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1. Introduction
The emergence and spreading of drug-resistant pathogens with newer resistance mechanisms, are leading to antimicrobial 
resistance, which threatens existing drugs’ ability to treat common infections. Invention of the new chemical entities to 
deal with resistant bacteria and fungi has become one of the major challenges in the research areas of antibacterial and 
antifungal discovery. This is prompting academics to come up with novel and potent antibacterial as well as antifungal 
therapeutic agents [1]. 

The active heterocyclic compounds are one of the main topics of interest for medicinal chemists as it is proven to display 
various pharmacological activities. Heterocyclic compounds containing nitrogen, oxygen, and sulphur belonging to five 
or six membered heterocycles have gained enormous significance, due to their interesting and diverse clinical applications 
in the field of medicinal chemistry [2]. Oxazoles are the five membered heterocycles containing nitrogen and oxygen with 
wide range of pharmacological properties. Benzoxazole belongs to the class of heterocycles, containing a bicyclic structure 
in which the oxazole moiety is fused with the aryl ring. Benzoxazole and their derivatives are important scaffolds often 
found in the various drugs and pharmaceutically relevant compounds [3]. They exhibit wider range of biological activities 
like antifungal [4], antituberculosis [5], anticancer [6], antiinflammatory-analgesic [7], antitumor [8], and antibacterial [9]. 
Increasing applications of benzoxazole derivatives have intrigued many researchers to come up with several benzoxazole 
derivatives and their evaluation as pharmaceutical agents [10].

Among the benzoxazole derivatives, the 2-substituted benzoxazole has always attracted many researchers owing to 
its diverse applications in medicinal chemistry [11]. These 2-substituted benzoxazole containing scaffolds demonstrated 
various pharmacological activities such as antiviral [12], antimicrobial [13], and anticancer [14], properties. Recently, we 
have demonstrated the antimycobacterial potential of 2-substituted benzoxazole sulphonamides [15].

Knowledge on the mechanism of action and target identification in early stage of the drug discovery process provides 
distinctive benefits. Identifying a drug’s mode of action (MOA) could increase the probability of success of clinical trials 
[16]. Molecular docking technique plays a key role in identifying a drug’s mode of action. In the molecular docking 
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studies, small molecules are docked into the receptor targets in order to predict bioactive confirmation of the ligand and 
its orientation inside a target binding site [17]. 

 Over the years, scaffold hopping has been a common medicinal chemistry approach in finding effective inhibitors 
including DNA gyrase. Using this approach, bicyclic ring structures like benzimidazole, benzothiazole [18, 19, 20], and 
benzoxazole [21] have been tested as inhibitors of DNA gyrase (Figure 1). Particularly Oksuzoglu et al. synthesized 
antibacterial 2-benzyl substituted benzoxazole derivatives. Antibacterial potentials of these compounds were linked to 
DNA topoisomerase II inhibitors with significant IC50 values [22].

DNA gyrase is an essential enzyme and a part of topoisomerase which is responsible for catalysing the changes to DNA 
topology. The existence of DNA gyrase in all bacteria and absence of the same in higher eukaryotes makes it an attractive 
drug target for antibacterial studies [23]. 

Having the initial understanding on benzoxazole derivatives and utilising the interplay of conventional techniques of 
structure-based design and docking, in the present work, we have synthesized a small library of 2-phenyl-1,3-benzoxazoles 
(compounds 1-14) and N-phenyl-1,3-benzoxazol-2-amine (compounds 15-26) (Figure 2.) These compounds were 
evaluated for their antimicrobial properties. Further based on the biological outcome, structure activity relationship 
(SAR) was established. Molecular modelling and docking simulation studies were executed to get the insights on potent 
antimicrobial action of the synthesized derivatives, in the binding sites of DNA gyrase of E. coli.

Targeted compounds were synthesized using an environmentally benign process. 2-phenyl substituted benzoxazole 
(compounds 1-14) were synthesized using green catalyst “fly ash” and N-phenyl-1,3-benzoxazol-2-amine derivatives 
(compounds 15-26) were synthesized utilising less expensive, I2-mediated oxidative cyclodesulfurization.

2. Materials and methods
2.1. General information
All reagents and solvents were purchased from commercial sources and used without further purification. Analytical grade 
solvents were utilised in this work and used as received. All the reactions were carried out using magnetic stirring, using 
appropriate conditions, and using oven-dried glassware. Reactions were monitored by thin layer chromatography (TLC) 
using TLC silica gel plates and visualizing agent as UV light. Reaction products have been purified either by recrystallization 
in analytical grade ethanol or by column chromatography using Merck silica gel (230–400 flash). Bruker supercon magnet 
avance DRX-300 spectrometer was utilised for NMR spectra recording. 300 MHz spectrometer was used for 1H NMR 
and 100 MHz for 13C NMR recording in deuterated solvents with TMS as an internal reference standard. Chemical shifts 
δ have been given in ppm, and coupling constant J in Hz. Recorded multiplicities are shown as follows: singlet (s), doublet 
(d), triplet (t), broad singlet (br s), and multiplet (m). Mass spectra were taken in either ESI positive or negative ion mode. 
Characterization of all compounds was done by TLC, 1H NMR and 13C NMR, IR and MS.
2.2. General experimental method for the synthesis of substituted 2-aryl benzoxazoles (compounds 1-14)

Step 1: Preparation of preheated fly ash (PHFA)

Figure 1: Known inhibitors of DNA gyrase containing benzoxazole, benzimidazole, 

benzothiazole moiety 

 

 

Figure 2: Compound library of 2- phenyl and N-phenyl benzoxazole based scaffolds 

Figure 1. Known inhibitors of DNA gyrase containing benzoxazole, benzimidazole, and benzothiazole moiety.

Figure 2. Compound library of 2-phenyl and N-phenyl 
benzoxazole-based scaffolds.
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The fly-ash obtained from commercial source was heated in hot air oven up to a temperature of 110 °C for 2 h. Heating 
process helps to avoid colloidal formation during the reaction due to demoisturization. Thus, obtained activated form of 
fly ash was directly used for the next step. 

