameters for the adsorption of phenanthrene and anthracene by the electrospun PCL 
membrane.

Experimental Pseudofirst-order model Pseudosecond-order model

qexp (μg/g) qe (μg/g) k1 (min–1) R2 qe (μg/g) k2 (g.μg–1 min–1) R2

Phe 560 ± 51 624.73 –0.00019 0.9934 649.35 0.000058 0.9658
Ant 173 ± 17 177.24 –0.00015 0.9990 215.05 0.000121 0.9150

Table 2. PAH sorption performances of several adsorbent systems.

Adsorbent PAHs Time of 
contact (h) Interactions Sorption capacity 

(μg g-1) Reusability (%) Reference

DNA nanogels Ph, 3 π–π 720 N.D. [37]

PolyCD gels Fla, Py, Ph, Fle, 
An 6 Hydrophobic, inclusion-

complexation 105–1250 >94 
(after 2 cycles) [38]

Kapok, cattail fibers Ph, Fla, Fle, Nap, 
Acy, Ace 42–130 Hydrophobic 189 (for Ph) Kapok

193 (for Ph) Cattail - [26]

CD-MSN Ph, An 3 Inclusion-complexation, 
hydrophobic

1650 (for Ant)
1520 (for Phe) - [39]

Synthetic zeolite Na-X 
and clinoptilolite An 24 Hydrophobic 83–144 - [40]

Electrospun PCL 
membrane Ph, An 3 Hydrophobic 560 (for Phe)

173 (for Ant)
>85% 
(after 3 times) This study

Ph: phenanthrene; Fla: fluoranthene; Py: pyrene; Fle: fluorene; An: anthracene; Ace: acenaphthene; CD: cyclodextrin; MSN: mesoporous 
silica nanoparticles; DNA: deoxyribonucleic acid.
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4. Conclusions
A facile and biocompatible approach for the scavenging of PAHs from aquatic media using an electrospun PCL membrane 
was reported. The PAH sorption capacities of the PCL membrane were in the range of 0.2–0.6 mg/g depending on the 
PAH compound. Furthermore, the PCL membrane could be reused three times with exposure to ethanol, which released 
the adsorbed PAH molecules from the interface but did not affect the fiber morphology. Throughout the repetitive 
experiments, the PCL membrane did not reveal any drastic drop in the PAH sorption capacity. The sorption results showed 
that the efficient binding is evident and relied on hydrophobic interactions between PAH and PCL. The sorption kinetics 
data fitted well with the pseudofirst-order kinetics model. The membrane could be reused after treatment with ethanol 
while maintaining the sorption performance above 85%. The PCL fibers could be degraded in water through mainly 
bulk degradation after 3 weeks of exposure, but the degradation was much slower for the fibers left in the air. Overall, 
the electrospun PCL membrane offers high sorption capacity for water remediation from toxic PAHs and possesses the 
benefits of degradability and recyclability, along with intrinsic biocompatibility. 

Figure 6. The fluorescence spectra of the phenanthrene 
solutions before and after three-time treatment with the 
PCL membrane for 3 h. The inset shows the narrow range 
of the respective spectra.

Figure 7. Scanning electron microscopic images of the PCL membrane at different 
magnifications after (a) 3-week incubation in water and (b) 3-month incubation in 
the air at room temperature.
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