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1. Introduction
In recent years, many pharmaceutical drugs and hormones have been consumed in too much quantity. [1-3]. After the use of 
these drugs, negative effects on the environment and human health occur. Many unused, expired, and residual drugs are released 
into the environment during and after treatment. These pharmaceutical drugs are mixed with human urine and manure and 
wastewater after metabolism in the human body [4]. As a result of studies, pharmaceutical drugs have been detected in sewage, 
surface water, and groundwater in many countries [5-7].

Paracetamol (also known as acetaminophen or APAP) is an analgesic and antipyretic drug widely used all over the world 
[8,9]. It is also used as an intermediate in the production of azodies and photographic chemicals. The presence of trace amounts 
of paracetamol (PAR) and other xenobiotic compounds in drinking water is also a public health problem. Because these 
compounds are taken through drinking water for a long time, chronic health effects occur [10].

Some physicochemical and biodegradation methods are used to prevent contaminations and to reduce their concentration 
[11-13].  These methods have disadvantages such as being less effective and needing long reaction times.

It has been reported that some techniques such as activated carbon adsorption [14,15] ultrasound [16], Fenton oxidation 
[17,18] and ozonation [19,20] are frequently used in the removal of PAR in wastewater. However, it is noteworthy that there are 
few studies on the use of photocatalysts in the removal of pharmaceutical chemicals.

Advanced  oxidation  process  (AOP) is an important technique known as photocatalytic oxidation of organic materials. 
After the photolysis reaction with UV light, the surface of the pollutants react with the catalyst and the electrons move from 
the valence band to the conduction band. Reactive species (e− and h+) initiate oxidation and reduction reactions. As a result 
of the redox reactions occurring with these active species, the mineralization of organic compounds takes place. Oxidation to 
strong oxidizing species such as OH• occurs by the reaction of light-formed cavities in the valence band with OH- or H2O.  Since 
the hydroxyl radical has an oxidation potential of 2.80 eV, it can react with organic compounds 1012 times faster than other 
oxidants [21].

Laboratory-scale studies and reports from treatment plants prove that paracetamol PAR shows very low or no biodegradability 
[22,23]. When an additional treatment such as chlorination is applied, very toxic by-products are formed [24,25]. Therefore, 
there is a need to investigate highly efficient, economical, and environmentally friendly processes such as AOPs.

It is important to develop harmless, highly effective alternative methods using nanocatalysts with low toxicity, low cost, 
and high performance, especially in the degradation of resistant hazardous chemicals.
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Shakir et al. investigated the efficiencies of pure ZnO and lanthanum-doped ZnO in the photocatalytic degradation of 
paracetamol PAR. It was determined that the PAR solution was photocatalytically decomposed with ZnO and different 
lanthanum-doped ZnO under visible light, and the 3% lanthanum-doped ZnO nanoparticles achieved the highest 
photocatalytic activity. It was reported that approximately 80% of PAR decomposed in 180 min with 3% La-doped ZnO 
nanoparticles [26].

Moctezuma et al. investigated the oxidation of PAR under UV light with TiO 2 catalyst in the presence of constant 
oxygen flow (100 mL/min). As a result, 100% conversion and 72% mineralization values were reached after 4 h [27].

In the literature, Bi2O3 is preferred as an alternative photocatalyst for the degradation of pollutants due to its lower 
band energy of 2.85 eV. Due to its superior properties permeability and distinctive photoluminescence properties, it is 
commonly used in gas sensors, fuel cells, optical coatings, ceramic glass production.

Sood et al. synthesized α-Bi2O3 and they explained that α-Bi2O3 nanorods catalyst exhibited excellent solar-light driven 
photocatalysis towards rhodamine B (97% dye degradation in 45 min) and 2,4,6-trichlorophenol (88% dye degradation in 
180 min) [28].

  Khairnar et al. prepared α-Bi2O3 by sol–gel method and investigated photocatalytic degradation of  chlorpyrifos 
and methylene. The results showed that the synthesized α-Bi2O3 NPs shows the excellent photocatalytic efficiency against 
the MB dye as compared to the CPS pesticide under UV–visible irradiation [29].