Step 2: Common procedure for synthesis of compounds 1-14
Appropriate mixture of an aldehyde (1.1 mmol) (1), o-aminophenol (2) (1.0 mmol) and preheated fly-ash (0.5g) were 

taken in 50 mL of RB flask under nitrogen. The mixture was stirred at 111 °C in the presence of 20 mL of toluene. After 
the reaction completion by TLC (starting material disappearance), the reaction mass was cooled to room temperature. 
Reaction mixture was filtered using hyflow bed and washed with ethyl acetate to remove the catalyst. Combined organic 
layer was evaporated under reduced pressure. The crude material was purified using either column chromatography ethyl 
acetate: hexane (1:9) or recrystallization with ethanol to isolate the pure product (compounds 1-14) in 70%–85% yields.
2.3. Common experimental procedure for the synthesis of substituted N-phenyl-1,3-benzoxazol-2-amine derivatives 
(compounds 15-26)
To a prestirred solution of aminophenol (4, 1 mmol) in THF (5 mL), corresponding isothiocyanate (5, 1.1 mmol) was 
added slowly at the room temperature. After the absence of the aminophenol (as indicated by TLC), iodine (0.6 mmol) and 
K2CO3 (1.1 mmol) were added in sequence. The reaction mixture was stirred at ambient temperature, until TLC indicates 
the disappearance of the in situ generated intermediate D (Scheme 2). After the completion of the reaction, it was quenched 
with aqueous 5% Na2S2O3 solution (5 mL), and diluted with brine (10 mL) solution. Reaction mass was then extracted 
with ethyl acetate (20 mL* 2). The pooled organic layers were dried over anhydrous sodium sulphate, concentrated under 
vacuum which was further purified either by recrystallization or by silica gel column chromatography using a mixture of 
ethyl acetate/hexane (2:8) as the eluent to afford the product (compounds 15-26) ranging from 65% to 89% yields.

Compounds characterization data can be found in supporting information.
2.4. Antimicrobial studies
Whole-cell growth inhibition assay was used for antimicrobial screening. All the microbial strains were obtained from the 
microbial type culture collection and gene bank (MTCC), Chandigarh, India. All the synthesized benzoxazole derivatives 
were screened to check their in vitro antibacterial potential. Based on their clinical and pharmacological importance of 
the strains, compounds were screened against gram-positive (Streptococcus Pyogenes and Staphylococcus aureus), gram-
negative (Pseudomonas aeruginosa and Escherichia Coli) and two fungal strains (Aspergillus clavatus and Candida albicans) 
by means of agar diffusion method [24]. 
2.4.1. Antibacterial activity
Using spread plate technique, all the bacterial strains were cultured on YEPD or nutrient agar at 37 °C. Bacterial strains 
were maintained on nutrient agar slants at 4 °C. Different concentrations of the test compounds (5, 25, and 50 μg/mL) 
along with standard drug cefixime (positive control) were prepared to execute antimicrobial sensitivity. Compound 
susceptibility was measured for different strains of bacteria on the basis of zone of inhibition diameter in comparison with 
the standard drug [25]. Initial results indicated that 5 μg/mL produced less desired inhibitory effect and the dose of 50 ug/
mL showed more effective antimicrobial action of substance than the desired. Hence, 25 μg/mL dose was used further for 
the present research work. The dilutions (25 μg/mL) of benzoxazole derivatives and positive control drug were prepared 
in DMSO and double-distilled water using tubes of nutrient agar. Mueller-Hinton sterile (MHA) agar plates were seeded 
with different bacterial strains (108 cfu) and incubated at 37 °C for 18 to 24 h and the zones of growth inhibition around 
the disks were calculated.
2.4.2. Antifungal activity 
Screening of antifungal compounds was carried out against A. clavatus and C. albicans using agar disk diffusion method. 
Stock of fungal strain cultures were allowed to incubate for 24 h at 37 °C and then at refrigeration storage of 4 °C. The yeasts 
were grown in sabouraud dextrose agar (SDA) and the molds were grown on PDA media at 28 °C. Zone of inhibition was 
measured in the similar way as in the case of antibacterial activity after 48 to 96 h using griseofulvin (standard drug) (25 
μg/mL) as a positive control. 

In both the cases, the microorganism species sensitivities to the test and control sets were determined by assessing the 
sizes of inhibitory zones (the diameter of disk) around the disks on the agar surface, and values of <8 mm were considered 
not active.
2.4.3. Minimum inhibitory concentration (MIC) [26]
The benzoxazole derivatives which demonstrated the antimicrobial (bacterial and fungal strains) activity were later taken 
for minimal inhibitory concentration (MIC50) determination. All four bacterial strains and two fungal strains were grown 
in nutrient broth for 6 h. Next, 100 µL of 106 cells/mL was cultured in nutrient broth tubes containing several concentrations 
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(0.5–50 µg/mL) of selected benzoxazole derivatives. After incubation of 24 h at 37 °C, MIC value was determined for each 
sample, using optical density (OD) reading in the spectrophotometer (620 nm). Obtained reading was matched with 
control sample data of noninoculated blank nutrient broth.
2.5. Docking simulations
Molecular docking studies were carried out in order to understand the possible ligand-receptor intermolecular 
interactions. Novel benzoxazole derivatives were subjected to dock in the active site of DNA gyrase enzyme using a fully 
automatic docking tool, Surflex-Dock module, available on Sybyl X-2.0 version (Tripos Inc.) [27]. Binding affinities were 
estimated for all the compounds using the docked module. Utilising the molecular docking simulations, theoretical 
binding mode for all the 26 ligands at the chlorobiocin binding site was examined. To start with docking procedure, 
X-ray crystal structure of DNA gyrase, E. coli 24 kDa domain in complex with clorobiocin [28] (http://www. rcsb.org; 
PDB code: 1KZN; resolution 2.30A) was downloaded from the protein data bank in PDB format. Before using the protein 
structure for docking simulations, all water molecules were removed. In the pdb file, mislabelled atom types were adjusted; 
consequently, angles of proline F were anchored at 70° side chain amides and checked to maximize possible hydrogen 
bonding. Essential hydrogens were added and side chains were tested for close van der Waals contacts. The model was 
tested for conformational glitches using the ProTable module from Sybyl. Ramachandran plot of the backbone torsion 
angles psi and phi, the location of exposed nonpolar residues/buried polar residues and local geometry were inspected. 
Using Kollman united force field with dielectric constant set at 4.0 and nonbonding cut-off set at 9.0, the protein was 
exposed to energy minimization following gradient termination of the Powell method of 3000 iterations. Using tripos force 
field and Gasteiger charge with nonbonding cut-off set at 9.0 and the dielectric constant set at 4.0, energy minimization 
for all the synthesized derivatives and standard chlorobiocin, were carried out by Powell method for 3000 repetitions. In 
order to favour the binding affinity, in sybyl software using the surflex-dock programme, all the synthesized compounds 
were docked to DNA gyrase subunit A (PDB code: 1KZN) by incremental construction approach of building the structure 
in the active site. In order to have the final conclusion, various scoring functions were considered. All the docked ligands 
were graded based on the single consensus score (C-score).

