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1. Introduction
In recent years, nanosized materials have been examined intensively. Furthermore, nanotechnology is the science of 
technology, referring to the ability to engineer and utilize materials as well as devices with dimensions between 1 
and 100 nm [1]. Nanosized materials have unique chemical and physical properties compared to the bulk form [2]. 
Meanwhile, nanotechnology is becoming increasingly influential in various fields of application, ranging from the 
environment, to the food industry, to development even in the biomedical field, showing great potential for future 
clinics [3]. For example, ferrite is a magnetic nanoparticle characterized by a spinel structure with the general formula 
of MFe2O4, where M and Fe are metal cations located at the tetrahedral and octahedral sites [4]. Zinc ferrite (ZnFe2O4) 
is an important compound widely used in various industrial applications, such as gas sensors [5], batteries [6], catalysts 
[7,8], and adsorbents [9,10].

The synthesis method used influences the properties of ferrite compounds, including the size, shape, morphology, 
surface area, and magnetic properties [11]. Several methods of synthesizing ZnFe2O4 have been reported, including ball 
milling [12], coprecipitation [13,14], sol-gel [15], hydrothermal [16], and solution combustion [17]. Furthermore, this 
method has disadvantages, such as the formation of unwanted phases, complexity, and high cost. Therefore, a simple, easy, 
and low-cost technique is needed. 

Solution combustion is a high-temperature synthesis that is effective and inexpensive for preparing nanomaterials such 
as ferrite, perovskite, and zirconia [11]. In addition, the reaction requires fast time (a few minutes) and simple equipment 
[18,19]. This method involves an independent reaction between an oxidizing agent (e.g., metal nitrate) as a precursor salt 
and a fuel (e.g., EDTA, glycine, hydrazine, urea, citric acid) [11,20]. The reactants are dissolved in water until it becomes 
homogeneous. Furthermore, it is heated to the boiling point of the medium, and evaporation occurs. The solution is 
ignited or self-ignites as the temperature rises rapidly. Simultaneously, the mixed solution changes into a fine crystalline 
powder of the desired composition [11]. In this process, a redox reaction or electron transfer occurs, oxidizing the fuel, 
and the oxidizing agent is reduced, leading to an exothermic reaction [21].
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The type of fuel used in the solution combustion affects the phase formation and morphology of the resulting 
nanomaterial [22]. Several fuels being used include urea, glycine, oxalyldihydrazine, carbohydrazide, EDTA, citric acid, 
and sucrose [23,24]. The synthesis of metal oxides using the method with several types of fuel has been examined, such 
as Fe3O4 using glycine [25], Bi2O3 using urea, glycine, and citric acid [26], NiO using urea and glycine [22], and NiFe2O4 
using urea. [27]. Meanwhile, there is no detailed information on the suitable fuel type to synthesize specific nanomaterials. 
For example, the synthesis of nanomagnetic NiFe2O4 using fuel containing nitrogen (urea) produces a larger particle size 
than those from the hydrocarbon group [23]. This fuel type produces a variety of combustion, ranging from mild reactions 
that only produce mass to intense combustion reactions, which result in intense flames and explosions [28,29]. Therefore, 
this research aimed to explore the synthesis of ZnFe2O4 using fuel types, namely urea, glycine, and EDTA, and its effect 
on crystal size, magnetic properties, and surface area. The characteristics were analyzed using XRD, FTIR, SEM-EDS, and 
specific surface area with BET. 