Abu-Dief et al. synthesized monoclinic bismuth oxide nanorods (α-Bi2O3 NRs) by a simple one-step hydrothermal 
route. The as-synthesized α-Bi2O3 NRs photocatalyst exhibited better performance for degradation and decolorization 
of Methylene blue (MB) under ultraviolet (UV) irradiation. MB was completely photodegraded after 210 min under UV 
irradiation using α-Bi2O3 NRs as photocatalyst [30].

Bi2O3 is an effective photocatalyst for the degradation of organic compounds. In the literature, Bi2O3 has mostly been used 
for dyestuff degradation. However, the use of Bi2O3 in the photocatalytic degradation reactions of paracetamol has never 
been found. For this reason, the Bi2O3 catalyst was prepared by an easy and inexpensive method such as coprecipitation. 
The investigation of photocatalytic disruption efficiency in various reaction parameters may contribute to the research in 
the literature.

In our study for this purpose, the photocatalysts (TiO2, ZnO, ZrO2, and Bi2O3) to provide high efficiency in a short time 
were developed and the degradation of PAR, which is a widely used reagent in medicine, was investigated in the presence 
of these catalysts. 

Photocatalysis is one of the most promising methods for water pollutant degradation with an unlimited energy source. 
The main aim is to investigate the effects of metal oxides with different band gap energies and different surface properties 
on the photodegradation of PAR.  Another aim of the study is to provide total mineralization of PAR in the water phase 
in a short time or to reduce its concentration.  In addition, the preparation of pure metal oxides using different synthesis 
methods and the elucidation of the structures of these catalysts constitute an important part of the study. The various 
characterization methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance 
spectroscopy (DRS), Brunauer, Fourier transform infrared (FTIR), and Emmet and Teller (BET) were used to determine 
the surface and optical properties of photocatalysts. The effects of the obtained results on the photocatalytic activity are 
explained.

2. Experiments and methods
2.1. Materials
In this experimental study, the basic materials were commercially available and used without further purification. 
These materials are bismuth (III) nitrate pentahydrate (98%; Alfa Aesar Company), zinc nitrate hexahydrate (ACROS 
Organics, 98%), titanium tetrachloride (Fluka, 99%), zirconium(IV) oxynitrate hydrate (Fluka).  PAR, p-aminophenol, 
benzoquinone, and hydroquinone were purchased from Aldrich. Other chemicals, including nitric acid (65%), ethanol 
(absolute), acetonitrile (for HPLC, ≥99%), ammonia solution (25% in water), and sodium hydroxide (97%) were all 
purchased from Merck.
2.2. Catalyst synthesis methods
Bi2O3 was prepared with the coprecipitation method. After bismuth nitrate pentahydrate was dissolved in the nitric acid-
water mixture, sodium hydroxide solution was added under stirring until the pH was 11. Heating was done until the 
temperature of the mixture reached 75 °C and kept at constant temperature for 2 h. The precipitate formed after waiting 
was filtered and washed with distilled water and absolute ethanol. Afterwards, the particles were dried at 80 °C for 2 h and 
calcined by heating at 450 °C for 2 h at 10 °C/min.
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ZnO and ZrO2 were prepared with the coprecipitation method. The determined amounts of zinc nitrate hexahydrate 
and zirconium (IV) oxide nitrate hydrate were dissolved in deionized hot water and heated to 65 °C. The precipitation 
process was carried out by adding ammonia solution (25% by weight) drop by drop until the pH values of the solution 
reached 10. The mixture was then stirred at 65 °C for 2 h. Then the solutions were kept in a 500 W microwave oven for 3 
min. The precipitate formed after waiting was filtered and washed with distilled water. Afterwards, the particles were dried 
at 100 °C for 2 h and calcined by heating at 500 °C for 5 h at 10 °C/min.

TiO 2 structure was prepared with the simple sol–gel method. The determined amount of titanium tetrachloride was 
added dropwise into absolute ethanol under stirring. The formation of a transparent-yellow solution was observed. The 
resulting sol, after standing for a few days to form a gel, was dried in an oven at 105 °C for 24 h and, after grinding, calcined 
at 600 °C for 4 h.
2.3. Catalyst characterization
The surface area of the prepared metal oxides was measured by the nitrogen adsorption/desorption technique using the 
Quantachrome device. All catalysts were held under vacuum at 200 °C for 4 hours.