3. Result and discussion
3.1. Chemistry
The literature reveals that there are generally two types of reactions used to construct 2-aryl benzoxazoles (compounds 
1-14). One method involves transition metal catalysed intramolecular cyclisation of o-haloanilides [29], another is the 
condensation of 2-aminophenol with either aromatic aldehyde [30], or carboxylic acid derivatives [31] under strong 
oxidative conditions. These methods often suffer from many drawbacks such as the use of strongly acidic conditions, use 
of toxic catalysts, longer reaction time, lower product yield, use of solvent and reagents in large excess. To overcome these 
drawbacks, major efforts have been made for the development of environmentally benign new synthetic strategies with 
lesser impact on the environment. Tremendous progress has been made in synthesis of benzoxazoles by condensation 
method, but still there is a scope for development of environmentally benign synthetic approach by using highly efficient 
catalysts. Herein we report, environmentally benign synthesis of 2-phenyl substituted benzoxazoles (compounds 1-14) 
starting from 2-amino phenol and substituted aldehydes using green catalyst “fly ash”. (Scheme 1). In order to check the 
feasibility of the planned reaction methodologies, we have explored a variety of substituted aldehydes and amino phenol 
handles containing both electron-withdrawing and electron donating functional groups. 

Scheme 1 describes the synthetic outlines for novel 2-substituted benzoxazole derivatives (compounds 1-14). Detailed 
synthetic procedures of 2-phenyl substituted benzoxazole derivatives (1-14) can be found in the materials and methods 
section.
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Compounds synthesized under Scheme 1 are shown below with reaction time (h) and yield (%) data. (Table 1)
Synthetic procedure for N-phenyl-1,3-benzoxazol-2-amine derivatives involves in situ I2-mediated oxidative 

cyclodesulfurization (Scheme 2). In the literature, there are various approaches for the synthesis of N-phenyl-1,3-
benzoxazol-2-amine derivatives (compounds 15-26). One of the common methodology to synthesise N-phenyl-1,3-
benzoxazol-2-amine derivatives involve the cyclodesulfurization reaction of in situ generated monothioureas by the 
reaction of bis-nucleophiles such as aminophenol or O-phenylenediamine derivatives. Most common desulfurization 
reagents used in the past were BOP reagent [32], 1,10-(ethane-1,2-diyl) dipyridinium bistribromide (EDPBT) [33], 
hypervalent iodine(III) reagents [34], TsCl/NaOH [35], polymer-supported carbodiimide [36], LiOH/H2O2 [37], and 

HgO [38]. Most of these methodologies encounter one or other limitations such as high cost reagents or use of highly 
toxic reagents. Some conversions demand harsh reaction conditions or long reaction times with low chemo selectivity 
and yields. Herein, we describe synthesis of N-phenyl-1,3-benzoxazol-2-amine derivatives utilising less expensive and 
I2-mediated oxidative cyclodesulfurization. In order to check the feasibility of the planned reaction methodologies, we 
have explored a variety of substituted isothiocyanate, aminophenol handles containing both electron-withdrawing and 
electron-donating functional groups. 

Table 1. Compounds synthesized under Scheme 1.
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Synthetic outlines for the synthesis of substituted N-phenyl-1,3-benzoxazol-2-amine derivatives are shown in Scheme 
2 (compounds 15-26). Detailed synthetic procedures of 2-N-phenyl substituted benzoxazole derivatives (15-26) are given 
in the materials and methods section.

Compounds synthesized under Scheme 2 are shown below with reaction time (h) and yield (%) data (Table 2).
The current methodology brings several advantages such as use of an environmentally benign process and single step 

synthesis with good yields (70% to 80%). All the 2-substituted benzoxazole derivatives 1-26 from both the series were 
found to be air and light stable.
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Table 2. Compounds synthesized under Scheme 2.
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3.2. Proposed mechanism
3.2.1. Synthesis of 2-Aryl benzoxazoles (compounds 1-14)
Mechanistic aspects of synthesising 2-aryl benzoxazole (C) using environmentally benign process are outlined in Figure 
3. Fly ash is a by-product, resulting from the combustion of pulverized coal in the form of fine powder. It is a waste air-
pollutant. Fly ash is composed of many chemical species [39]. Main contents of the fly ash are oxides of metals, namely 
MgO, CaO, Fe2O3, SiO2, Al2O3, and insoluble residues [40]. Waste fly ash can be converted into its activated form by heating 
in a hot air oven for 2 h at 110 °C. The chemical residues, such as oxides of mixed metals (MgO, CaO, Fe2O3, SiO2, and 
Al2O3), are present in the fly ash, which enhances the catalytic activity. The proposed general reaction mechanism is shown 
in Figure 3. The preheated fly ash in all probability acts as a solid catalyst which assists in the activation of aldehyde and 
the subsequent dehydration to form an intermediate imine (A). In the presence of O-hydroxyl group, intermediate imine 
(A) will undergo cyclization to produce 2-substituted-2, 3-dihydro-benzoxazole (B), which will finally get converted to the 
required 2-Aryl benzoxazole (C) via aerial oxidation. Literature supports similar mechanism for this type of condensation 
in the presence of other catalysts [41, 42, 43]. 
3.2.2. Synthesis of N-phenyl-1,3-benzoxazol-2-amine derivatives (compounds 15-26)
Mechanistic aspects of synthesising 2-Amino-aryl benzoxazole (E) utilising environmentally benign process is explained 
in Figure 4. Application of molecular iodine in organic synthesis has increased considerably due to its eco-friendly nature 
and numerous advantages associated with it [44]. Recently, synthesis of 1, 3, 4-oxadiazoles was reported by Pengfei et al. 
via I2-mediated oxidative intramolecular C−O bond formation [45, 46].

A plausible reaction mechanism for the formation of N-phenyl-substituted benzoxazol-2-amine (E) is shown below 
(Figure 4) [44]. The base-promoted oxidative iodination of intermediate D generates an iodide intermediate D1. Base 
promoted cyclization of D1, will form a new C−O bond intermediate (D2). Finally, the subsequent regeneration of I2 and 
elemental sulphur affords the amino aryl benzoxazole (E) (Scheme 2).
3.3. Antimicrobial activity 
In the current research, overall twenty six benzoxazole derivatives from 2-aryl benzoxazoles (14 compounds) and N-phenyl-
1,3-benzoxazol-2-amine scaffolds (12 compounds) were screened for their in vitro antifungal and antibacterial potential. 

 

Figure 3: Plausible mechanism for fly ash catalysed benzoxazole formation  
 

 

Figure 4: Plausible mechanism for I2‑‑base mediated oxidative C−O benzoxazole 

formation  

Figure 3. Plausible mechanism for fly ash-catalysed benzoxazole formation. 

