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1. Introduction
Synthetic leather, also called artificial leather or coated textile, is becoming more popular as a substitute for natural leather 
in a variety of applications thanks to its low cost and its similar look and durability to authentic leather. The coating is 
increasingly becoming an important way of adding value to textiles. It aims to develop the functional properties of textiles, 
improve certain characteristics, and guarantee that fabrics meet parameters of performance that will not be achievable 
from uncoated and leathered fabrics [1].

Polyvinyl chloride (PVC) is one of the most extensively utilized polymers in the coating industry due to its low cost, 
low density, fire retardancy, excellent insulation, and high mechanical and thermal properties. PVC synthetic leather is 
widely used in daily life [2–4]. 

So far, the significance of their properties has been greatly emphasized as a result of their application in various domains 
such as footwear, automotive, flooring and wall coverings, handbag accessories, medical equipment, and clothing [5,6]. 
The superficial layer, foamed layer (internal layer), and backing textile are common components of these materials [7].

Their basic components are as follows: PVC resin, a stabilizer, a plasticizer, a blowing agent, and a filler [8]. Plastisol 
is made by evenly mixing these components [9,10]. Fillers are especially utilized to reduce the cost of the final product. 
Nevertheless, their properties are a critical factor in defining several technical features of PVC synthetic leather [11–
13].

Calcium carbonate is one of the most widely used fillers for the PVC leather industry [14–16], conventionally CaCO3 
has been employed to minimize its cost and enhance its melting viscosity, and mildly increase the modulus of the final 
product due to its small surface area and undesirable geometrical aspects [17]. However, some mechanical properties 
remained constant or, in some circumstances, declined [18]. Particle shape and size and filler quantity have recently been 
reported to have a significant effect on PVC materials filled with calcium carbonate [19]. Rigorous studies have shown the 
effect of calcium carbonate on the mechanical behavior of PVC materials [20].

Other studies have shown that CaCO3 particle size and content have a significant effect on the morphological structure 
[17,21,22], the thermal characteristics [16,23,30], and the physical properties of the PVC products [17,21].

However, no published references on the subject of the foamed layer used for PVC synthetic leather have been found.
This study aims to explore the functionality of calcium carbonate in the thermal property enhancement of the PVC 
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foamed layer used for coated textiles and to provide a detailed analysis to demonstrate the impact of CaCO3 concentration 
and particle size on the thermal characteristics of the PVC synthetic leather foamed layer.

2. Experimental
2.1. Raw materials 
PVC resin, Plasticizer (DINP), stabilizer, CaCO3 fillers, blowing agent (azodicarbonamide), kicker, transfer paper, pigment, 
and textile fabric were generously donated by PLASTISS company (Monastir, Tunisia). The different calcium carbonate 
particle sizes (1.8 µm and 0.9 µm) were provided by SOFAP company (Sfax-Tunisia).
2.2. Synthesis of PVC foamed layer 
In this study, PVC foamed layers have been developed from PVC plastisol. To make PVC plastisol, 100 parts PVC resin, 80 
parts DINP, 4 parts azodicarbonamide, 2 parts Kicker, and 1.5 parts stabilizers were mixed in a mechanical stirrer. Then 
25%, 50%, 75%, 100%, or 125% (by weight) of fillers were included and mixed until a consistent mixture was obtained.

The transfer coating technique has been used to create a PVC-foamed layer. The plastisol is applied to the transfer 
paper with a blade and the thickness is controlled simultaneously. The resultant film, called the foamed layer or internal 
layer, once it is dried at 200 °C for 80 s and steamed. During plasticizing, the azodicarbonamide (chemical blowing agent) 
decomposes, generating ammonia gas (NH3), which dissipates in the plastisol. Until curing is completed, the gas must 
remain dissolved in the melting.
2.3. Thermal characterization 
The TGA and DTG curves of the foamed layers have been analyzed using Perkin Elmer STA 6000 in the temperature range 
of 0–600 °C at a heating rate of 10 °C min–1 under a nitrogen stream and an oxidizing atmosphere.

DSC measurements were carried out at a heating rate of 0.1 °C/min in ambient air conditions, using a Mettler Toledo.
2.4. Chemical characterization 
The FTIR spectra have been acquired on a Perkin-Elmer BXFTIR system spectrometer (by dispersing samples in KBr 
disks).

3. Results and discussion
3.1. FTIR characterization
The FTIR spectra of PVC resin, represented in Figure 1a, show the characteristic vibrational modes as summarized in 
Table 1 [31].

Figure 1b shows the FTIR spectra of calcium carbonate (CaCO3), which is characterized by the three C-O elongation 
modes of the carbonate groups [32]. They appear as a triplet consisting of:

- A large and intense absorption band at 1400 cm–1.
- A thin and intense band at 876 cm–1.
- A thin and weak band at 714 cm–1.
These similar absorption bands were also reported by Wen et al. [33] and Luo et al. [34].
The FTIR spectra of the PVC internal layer with 0% and 50% of CaCO3 with different particle sizes (0.9 µm and 1.8 

µm) are shown in Figure 1c. The different samples were characterized by different types of elongation modes [35] which 
appear as several absorption bands and are as follows: the peak set at 2963 cm–1 corresponds to the C-H stretch bond [36], 
the peak located around 1409 cm–1 suitable for The C–H aliphatic bending bond, the peak located at 1250 cm–1 is attributed 
to the C-H deformation bond near chlorine (Cl), the peak observed in the 1000–1100 cm–1 region corresponds to the 
PVC backbone chain’s C–C stretch bond. Finally, the peak detected at 620 cm–1 represents C–Cl gauche bonds, similar 
absorption bands have been reported by Atef et al. [37], Lee et al. [38], and Ramesh et al. [36].