The crystal structure of the catalysts was determined with the Rigaku D/Max-2200 powder X-ray diffraction measuring 
device using CuKa radiation (λ= 1.54056 Ε). The diffraction patterns were evaluated in the range of 10°–90° at a scan rate 
of 2 degrees 2θ . The crystallite size (Davg) values were figured out by the Debye-Scherrer equation by using FWHM values.

The morphologies and size distributions of nano-sized metal oxides were examined by high-resolution scanning 
electron microscopy (SEM) (JEOL/JSM-a6335F).

The presence of OH- groups in powder samples were examined with FT-IR spectroscopy (Perkin Elmer Precisely 
Spectrum One).

The band gap energies of the semiconductor oxides were measured with the UV-Vis DRS technique and the absorption 
band gap energy (Eg) was calculated using the Kubelka-Munk function [F(R)] (Equation 1) [31].

sR
RRF a

=
�

=
2

)1()(
2

 Equation 1

Here n is the number, it determines the transition characteristic in the semiconductor and is equal to 2 for a direct allowed 
transition and ½ for an implicitly allowed transition. While making the calculations, n=1/2 was taken into account for the 
catalysts (Equation 2).

(αhυ)1/2 = K(hυ – Ex) Equation2
K: A constant depending on the material
h: Planck’s constant (4.135 × 10–15 eV.s)
υ: Frequency of the photon
To determine the band gap energy (Eg) of the synthesized catalysts, a graph was drawn between the modified Kubelka–

Munk function and the energy (E) of the absorbed light. Then, by drawing a tangent to the x-axis over the inflection point 
in the absorption band, the energy value at the point where this tangent cuts the x-axis was determined as the band gap 
energy of the catalyst.
2.4. Studies on photocatalytic activity
The heterogeneous reactions were carried out in a quartz two-neck vessel with a volume of 100 mL. After 0.1 g of catalyst 
was added to 50 mL of 25 ppm paracetamol solution, the adsorption-desorption equilibrium was reached by mixing for 
30 min in the dark. Then, the light was turned on and samples were taken at certain time intervals.  All photocatalytic 
reactions were carried out at pH 5. The photocatalytic reactions carried out using different light sources (UV-B (64 W), 
visible and natural sunlight) was investigated.

The paracetamol concentration was measured by HPLC analysis under certain conditions. Before analysis, samples 
were filtered through a PTFE fitler (45 µm diameter).  During the analysis, a mixture of 35% acetonitrile - 65% water was 
used at a flow rate of 1 mL/min as the mobile phase.

3. Conclusion and discussion
3.1. Structural and optical properties of metal oxides
TiO2, ZnO, ZrO2, and Bi2O3 were measured as 40, 28, 96, and 12 m2 /g, respectively. The results are shown in Table.

According to the BET surface area results, it is seen that the surface area of Bi2O3 is lower than other oxides. However, 
photocatalytic activity is not only evaluated based on high BET surface area. It is known that the number and distribution 
of active sites in catalytic reactions is more important than the high of the surface area.



AKŞİT and POZAN SOYLU / Turk J Chem

1869

The XRD diagrams of the catalysts are given in Figure 1. Anatase TiO2 phase (JCPDS card no. 89-4921), hexagonal 
phase ZnO (JCPDS 36-1451), tetragonal phase ZrO2 (JCPDS card no. 33-1483), and monoclinic phase α-Bi2O3 (JCPDS 
41-1449) crystal structures were detected. The crystallite sizes of the catalysts were figured out according to the Scherrer 
formula and the outcomes are presented in Table.

TEM and SEM analyses were performed to determine the morphology of the semiconductors, the particle distribution 
in the structure and the images are given in Figures 2a–2d. According to the TEM images, the particle size of pure TiO2 is 
irregular and the average particle size is around 65 nm, while the particle size of pure ZrO2 is 6 nm.  From the SEM images, 
the clusters in cubic form were observed in the pure ZnO structure and the particle size of pure ZnO was around 80 nm.  
Bi2O3 rod-like structures of different lengths and thicknesses were observed in the SEM image.

FTIR-ATR analysis was performed to detect the hydroxyl group that supports degradation in photocatalytic reactions.  
During photocatalytic degradation, surface OH- groups act not only to form hydroxyl radical (•OH) but also as active sites 
for adsorption of reactants [32]. As a result of the analysis, no hydroxyl groups were observed in the infrared spectrum 
of the photocatalysts. This result shows that most of the adsorbed water after heat treatment is removed from the catalyst 
surface [32]. 