Figure 4. Plausible mechanism for I2-base mediated oxidative C−O benzoxazole formation. 
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Cefixime and griseofulvin were taken as a positive control standard for antibacterial and antifungal studies, respectively. 
Antimicrobial activity of all the compounds from series 1 and 2 were carried out at the predetermined concentration of 25 
µg/mL. Summarised antimicrobial study results were collated in Table 3 and Figures 5 and 6.

Table 3. Antibacterial and antifungal activity of samples zone of inhibition in mm) and in percentage.

Compound
details

Zone of inhibition in mm and percentage @ 25 µg/mL

S.A
mm

S.A
%

S.P
mm

S.P
%

E.C
mm

E.C
%

P.A
mm

P. A
%

C.A
mm

C. A
%

A.C
mm

A.C
%

Gram-positive bacteria Gram-negative bacteria Fungal strains
  2-phenyl benzoxazole scaffold  
Sample -1 15 54% 17 69% 10 40% 15 55% 21 68% 21 68%
Sample -2 20 72% 15 61% 12 50% 16 62% 23 73% 22 70%
Sample -3 16 58% 11 47% 15 63% 17 67% 24 78% 23 73%
Sample -4 20 72% 18 73% 17 61% 18 71% 20 64% 21 68%
Sample -5 19 63% 18 68% 15 61% 13 56% 21 68% 20 64%
Sample -6 14 51% 15 60% 13 55% 16 62% 22 70% 18 55%
Sample -7 19 66% 16 65% 18 63% 18 71% 23 73% 19 59%
Sample -8 16 58% 18 73% 18 63% 13 51% 21 68% 17 52%
Sample -9 17 61% 13 51% 17 61% 16 62% 22 70% 18 55%
Sample -10 13 54% 11 50% 7 35% 12 50% 21 68% 21 68%
Sample -11 12 50% 21 82% 17 61% 16 62% 20 64% 22 70%
Sample -12 19 68% 19 76% 19 66% 13 51% 19 61% 20 64%
Sample -13 14 49% 14 60% 15 70% 18 71% 21 68% 19 59%
Sample -14 18 63% 16 65% 18 72% 13 51% 20 64% 21 68%
  2-N-phenyl benzoxazole scaffold  
Sample -15 17 61% 18 73% 16 60% 16 62% 21 68% 23 73%
Sample -16 15 53% 17 67% 19 76% 14 50% 22 70% 22 70%
Sample -17 19 66% 16 65% 16 65% 17 67% 20 64% 21 68%
Sample -18 21 81% 19 82% 20 85% 22 76% 19 61% 20 64%
Sample -19 20 72% 12 47% 19 77% 14 60% 21 68% 19 59%
Sample -20 18 63% 15 61% 17 69% 15 59% 23 73% 17 52%
Sample -21 23 80% 22 85% 22 90% 20 72% 22 70% 19 59%
Sample -22 21 78% 19 76% 20 80% 17 67% 21 68% 21 68%
Sample -23 16 58% 20 79% 16 66% 12 47% 20 64% 20 64%
Sample -24 14 50% 17 69% 17 69% 18 71% 19 61% 21 68%
Sample -25 19 66% 16 65% 18 73% 13 51% 22 70% 18 55%
Sample -26 21 78% 17 69% 19 78% 12 47% 21 68% 22 70%
  Positive controls  

Cefixime
22   19   18   20          
29   26   25   28          
33   35   36   37          

Griseofulvin 
                34   35  
                47   43  
                52   55  

CA: Candida albicans; AC: Aspergillus Clavatus. SA: Staphylococcus aureus; SP: Streptococcus pyrogenes; EA: Escherichia coli; PA: 
Pseudomonas aeruinosa. 
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3.3.1. Antibacterial activity-Short SAR
All the test compounds from both the series viz. 2-phenyl benzoxazole and 2-Amino phenyl benzoxazoles showed 
significant antibacterial activity. Among the tested samples, compounds from 2-amino phenyl benzoxazole series showed 
higher antibacterial potential than 2-phenyl benzoxazole scaffold. Compound-18 showed higher antibacterial activity 
against Staphylococcus aureus (81% inhibition at 25 µg/mL). Both compound-18 and compound-21 showed potent activity 
against Streptococcus pyogenes (82%, inhibition) and staphylococcus aureus (85% inhibition). Compound-21 showed the 
highest antibacterial activity against Escherichia coli with 90 % of inhibition of growth. Observed inhibition of compound 
21 against pseudomonas aeruginosa is 72%. 

The compound 1 from aryl benzoxazole series showed moderate E. coli activity. In order to boost the E. coli activity, 
NH group was inserted between the phenyl and benzoxazole ring. To our surprise, the compound 18 containing 
an “F” substituent at phenyl ring has shown improved E. coli activity. Introduction of a methyl group at 7th position 
(compound-21) further boosted the activity against E. coli (Figure 7). Observed biological activities are consistent with the 
molecular docking studies and consensus score function calculated using surflex docking.

With encouraging results from the disk diffusion studies, two active compounds were evaluated for MIC assay, in order 
to find the lowest concentration capable of inhibiting the bacterial growth. The MIC values are provided in the Table 4. 
Both the compounds demonstrated the potential antimicrobial profiles against gram-negative strains (P. aeruginosa and E. 
coli) with MICs (approximately 1 µg mL−1)
3.3.2. Antifungal activity
All the test samples from both the series viz. 2-phenyl benzoxazole and 2-amino phenyl benzoxazole series showed 
significant antifungal activity. Among them, compound-2, 3, and 20 showed good antifungal activity against Candida 

 

 

Figure 5: Graphical illustration of in vitro toxicity effect of all compounds against 

bacteria 

 

Figure 6: Graphical illustration of in vitro toxicity effect of all compounds against fungi 

Figure 5. Graphical illustration of in vitro toxicity effect of all compounds against bacteria.

Figure 6. Graphical illustration of in vitro toxicity effect of all compounds against fungi.
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albicans with percentage inhibition of >70%. Furthermore, these compounds showed good antifungal activity against 
Aspergillus clavatus with >70% or higher percentage inhibition. 