Table 1. Vibrational modes observed in PVC resin.

Modes of vibration Wavenumber (cm–1 )

–CH stretching 2900–2960
–CH2 deformation 1400
CH rocking 1250
trans CH wagging 1062
C–Cl stretching 610
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The CH2 bending peak, with a wavenumber of approximately 1409 cm–1, is maximum in the reinforced samples, and the 
peak intensity increases with decreasing particle size, compared to the FTIR spectra of the reinforced foamed layer with the 
pure samples as a reference. Another notable difference is the presence of a very thin and sharp peak in the reinforced samples 
with a wavenumber of around 877 cm–1, which can be attributed to the C-O elongation modes of the carbonate groups [39]. 
3.2. Thermal characterization
Figure 2 shows that the fusion point of the pure PVC foamed layer was detected at 290.39 °C [42]. DSC curves of PVC/50% 
CaCO3 foamed layers with a fine particle diameter (0.9 µm) and PVC/50% CaCO3 with a large particle diameter (1.8 
µm) have revealed a linked melting peak located around 304.71 °C and 296.36 °C, respectively. It is clear that by adding 
CaCO3, the fusion point of the pure PVC foamed layer was raised to a higher temperature. It can be concluded that calcium 
carbonate improves the thermal stability of the PVC foamed layer.

Etienne et al. [24], Matthews et al. [27], Tuen et al. [43], Zhu et al. [30], and Sun et al. [28] confirmed these findings and 
attributed them to the CaCO3’s HCl scavenger action during PVC thermal decomposition.

As shown in Figure 2, it has also been demonstrated that thermal stability is improved when using small particle sizes 
of CaCO3 due to their larger surface area, as previously reported by Liu et al. [26]. Calcium carbonate particles with a larger 
surface area have absorbed the HCl gas released during the PVC thermal decomposition more successfully.

Figures 3 and 4 illustrate the TGA weight loss and derivative thermograms (DTG), respectively, for pure PVC and 
PVC/50% CaCO3 foamed layers with varying CaCO3 particle sizes. Thermal factors are listed in Table 2.

From the TGA and DTG curves illustrated in Figures 3 and 4, the thermal degradation of pure PVC and PVC/CaCO3 
foamed layers happens in two main stages, and two substantial weight losses can be seen [24,39].

As also observed by Etienne et al. [24], a minor delay in the two onset decomposition temperatures was noticed (Figure 
3) and increased with the use of small CaCO3 particle size.

Moreover, the weight loss of the PVC/50% CaCO3 foamed layer was lower than the pure PVC foamed layer, and the 
internal layer filled with small particles typically has the lowest weight loss among the other samples used in this study.

We can conclude that the incorporation of CaCO3 can ameliorate the thermal stability of the PVC foamed layer used 
for PVC synthetic leather, and using a small CaCO3 particle size increases the enhancement of the thermal stability. The 
results of the TGA and DTG analyses were in good agreement with the DSC data.

Figure 1. FTIR spectra. a. Pure PVC resin; b. Calcium carbonate with various particle sizes; c. PVC internal layer before and 
after adding CaCO3 with different particle sizes.
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Figure 2. DSC curves of the pure PVC and PVC/50% CaCO3 
foamed layers prepared with different particle sizes (0.9 µm and 
1.8 µm).

Figure 3. TGA curves of pure PVC and PVC/50% CaCO3 foamed 
layer with different particle sizes (0.9 µm and 1.8 µm).

Table 2. Thermal factors.

Samples

1st decomposition 2nd decomposition 

T (°C) Weight loss (%) T (°C) Weight loss (%)

Pure PVC 196 72 420 24
PVC/50% CaCO3 (1.8 µm) 225 54 421 6.8
PVC/50% CaCO3 (0.9 µm) 226 51 423 6.59

Figure 4. DTG curves. a. PVC/50% CaCO3 (0.9 µm); b. PVC/50% CaCO3 (1.8 µm); c. pure PVC foamed layer.
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4.Conclusion
The effects of particle size and content of CaCO3 filler on the thermal properties of the PVC foamed layer used for 
synthetic leather were investigated, and we have demonstrated that adding CaCO3 can ameliorate the thermal stability of 
the PVC foamed layer. Therefore, the melting point and the onset decomposition temperatures of the filled foamed layer 
increase compared with the unfilled one. Many authors attributed these findings to CaCO3’s superior ability to trap HCl 
gas produced during PVC decomposition. Moreover, we observed that the most important positive impact on thermal 
stability was detected when using a smaller particle size, which has contributed to its larger surface area that can help to 
consume much more HCl gases, according to several researchers.
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