2. Materials and methods
2.1. Materials
The chemicals used include Zn(NO3)2.6H2O, Fe(NO3)3.9H2O, KCl, CH4N2O (urea), NH2CH2COOH (glycine), and 
C10H16N2O8 (EDTA), and were purchased from Merck Company. Also, distilled water was used for the experiment.
2.2. Synthesis of ZnFe2O4 Using the Solution Combustion Method
The synthesis procedure of ZnFe2O4 was as follows: 60 mL of distilled water was added to 3 beakers of 250 mL. Then, 0.5 
M HNO3 was slowly added until it reached pH 4. A total of 3.336 g Glycine, 4.0 g Urea, and 5.844 g EDTA were added  to 
each beaker, 2.975 g of Zn(NO3)2.6H2O was added and stirred slowly for 10 min. Furthermore, 8.080 g of Fe(NO3)3.9H2O 
and 1.4919 g KCl were added in quantity. The mixture was homogenized using a stirrer for 15 min at room temperature. 
Continuously, it was stirred with a magnetic stirrer at 300 °C. After the solution changed color and the combustion process 
occurred, the stirring was stopped. It was further heated at 300 °C until a complete combustion reaction (±1 h). Finally, 
the resulting product was powder, washed with 200 mL of boiling distilled water, and dried in an oven at 80 °C for 1 h.
2.3. ZnFe2O4 characterization
The crystal structure and phase were analyzed using an X-ray diffractometer (XRD Shimadzu 7000 diffractometer) at 
Cu-Kα radiation = 1548 Å and range 2θ = 10–80º. The following Debye Scherrer equation (Eq. 1) was used to determine 
crystal size [30]:

,	 (1)

where D is the average crystal size of ZnFe2O4, λ is the X-ray wavelength (0.15418 nm), k is the Scherrer constant (0.9), β 
is full width at half maximum (FWHM), and θ is the Bragg diffraction angle.

The functional groups were analyzed using Fourier transform infrared (FT-IR Prestige 21 Shimadzu) at a wavenumber 
of 500–4000 cm–1. Meanwhile, magnetic properties were analyzed using a vibrating sample magnetometer (VSM Lakeshore 
74004) at room temperature, and the surface area was analyzed using the ASAP 2020.

3. Results and discussion
Figure 1 shows the synthesized ZnFe2O4 using the solution combustion method with various fuel types, namely urea, 
glycine and EDTA. The reaction product is a brownish-black ZnFe2O4 powder as well as H2O, CO2, and N2 gases. The 
following shows the reaction of ZnFe2O4 synthesis using urea, glycine, and EDTA as fuel:

3Zn(NO3)2.6H2O + 6Fe(NO3)3.9H2O + 20(NH2)2CO → 3ZnFe2O4    + 112H2O + 20CO2 + 32N2
9Zn(NO3)2.6H2O + 18Fe(NO3)3.9H2O + 40C2H5NO2 → 9ZnFe2O4     + 316H20 + 80CO2 + 56N2 
Zn(NO3)2.6H2O + 2Fe(NO3)3.9H2O + C10H16N2O8 → ZnFe2O4     + 32H20 + 10CO2 + 5N2 .
Metal nitrate is often used as an oxidizing agent because it has a higher solubility (approximately 64%) than sulfate 

(approximately 27%) [31]. The ideal fuel needs to have a high solubility in solvents, such as water, a low decomposition 
temperature (below 400 °C), produce no other residual mass, and be compatible with metal nitrates. However, other 
solvents such as alcohol and kerosene are used [32,33]. Maximum energy is released when the reaction is in a stoichiometric 
state. An oxygen supply is needed to achieve complete combustion [18]. In this research, the combustion reaction was 
performed in an open space at 200–300 ºC, with the contribution of oxygen in the atmosphere [26]. The addition of KCl 
reduces the crystal size and increases the surface area. The higher addition of KCl and NaCl in the synthesis of ZnFe2O4 
using the solution combustion method with L-α Alanine as fuel decreases the crystal size and increases the surface area 
[34]. 
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According to JCPDS No. 22-1012, ZnFe2O4 has a spinel structure, which is at 2θ = 29.97°, 35.29°, 42.91°, 56.75°, and 
62.32°, where the plane index (220), (311), (400), (511), and (440) is a plane cubic (Figure 2). Therefore, the type of fuel 
used in the synthesis of ZnFe2O4 affects the peak intensity of the XRD spectra. Furthermore, the highest peak intensity 
indicating greater crystallinity was observed in ZnFe2O4 synthesized using EDTA. The crystal size of ZnFe2O4 synthesized 
using urea, glycine, and EDTA was 10.19, 20.34, and 27.21 nm, respectively (Table 1). 