Diffuse reflection spectroscopy (DRS) is used for the determination of optical properties of semiconductor materials 
and is effective in accurately estimating the optical band gap of the powder. The absorption band gap energy (Eg) can be 
determined with the Kubelka–Munk function [F(R)] [31]. 

To determine the band gap energy (Eg) of the synthesized catalysts, a graph is drawn between the modified Kubelka–
Munk function and the energy (E) of the absorbed light. Then, a tangent to the x-axis is drawn over the inflection point 
in the absorption band and the energy value at the point where this tangent cuts the x-axis shows the band gap energy of 
the catalyst.

Table. The crystallite size, specific surface area, band gap, morphology of materials, reaction rate constant, and paracetamol (PAR) 
degradation efficiency over 90 min (%) under UV-B irradiation.

Catalysts Crystallite Size (nm) SBET  (m2g–1) Band gap (eV) Morphology Paracetamol (PAR) 
degradation efficiencies (%)

kr 
(min–1

 )
R2

α-Bi2O3 41 12 2.97 Monoclinic 100 0.032 0.998
TiO2 43 40 3.28 Anatase 86.76 0.018 0.999
ZnO 64 29 3.25 Hexagonal 100 0.029 0.989
ZrO2 7 95 4.09 Tetragonal 22.53 0.003 0.998

Figure 1. XRD patterns of catalysts.
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The UV-vis diffuse reflection spectra of the catalysts are shown in Figure 3. The calculated band gap values of the 
catalysts are given in Table. The band gap of pure ZrO2, calculated highest band gap, is 4.09 is eV. The band gaps of TiO2 
and ZnO are about 3.28 and 3.25 eV, respectively. As seen in Table, the lowest band gap energy (2.97 eV) belongs to the 
α-Bi2O3 catalyst.

PL analysis provides benefits in determining the efficiency of the load carrier capture, migration, and transfer. In 
addition, semiconductors of PL spectra are also used to derive the band interval determination and recombination 
mechanism. As a result of the recombination of stimulated electrons and holes, changes occur in the number of electron-
holes in semiconductor particles [33]. A low PL density means the low recombination rate of the electron hole under the 
light radiation [34].

The PL spectra of the photocatalysts are given in Figure 4. The PL emission spectra of the samples were found to 
show major peaks at similar positions at different intensities. It is understood that the PL intensity of the Bi2O3 emission 
spectrum is the lowest and the electrons and holes show a low recombination rate.  It can be concluded that the use of the 
Bi2O3 catalyst improves the photoactivity as the electrons and holes reduce recombination.
3.3. Photocatalytic activity results
It is known that the photocatalytic degradation reaction of paracetamol occurs in a pseudo-first-order reaction [26]. 

The Langmuir–Hinshelwood (LH) kinetic model was applied for the kinetic evaluation of the reactions [35]. The 
kinetic model is shown in Equation 3.

ln(Co /Ct) = k obs t Equation 3
Here, in the reaction with low initial PAR concentration, Co is the initial PAR concentration, Ct t is the PAR concentration 
at time, and kobs (min–¹) is the rate constant of the observed pseudo-first order reaction. To compare the activities of the 
catalysts, the photocatalytic degradation efficiencies and reaction rates were calculated and the activity values are given in 
Table.

In addition, after the experiments, the photocatalytic degradation efficiencies were figured out and the values are given 
in Table.

The decomposition performance of the PAR (%R) is calculated with Equation 4:

%R = 100�
�

o

o

C
CC  Equation 4

Photocatalytic degradation reactions of PAR were carried out at pH 5 in the presence of Bi2O3, ZnO, ZrO2, and TiO2 
catalysts. The PAR solution was kept in the dark for 30 min under stirring to ensure adsorption-desorption equilibrium. 
Then, the light was turned on and samples were taken at certain time intervals, and the concentration changes were 
followed. The variation of PAR concentration with time was followed by HPLC analysis.