With encouraging results from the disk diffusion studies, five active compounds were evaluated for MIC assay in order 
to find the lowest concentration, capable of inhibiting the fungal growth. The MIC values are provided in Table 5. Most of 
the compounds demonstrated the potential antimicrobial profiles against Aspergillus clavatus and Candida albicans with 
MICs (approximately 1 µg mL−1)
3.4. Molecular docking studies
In order to get the insights on mechanism of antimicrobial activities of the synthesized benzoxazole derivatives, the docking 
studies and molecular modelling were performed. For the molecular docking studies, X-ray crystal structure of PDB code: 
1KZN; resolution 2.30 Å- DNA gyrase E. coli 24 kDa domain in complex with clorobiocin was utilised with the help of 
sybyl-X software’s surflex-dock programme. Clorobiocin is an amino coumarin antibiotic which acts by inhibiting the 
DNA gyrase enzyme. Binding mode and the “H” bond interactions displayed by clorobiocin is shown in Figures 8A–8C). 

Figure 7: Co-relation of E.Coli In-Vitro biological activity and surflex docking results for 

benzoxazole derivatives (Short SAR) Table 4. Minimum inhibitory concentrations (MIC50) of two benzoxazole derivatives against four 
bacteria.

Compounds
MIC50 (µg/mL)

S. aureus S. pyogenes E. coli P. aeruginosa

Compound-18 15.3  ± 04 16.1 ± 02 16.5 ± 07 16.6 ± 04
Compound-21 15.2 ± 03 14.8 ± 05 13.2 ± 01 18.7 ± 05
Cefixime 0.9 ± 0.05 0.8 ± 0.06 1 ± 0.03 0.9 ± 0.04

Figure 7. Correlation of E. coli in vitro biological activity and surflex docking results for benzoxazole derivatives (Short SAR).

Table 5. Minimum inhibitory concentrations (MIC50) of two benzoxazole 
derivatives against two Fungi.

Compounds
MIC50 (µg/mL)

C. albicans A. clavatus

Compound-2 17 ± 0.4 NA
Compound-3 16 ± 0.3 17 ± 0.3
Compound-11 NA 17 ± 0.2
Compound-20 15 ± 0.1 NA
Compound-26 NA 16 ± 0.3
Griseofulvin 1.5 ± 0.2 1.3 ± 0.2
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Chlorobiocin has displayed key hydrogen bonding interactions of ASN46 (1.72 Å; 2.29 Å; 2.67 Å), ASP73 (2.04Å; 3.72 Å), 
and ARG136 (2.49 Å; 1.91 Å; 2.52 Å).

The binding mode of all the ligands docked in the active site of the enzyme is shown in Figures 8A and 8B. Expected 
binding energies of the compounds calculated using surflex-dock programme are recorded in Table 6. As per the docking 
study, all the ligands from both the series have shown very good docking score with respect to E. coli.

Docking poses of each of the ligands were analysed for the key interactions with the protein. For the majority of the 
compounds, hydrophobic and hydrophilic interactions at active sites of the protein were conserved (ASN46 amino acid 
residue). Figures 9A and 9B represent docked view of all the compounds at the active site of the DNA gyrase enzyme. Out 
of all the compounds under investigation, compounds 21 and 18 showed interesting docking outcomes. 

Figures 10A–10C and Figures 11A–11C represent the 3D views for the compounds 21 and 18, respectively, when 
docked in the chlorobiocin binding site. The outcome shows that the compounds are well integrated into the binding 
pocket as in the case of chlorobiocin.

As shown in Figures 10A–10C), at the active site of the enzyme (PDB ID: 1KZN), compound 21 was involved in the 
two key hydrogen bonding interactions. Hydrogen atom of the amino group in the 2nd position of benzoxazole ring 
(NH-Ar) and oxygen atom of ASN46 (N-H-----O-ASN46, 2.30 Å) creates a hydrogen bonding interaction. Docked view 
also showed additional interaction of hydrogen atom of THR165 (N-----H-THR165, 2.23 Å) with nitrogen atom (N) of 
benzoxazole ring.

As portrayed in Figures 11A–11C, compound 18 at the active site of the enzyme (PDB ID: 1KZN) also exhibited similar 
pattern of two hydrogen bonding interactions. Hydrogen atom of amino group present on the 2nd position of benzoxazole 
ring (NH-Ar) and oxygen atom of ASN46 (N-H-----O-ASN46, 2.44 Å) makes a hydrogen bonding interaction. Another 
interaction came from hydrogen atom of THR165 (N-----H-THR165, 2.25 Å) with nitrogen atom (N) of benzoxazole ring.

Figures 12A and 12B signify the additional hydrophilic and hydrophobic amino acids encircled around the studied 
compounds 21 and 18. 

  

 

Figure 8: Docked vision of Chlorobiocin at the active site of the enzyme PDB: 1KZN 

A B 
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Figure 8. Docked vision of chlorobiocin at the active site of the enzyme PDB: 1KZN.
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All the compounds showed a consensus score in the range of 6.50–1.86. Consensus score indicates the summation of 
all the forces of interface between the protein and ligands calculated via surflex dock program. These scores signify that the 
molecules are favourably binding to the protein in comparison to the reference chlorobiocin (Table 6). We anticipate the 

Table 6. Surflex docking score (kcal/mol) of the derivatives.

Compounds C scorea Crash scoreb Polar scorec D scored PMF scoree G scoref Chem scoreg