The fuel’s chain length (molecular weight) affects the crystallinity, crystal size, and particle size. It is also related to the 
solubility and complexation of fuel. Fuels with longer molecular chains produce a large amount of gas released during the 
process. In addition, fuels with a larger molecular mass have more sites for metal cations’ complex formation and solubility 
[35]. EDTA has a molecular mass (Mw = 336.21 g/mol), greater than urea (Mw = 60.05 g/mol) and glycine (Mw = 75.07 g/
mol). Another factor is the bonding heat of the reaction, depending on the number of single and double bonds in the fuel. 
The double bond fuel, such as urea (triple), are called unsaturated bonds and are generally more reactive. Therefore, the 
crystal formation process occurs quicker [26,34].

Figure 3 shows the FTIR spectra of ZnFe2O4 synthesized using urea, glycine, and EDTA. The wavenumber at 3200–
3600 cm–1 is the stretching vibration of the O-H functional group. Furthermore, the presence of this functional group 
is enhanced by absorption at a wavenumber of approximately 1650 cm–1, which is a stretch bending of O-H [36,37]. 
This absorption was observed in ZnFe2O4 synthesized using glycine and EDTA. Two absorption bands at wave numbers 
approximately  550 cm–1 and 430 cm–1 are stretching vibrations of Zn-O and Fe-O bonds, namely the tetrahedral and the 
octahedral sites [38]. The wavenumbers appear at 557.43 and 416.62 cm–1 (fuel: urea), 553.57 and 408.9 (fuel: glycine), 
as well as 553.57 and 410.83 cm–1 (fuel: EDTA). The presence of wavenumber at 1300 cm–1 indicates a C=O group of the 
remaining fuel.

Figure 4 shows the morphology of ZnFe2O4 synthesized using urea, glycine, and EDTA The morphology of ZnFe2O4 
synthesized with urea fuel appears more homogeneous and has a smaller particle size than with glycine and EDTA. On 
the other hand, ZnFe2O4 synthesized using glycine fuel appears as large and porous crystals. The results are similar to the 
synthesis of Bi2O3 using glycine, which has an elliptical and porous structure [26,39]. 

Table 2 shows the percentage of elements in ZnFe2O4 due to the analysis using EDS. ZnFe2O4 synthesized using different 
fuel types contains the same elements, namely Zn, O, and Fe, with different percentages. Furthermore, the stoichiometric 
content of these elements is 27.13%, 46.33%, and 26.54%. A similar composition was observed in ZnFe2O4 synthesized 
using urea. 

Table 1. Data of X-ray diffraction.

Fuel 2θ (Degree) Intensity (au) d-spacing (Å) Crystallite size (nm)

Urea 35.28 80.09 2.70 10.19 
Glycine 35.26 318.08 2.98 20.34 
EDTA 35.36 507.40 1.61 27.21 

(a) (c)(b)

Figure 1. ZnFe2O4 synthesized using (a) urea (b) glycine and (c) EDTA.
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Figure 2. XRD spectra of ZnFe2O4 with fuel (a) urea (b) glycine 
(c) EDTA.

Figure 3. Spectra FTIR of ZnFe2O4 synthesized using (a) urea, (b) 
glycine, (c) EDTA.

 Figure 4. The morphology of ZnFe2O4 synthesized using (a) urea, (b) glycine, and (c) EDTA.

Table 2. Elements of ZnFe2O4.

Fuel Zn (%) Fe (%) O (%)

Urea 26.89 46.55 25.56
Glycine 28.97 44.70 25.33
EDTA 30.16 43.55 25.29
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The surface area affects the increase and decrease in the magnetic properties of nanoparticles. For example, it was 
reported that the magnetization of the oxide nanoparticles decreases in direct proportion to the particle size [40]. In 
contrast, the magnetization of some metal (cobalt) nanoparticles were reported to increase directly to particle size [41]. 
The decrease in magnetization of oxide nanoparticles is caused by the presence of a magnetic dead layer on the particles’ 
surface due to the spin-glass-like behavior [40]. 