Figure 2.  SEM images of catalysts
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Figure 5 indicates the concentration differences in the reaction with various metal oxides under UV-B illumination. 
In the calculated PAR removal after 90 min, the photocatalytic efficiencies are determined in decreasing order as follows: 
Bi2O3 (100%) > ZnO (100%) > TiO2 (86.76%) > ZrO2 (22.53%).  In the presence of Bi2O3 and ZnO catalysts, it was observed 
that PAR was completely degraded within 90 min. Bi2O3 catalyst provided a higher degradation rate than the ZnO catalyst. 
However, ZnO nanoparticles showed very low photocatalytic activity under natural sunlight. The band gap energy of ZnO 
nanoparticles is greater than that of Bi2O3.  It can be said that the band gap energy of ZnO nanoparticles is higher than 
that of Bi2O3.

When the optical reflectance spectra of the photocatalysts are examined, it is understood that the wavelengths are 
between 200 and 500 nm, which indicates the presence of visible light adsorption in addition to a strong UV light region. 
Among these semiconductors, only the Bi2O3 catalyst tends to shift towards the visible region.  Due to this feature, Bi2O3 
catalyst showed activity in both UV and visible regions.

The photodegradation of PAR under sunlight with Bi2O3 and ZnO nanostructures are shown in Figure 6. According 
to the results, PAR degradation efficiencies of 76.89% and 21.63% were obtained over Bi2O3 and ZnO within 90 min of the 
reaction, respectively.

In addition, the reusability of the Bi2O3 catalyst was studied on fresh dye samples (5 trials).  Bi2O3, when used for the 
first time, could degrade 100% PAR, with a small change (to 96.82%) in the efficiency when used for five times.  This 
decrease in the efficiency for Bi2O3 catalyst resulted probably from the photocorrosion effect.   

Moreover, we also studied in various processes to determine the effects of adsorption (without the light exposure) 
and photolysis under UV-B light (no catalyst) and the degradation of PAR on the photocatalytic activity of Bi2O3 and the 
results of these comparative studies are showed in Figure 7. The degradation results indicate the negligible change for 
photolysis under UV-B and insignificant adsorption of PAR onto Bi2O3 within 120 min of reactions. This also suggests 
that stereochemical configuration of PAR is unsuitable to chelate with Bi, leading to negligible chemical adsorption of 
PAR onto Bi2O3 surface. However, in the presence of Bi2O3 with UV-B radiation, much faster degradation of PAR occurred 
compared to reactions without Bi2O3 and radiation only.

 Wanget al. prepared Pd-BiVO4 catalyst with the impregnation method. They reported that Pd-BiVO4 achieved 100% 
removal and reached up to 40% TOC removal in 1 h under visible light irradiation [36]. In another study, photodegradation 

Figure 3. DRS spectra of TiO2, ZnO, Bi2O3, and ZrO2 catalysts.
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of paracetamol at a wavelength of radiation of 254 nm with TiO2 nanotubes was studied with UV-spectroscopy, HPLC and 
measurement of the potential zeta in dependence of the solution pH. The efficiency of the photodegradation of paracetamol 
PAR (20 mg L–1) was 99% after 100 min of UV-B light exposure [37].

Finally, the outcomes of these studies provide a concise viewpoint in this important research area and specifically 
propose further research opportunities in the photocatalytic performance of the other metal oxide nanoparticles and 
widening the scope of their potential photocatalytic applications.

4. Conclusion
The semiconductor materials were prepared with the coprecipitation and sol–gel methods. The structural properties of 
these materials were characterized by various techniques.  After that, the effect of semiconductor oxides with different 
crystal sizes and band gaps on the photocatalytic degradation of paracetamol was investigated. Additionally, the efficiencies 
of photocatalysts in degradation reactions performed under UV-B light and natural sunlight were compared.  As a result 
of photocatalytic reactions, the highest degradation rate was obtained onto Bi2O3 under UV-B light.  Moreover, nanorod 
-structured Bi2O3 and cubic-structured ZnO photocatalysts was achieved in 90 min under UV-B light.

Figure 4.  PL spectra of  Bi2O3, ZnO, ZrO2 and TiO2 catalysts. Figure 5. The photocatalytic degradation of PAR in Bi2O3, ZnO, 
ZrO2, and TiO2 catalysts with UV-B irradiation.

Figure 6. The photocatalytic degradation of PAR on Bi2O3 and 
ZnO catalysts with natural sun irradiation.

Figure 7. The comparison of photolysis, adsorption, and 
photocatalysis studies of PAR with Bi2O3.
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