Chlorobiocin ligand 12.14 –1.21 5.33 –189.513 –76.407 –135.711 –34.514

21 6.50 –1.16 1.07 –110.684 –10.157 –179.958 –26.970

26 6.37 –1.21 1.04 –109.258 –14.587 –191.905 –26.152

24 6.31 –1.21 1.03 –113.284 –13.841 –187.995 –26.039

20 6.22 –1.21 1.04 –103.153 –14.226 –182.568 –25.451

18 5.97 –1.12 1.06 –107.177 –11.794 –168.904 –25.606

11 5.76 –0.47 0.04 –95.768 –16.959 –183.261 –21.980

10 5.38 –0.36 0.00 –98.595 –9.572 –169.014 –21.588

14 5.33 –0.52 0.68 –94.879 –22.125 –174.047 –21.997

5 5.16 –0.54 0.00 –106.419 0.342 –172.461 –24.350

4 5.15 –0.81 0.77 –99.238 –14.442 –157.338 –24.249

22 5.13 –1.40 0.00 –102.502 –20.543 –168.249 –19.687

19 4.94 –0.34 1.13 –84.180 –35.500 –124.692 –18.652

25 4.92 –0.48 0.00 –98.863 –30.642 –173.096 –19.423

17 4.49 –1.43 1.01 –121.605 –17.512 –190.037 –27.384

1 4.31 –1.24 0.97 –110.563 –9.570 –167.539 –27.727

16 4.29 –0.55 0.00 –119.135 –12.203 –184.250 –22.019

8 4.20 –0.46 0.00 –107.520 –11.136 –167.965 –24.504

6 4.11 –1.48 0.10 –121.917 –10.342 –211.169 –25.214

15 4.06 –1.51 0.71 –127.579 –14.871 –201.069 –28.226

7 3.97 –1.63 0.90 –114.840 –6.916 –171.135 –26.125

12 3.91 –0.43 0.04 –76.655 –23.335 –164.867 –17.523

9 3.51 –0.60 0.00 –68.726 –18.233 –151.434 –16.096

23 3.44 –1.19 0.00 –96.530 5.867 –149.220 –22.389

2 2.96 –0.31 0.68 –60.627 –33.274 –132.683 –16.842

13 2.15 –1.01 0.01 –76.943 –32.598 –153.307 –17.537

3 1.86 –0.97 0.03 –74.997 –31.224 –157.151 –17.272

a Consensus score (CScore) integrates a number of general scoring functions for grading the affinity of ligands bound to the active site 
of a receptor and reports the output of total score.
b Crash score demonstrates the unfitting penetration into the binding site. Crash scores close to 0 are encouraging. Negative numbers 
specify penetration.
c Polar score indicates the influence of the polar interactions to the total score. The polar score may be valuable for excluding docking 
results that make no hydrogen bonds.
d D-score used for van der Waals interactions and charge between the ligand and the protein. 
e PMF (potential of mean force) score indicates the Helmholtz free energies of relations for protein-ligand atom pairs .
f G-score shows hydrogen bonding, internal (ligand-ligand), and complex (ligand-protein) energies. 
g Chem-score facts for lipophilic contact, H-bonding and rotational entropy, alongside with an intercept term.
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key hydrogen bond interaction of these benzoxazole moieties with ASN46 amino acid residue may be accountable for the 
consistent antibacterial activity as referred to clorobiocin.
4. Conclusion
Synthesis, biological activity and molecular docking studies of two distinct benzoxazole scaffolds are reported in this 
research work. Eco-friendly synthetic methodologies were utilised for the synthesis of both the scaffolds with quantitative 
yield. All synthesized benzoxazole derivatives demonstrated substantial antibacterial activity against Staphylococcus 
aureus, Streptococcus Pyogenes, P. Aeruginosa, and E. coli at 25 μg/mL. Furthermore, these compounds showed remarkable 
antifungal activities against Aspergillus clavatus and Candida albicans in comparison to the standard griseofulvin. 
Specifically, the compounds 18 and compound 21 displayed significant antimicrobial potential. Molecular docking studies 
were executed, to understand the basis of potential antimicrobial activity. Docking experiments revealed that these 
compounds are interacting in a similar fashion to the known DNA gyrase inhibitor chlorobiocin. Hence, we conclude that 
benzoxazole derivatives from 2-amino phenyl benzoxazole scaffolds could serve as suitable DNA gyrase inhibitors and 
may be developed as novel classes of potent antibiotic agents.

 

 

 

Figure 9: All the compounds at the active site of the enzyme PDB ID: 1KZN- docked view 
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Figure 10: Interface of compound 21 at the binding site of the enzyme (PDB ID: 1KZN) 
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Figure 9. All the compounds at the active site of the enzyme PDB ID: 1KZN- docked view.

Figure 10. Interface of compound 21 at the binding site of the enzyme (PDB ID: 1KZN).
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Figure 12: A) Hydrophobic amino acids encircled to compounds 21 (green colour) and 18 

(cyan colour). B) Hydrophilic amino acids encircled to compounds 21 and 18. 
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Figure 11: Interface of compound 18 at the binding site of the enzyme (PDB ID: 1KZN) 
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Figure 11. Interface of compound 18 at the binding site of the enzyme (PDB ID: 1KZN).

Figure 12. A) Hydrophobic amino acids encircled to compounds 21 (green colour) and 18 (cyan colour). B) Hydrophilic 
amino acids encircled to compounds 21 and 18.
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Supporting Information Summary
Following details in support of current research will be found in supporting information.
Characterization of synthesised compounds
5, 7-dichloro-2-phenylbenzo[d]oxazole (1) 
TLC (SiO2): Rf = 0.45 (hexane: EtOAc = 10:1). Brown solid, yield=85%, MP: 112–115 °C. FTIR (KBr): 835, 850, 1098, 1242, 1597, 

3209 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 7.66–7.63 (m, 2H), 7.58 (d, 1H), 7.53 (d, 1H), 7.10–7.04 (m, 2H). MS: m/z [M + H] + calcd 
for C13H7Cl2NO [M + H] + 263.9903, found 264.0609.

5, 7-dichloro-2-(p-tolyl) benzo[d]oxazole (2) 
TLC (SiO2): Rf = 0.46 (hexane: EtOAc = 10:1). Brown solid, yield=87%, MP: 117–120 °C. FTIR (KBr): 838, 860, 1097, 1244, 1598, 

3207 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 8.09–8.06 (m, 2H), 7.95 (d, 1H), 7.46-7.43(m, 2H), 7.38 (d, 1H), 2.29 (s, 3H). MS: m/z [M 
+ H] + calcd for C14H9Cl2NO [M + H] + 279.1325, found 280.1506

5, 7-dichloro-2-(2, 6-dichlorophenyl) benzo[d]oxazole (3)
TLC (SiO2): Rf = 0.41 (hexane: EtOAc = 10:1). Brown solid, yield=76%, MP: 124–126 °C. FTIR (KBr): 836, 867, 1098, 1245, 1598, 

3210 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 7.91 (d, 1H), 7.65–7.61 (m, 2H), 7.50 (t, 1H), 7.26 (d, 1H). MS: m/z [M + H] + calcd for 
C13H5Cl4NO [M + H] + 332.9954, found 333.9801

7-methyl-2-phenylbenzo[d]oxazole (4) [51]
TLC (SiO2): Rf = 0.42 (hexane: EtOAc = 10:1). Light yellow solid, yield=88%, MP: 85–87 °C (lit. 81–83 °C). FTIR (KBr): 835, 1094, 

1243, 1597, 3200 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 8.30 (s, 2H), 7.65 (d, 1H), 7.55–7.52 (m, 3H), 7.28 (d, 1H), 7.14 (d, 1H), 2.64 
(s, 3H). MS: m/z [M + H] + calcd for C14H11NO [M + H] + 209.08, found 210.1713.

7-methyl-2-(p-tolyl) benzo[d]oxazole (5) [47]
TLC (SiO2): Rf = 0.41 (hexane: EtOAc = 10:1). Yellow solid, yield=82%, MP: 90–95 °C (lit. 88–90 °C). FTIR (KBr): 833, 1097, 1248, 

1599, 3210 cm–1. 1H-NMR (400 MHz, DMSO-d6): δ = 8.18–8.22 (m, 2 H), 7.59 (d, 1 H), 7.33-7.36 (m, 2 H), 7.24 (dd, 1 H), 7.15 (dd, 1 
H), 2.60 (s, 3 H), 2.45 (s, 3 H) ppm. MS: m/z [M + H] + calcd for C15H13NO [M + H] + 223.28, found 224.2920.