The nanoparticle synthesis method is essential in determining the shape, particle size, size distribution, and surface 
chemistry of the particles, thereby determining their magnetic properties [42,43]. In this research, ZnFe2O4 synthesized 
using urea, glycine, and EDTA had saturation magnetization of 44.72, 50.93, and 54.63 emu/g, respectively, proportional 
to the particle size (Figure 5). According to Li et al.’s [18] study on the synthesis of Fe3O4, the values of coercivity (Hc), 
remanent magnetization (Mr), and saturation magnetization (Ms) increased with increasing particle size to a maximum 
value which later becomes constant or decreased. Therefore, there should be a good balance between effective surface area 
and satisfactory magnetic performance [18,44]. When the nanoparticle size is small enough, it has superparamagnetic 
properties and responds mainly to the applied magnetic field [45].

Another research showed that ZnFe2O4 synthesized using the solvothermal method at various times resulted in 
increased crystal size and increased magnetic properties [46]. Table 3 shows the results of surface area measurements of 
ZnFe2O4 synthesized using urea, glycine, and EDTA of 116.4, 100.6, and 94.2 m2/g, respectively. ZnFe2O4 synthesized using 
urea has the largest surface area of glycine and EDTA fuels. 

Figure 6 shows a TEM image of ZnFe2O4 synthesized using urea. It appears that the particle size of ZnFe2O4 is slightly 
agglomerated. The particle size is between 10 and 20 nm, according to the results of calculations using XRD. Differences 
in particle size distribution can occur due to nonuniform heat during the combustion process. 

Table 3. Crystallite size, surface area, and magnetic properties of ZnFe2O4 synthesized using several methods. 

Synthesis method Size (nm) Surface area (m2/g) Ms (emu/g) Reference

Solid state method (ZnO, Fe2O3) variation 
calcination 900–1200 °C 51.9, 52.5, 53.0, and 53.4 - -  [47]

Solution combustion (ratio: Zn: Fe: glycine= 1: 
2:1.5) 15 40.3 11.9  [39]

Coprecipitation, ZnSO4.7H2O, FeSO47H2O, and 
FeCl3

20 - -  [48]

Lawsonia inermis leaf extract 
(Zn(CH3COO)2.2H2O and Fe(NO3)3.9H2O 17.12 - 42.93  [38]

Solution combustion (Fe(NO3)9H2O, 
Zn(NO3)26H2O, aspartic acid, pH 10) 43 30.6  [49]

Solution combustion (ratio Zn:Fe = 1:2,  
triethylamine
hydrochloride = 0.8, 1.0, 1.2, 1.4) 

21; 25.4; 21.9 and 18.6 - -  [50]

Coprecipitation (ZnO, Fe2O3 with variation 
sintering time (1.5, 2.5, and 3.5 h) 84.72; 70.58 and 84.72 1.12, 1.15, and 52.52  [51]

Moringa oleifera exctract (Fe(NO3)9H2O, 
Zn(NO3)26H2O), annealed at 500 and 700 °C 
for 2 h 

12.393, 16.076 -  [52]

Sol-gel method (FeCl3·6H2O, ZnCl2)  with 
solvent EG, time reaction 2, 4 and 6 h 11.6. 16.2 and 20.5 nm 49.3, 53.8, and 61.3  [46]

Solution combustion (urea, glycine and EDTA) 10.19; 26.15 and 27.16 116.44, 100.6, and 94.2 44.74, 50.93 and 54.63 In this study
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4. Conclusion
The synthesis of ZnFe2O4 using the solution combustion method was conducted successfully. The several types of fuel used, 
namely urea, glycine, and EDTA, affected the physicochemical properties of the resulting ZnFe2O4, which is characterized 
by a spinel structure. ZnFe2O4 synthesized using urea fuel has the smallest crystallite size and magnetic properties of 10.19 
nm and 44.74 emu/g, but the largest surface area is 116.4 m2/g. Finally, the morphology of ZnFe2O4 synthesized using 
urea fuel appears to be more homogeneous than glycine and EDTA. The particle size of ZnFe2O4 was synthesized using 
urea in the range of 10–20 nm. These characteristics of ZnFe2O4 have the potential to be applied as adsorbent, catalyst and 
biomedical.
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Figure 5. Magnetization curve of ZnFe2O4 synthesized using (a) 
urea, (b) glycine, and (c) EDTA.

Figure 6. TEM image of ZnFe2O4 synthesized using urea.
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