2-(2, 6-dichlorophenyl)-7-methylbenzo[d]oxazole (6)
TLC (SiO2): Rf = 0.45 (hexane: EtOAc = 10:1). Yellow solid, yield=80%, MP: 114–117 °C. FTIR (KBr): 835, 864, 1093, 1246, 1592, 

3201 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 7.97–7.95 (m, 1H), 7.64-7.60 (m, 2H), 7.49 (t, 1H), 7.27–7.16 (m, 2H), 2.37 (s, 3H). MS: 
m/z [M + H] + calcd for C14H9Cl2NO [M + H] + 279.1332, found 280.0710

7-bromo-2-phenylbenzo[d]oxazole (7) [51]
TLC (SiO2): Rf = 0.44 (hexane: EtOAc = 10:1). White solid, yield=86% yield. MP: 117–119 °C (lit. 115–116 °C). FTIR (KBr): 690, 835, 

1095, 1245, 1598, 3205 cm–1. 1H NMR (400 MHz, DMSO-d6): δ= 8.35-8.30 (m, 2H), 7.59–7.53 (m, 5H), 7.28–7.21 (m, 1H); MS: m/z [M 
+ H] + calcd for C13H8BrNO [M + H] + 275.1265, found 278.0558.

7-bromo-2-(p-tolyl) benzo[d]oxazole (8)
TLC (SiO2): Rf = 0.43 (hexane: EtOAc = 10:1). Yellow solid, yield=81%, MP: 117–119 °C. FTIR (KBr): 670, 835, 1092, 1243, 1593, 

3210 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 7.96–7.95 (m, 2H), 7.82–7.79 (m, 1H), 7.50-7.48 (m, 2H), 7.39–7.31 (m, 2H), 2.31 (s, 3H). 
MS: m/z [M + H] + calcd for C14H10BrNO [M + H] + 286.9912, found 286.9865

7-bromo-2-(2, 6-dichlorophenyl) benzo[d]oxazole (9)
TLC (SiO2): Rf = 0.47 (hexane: EtOAc = 10:1). Yellow solid, yield=78%, MP: 125–129 °C. FTIR (KBr): 678, 836, 864, 1095, 1246, 

1597, 3210 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 7.96–7.94 (m, 1H), 7.65-7.52 (m, 3H), 7.40-7.30 (m, 2H). MS: m/z [M + H] + calcd 
for C13H6BrCl2NO [M + H] + 343.0014, found 344.0916

2-phenylbenzo[d]oxazole (10) [48]
TLC (SiO2): Rf = 0.47 (hexane: EtOAc = 10:1). Solid, Yield = 80%, MP = 110–112 °C (lit. 111–113 °C). FTIR (KBr): 836, 1095, 

1242, 1598, 3208 cm–1. 1H NMR (400 MHz, DMSO-d6) δ 8.29–8.25 (m, 2H), 7.83–7.79 (m, 1H), 7.64–7.58 (m, 1H), 7.55–7.53 (m, 3H), 
7.38–7.35 (m, 2H). MS: m/z [M + H] + for C13H9NO 195.2253 found 196.1821.

2-(p-tolyl) benzo[d]oxazole (11) [48]
TLC (SiO2): Rf = 0.44 (hexane: EtOAc = 10:1). White solid, Yield=76%. MP: 113–115 °C (lit. 112–114 °C). FTIR (KBr): 837, 1098, 

1243, 1599, 3207 cm–1. 1H NMR (400 MHz, DMSO-d6): δ= 8.17–8.15 (m, 2H), 7.78-7.76 (m, 1H), 7.59–7.57 (m, 1H), 7.37–7.35 (m, 4H), 
2.45 (s, 3H); MS: m/z (ESI) calcd for C14H11NO [M + H] + 209.2523, found 211.9318.

2-(2, 6-dichlorophenyl) benzo[d]oxazole (12)
TLC (SiO2): Rf = 0.48 (hexane: EtOAc = 10:1). Yellow solid, yield=83%, MP: 115–119 °C. FTIR (KBr): 837, 865, 1093, 1247, 1598, 

3205 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.20–8.17 (m, 2 H), 7.65–7.52 (m, 3H), 7.41–7.35 (m, 2H). MS: m/z [M + H] + calcd for 
C13H7Cl2NO [M + H] + 264.1132, found 266.0421.

5, 7-dichloro-2-(4-chlorophenyl) benzo[d]oxazole (13)
TLC (SiO2): Rf = 0.50 (hexane: EtOAc = 10:1). Yellow solid, yield=87%, MP: 118–121 °C. FTIR (KBr): 834, 868, 1095, 1248, 1599, 

3210 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.02 (d, 1H), 7.97–7.76 (m, 2H), 7.83–7.79 (m, 2H), 7.29(d, 1H). MS: m/z [M + H] + calcd 
for C13H6Cl3NO [M + H] + 298.5532, found 298.1216.

2-(4-Chlorophenyl) benzoxazole (14) [48]
TLC (SiO2): Rf = 0.46 (hexane: EtOAc = 10:1). White solid, yield=85%, mp 145–148 °C (Lit. 144–145 °C); FTIR (KBr): 832, 1093, 

1244, 1596, 3110 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 8.23-8.20 (m, 2H), 7.79–7.75 (m, 1H), 7.61–7.58 (m, 1H), 7.53–7.52 (m, 2H), 
7.40–7.37 (m, 2H). MS: m/z [M + H] + calcd for C13H9NOCl: 230.0363; found: 230.0370.
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5, 7-dichloro-N-(4-fluorophenyl) benzo[d]oxazol-2-amine (15)
TLC (SiO2): Rf = 0.48 (Hexane‒CH2Cl2 = 8:2). Brown solid; yield=68%, mp 169–172 °C. FTIR (KBr): 650, 746, 1100, 1271, 1507, 

1575, 1600, 1622, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.12(S, 1H), 7.82 (s, 1H), 7.65–7.55 (m, 2H), 7.48 (d, 1H), 7.37 (d, 
1H), 7.28–7.22 (m, 2H), 7.19–7.08 (m, 3H). MS: m/z [M + H] + calcd for C13H7Cl2FN2O: 297.1112; found 297.1015.

5, 7-dichloro-N-(4-methoxyphenyl) benzo[d]oxazol-2-amine (16)
TLC (SiO2): Rf = 0.38 (Hexane‒CH2Cl2 = 8:2). Light yellow solid; yield=86%, mp 148–150 °C. FTIR (KBr): 650, 746, 1270, 1510, 

1573, 1620, 1622, 1650, 2820, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.65 (s, 1H), 7.58 (d, 1H), 7.29-7.23 (m, 3H), 6.67-6.63 (m, 
2H), 3.74 (s, 3H). MS: m/z [M + H] + calcd for C14H10Cl2N2O2: 309.1532; found 309.1021.

5, 7-dichloro-N-phenylbenzo[d]oxazol-2-amine (17)
TLC (SiO2): Rf = 0.41 (Hexane‒CH2Cl2 = 8:2). Brown solid, yield=76%, mp 159–160 °C. FTIR (KBr): 650, 746, 1271, 1504, 1573, 

1610, 1622, 1647, 3049 cm-1. 1 H NMR (400 MHz, DMSO-d6): δ 7.95 (s, 1H), 7.58 (d, 1H), 7.53 (d, 1H), 7.49–7.46 (m, 2H), 7.28–7.20(m, 
2H), 7.03–6.90 (m, 1H). MS: m/z [M + H] + calcd for C13H8Cl2N2O: 279.1243 Found: 281.0023.

N-(4-fluorophenyl) benzo[d]oxazol-2-amine (18) [49]
TLC (SiO2): Rf = 0.47 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=88%, mp 168–170 °C (Lit.167-169 °C). FTIR (KBr): 746, 1100, 

1271, 1504, 1573, 1600, 1622, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 7.82 (s, 1H), 7.65–7.55 (m, 2H), 7.48 (d, 1H), 7.37 (d, 
1H), 7.28–7.22 (m, 2H), 7.19–7.08 (m, 3H). MS: m/z [M + H] + calcd for C13H10FN2O: 228.2372; found 229.1662

N-(4-methoxyphenyl) benzo[d]oxazol-2-amine (19) [49]
TLC (SiO2): Rf = 0.39 (Hexane‒CH2Cl2 = 8:2). Light yellow solid; yield=80%, mp 138–140 °C (Lit. 137-139 oC). FTIR (KBr): 746, 

1270, 1504, 1573, 1620, 1622, 1650, 2820, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.79 (s, 1H), 7.55–7.48 (m, 2H), 7.42 (d, 1H), 
7.31 (d, 1H), 7.20 (m, 1H), 7.08 (m, 1H), 6.97–6.90 (m, 2H), 3.82 (s, 3H). MS: m/z [M + H] + calcd for C14H13N2O2: 240.2662; found 
242.1664.

N-phenylbenzo[d]oxazol-2-amine (20) [33]
TLC (SiO2): Rf = 0.42 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=83%, mp 125–129 °C. FTIR (KBr): 746, 1270, 1504, 1573, 1625, 

1622, 1650, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ = 7.39–7.22 (m, 5 H). MS: m/z [M + H] + calcd for C13H10N2O: 210.2454; found 
210.1814.

N-(4-fluorophenyl)-7-methylbenzo[d]oxazol-2-amine (21)
TLC (SiO2): Rf = 0.43 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=84%, mp 164–167 °C. FTIR (KBr): 746, 1100, 1271, 1504, 1575, 

1600, 1630, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 7.82 (s, 1H), 7.65–7.63 (m, 2H), 7.47–7.44 (m, 1H), 7.38–7.36 (m, 1H), 
7.07–6.99 (m, 3H), 2.20 (s, 3H). MS: m/z [M + H] + calcd for C14H11FN2O: 242.2532; found 243.3721.

N-(4-methoxyphenyl)-7-methylbenzo[d]oxazol-2-amine (22)
TLC (SiO2): Rf = 0.38 (Hexane‒CH2Cl2 = 8:2). Light yellow solid; yield=78%, mp 145–147 °C. FTIR (KBr): 746, 1270, 1504, 1573, 

1610, 1622, 1650, 2820, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.50 (s, 1H), 7.48–7.44 (m, 1H), 7.39–7.36 (m, 1H), 7.26–7.23 
(m, 2H), 7.10–7.04 (m, 1H), 6.63–6.61 (m, 2H), 3.74 (s, 3H), 2.20 (s, 3H). MS: m/z [M + H] + calcd for C15H14N2O2: 254.2921; found 
254.2720.

7-methyl-N-phenylbenzo[d]oxazol-2-amine (23) [50]
TLC (SiO2): Rf = 0.45 (Hexane‒CH2Cl2 = 8:2). Pale brown solid, yield=83%, mp 164–167 °C (Lit. m.p. 163-166 OC). FTIR (KBr): 746, 

1271, 1504, 1573, 1600, 1622, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 7.62 (d, 1H), 7.43-7.32 (m, 3H), 7.18–7.11 (m, 2H), 
6.97 (d, 1H), 2.47 (s, 3H). MS: m/z [M + H] + calcd for C14H12N2O: 224.0951. Found: 224.0854.

7-bromo-N-(4-fluorophenyl) benzo[d]oxazol-2-amine (24)
TLC (SiO2): Rf = 0.48 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=86%, mp 171–172 °C. FTIR (KBr): 660, 749, 1100, 1271, 1504, 

1573, 1600, 1622, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 7.83 (s, 1H), 7.65–7.63 (m, 2H), 7.57–7.56 (m, 1H), 7.49–7.37 (m, 
2H), 7. 05–7.02 (m, 2H). MS: m/z [M + H] + calcd for C13H8BrFN2O: 305.9823; found 305.9820.

7-bromo-N-(4-methoxyphenyl) benzo[d]oxazol-2-amine (25)
TLC (SiO2): Rf = 0.40 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=82%, mp 148–150 °C. FTIR (KBr): 655, 746, 1270, 1504, 1573, 

1610, 1622, 1650, 2820, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.48 (s, 1H), 7.60 –7.56 (m, 1H), 7.49-7.36 (m, 2H), 7.26–7.24 (m, 
2H), 6.65-6.62 (m, 2H), 3.74 (s, 3H). MS: m/z [M + H] + calcd for C14H11BrN2O2: 319.1642; found 321.0813.

7-bromo-N-phenylbenzo[d]oxazol-2-amine (26)
TLC (SiO2): Rf = 0.50 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=77%, mp 169–171 °C. FTIR (KBr): 660, 749, 1100, 1271, 1504, 

1573, 1600, 1622, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 7.80 (s, 1H), 7.56–7.53 (m, 1H), 7.50-7.36 (m, 4H), 7.28–7.26 (m, 
2H), 7. 05–7.02 (m, 1H). MS: m/z [M + H] + calcd for C13H9BrN2O: 289.1399; found 289.0932.


