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1. Introduction
LDPE is an important thermoplastic polymer that contains long-chain branches throughout the polymer backbone. Since 
it presents many substantial properties such as high clarity, flexibility, chemical, and radiation resistance, crack and fatigue 
strength, low moisture permeability, also being tasteless and odorless; it is used in a wide range of application areas such 
as packaging material, bottle, cap, and underpads for hospital beds [1]. These large application areas make the LDPE 
considerable material in terms of improving their critical properties like mechanical endurance.  

One of the most important approaches to reinforce the mechanical properties of a composite system is the dispersion 
of nanoparticles into the polymer matrix [2]. For this purpose, different nanoparticles have been tried to improve the 
mechanical properties of a composite such as carbon nanotube (CNTs) [3], graphene [4], ZnO [5], SiO2 [6], and Ag [7]. 
Among these nanoparticles, halloysite nanotubes (HNTs) have a notable place for use as reinforcer filler on polymeric  
nanocomposite films [8] due to their intrinsic nanostructure, high thermal stability, acceptable mechanical strength, 
relatively low cost, and biocompatibility properties [9]. In the literature, there are different examples of using HNTs as 
mechanical property reinforcers for various  nanocomposite films as their natural [10–14], or modified state [15–18]. 
However, there have been limited studies directly focusing on LDPE  nanocomposite films [19,20]. 

To investigate and improve the mechanical properties of nanocomposite film, two main parameters should be 
considered: First, as known that well dispersion of nanoparticles into a polymer system is the key factor in improving the 
properties of composite system [21]. Therefore smaller-sized and agglomeration-free nanoparticles should be provided to 
disperse them into a polymer matrix successfully [22]. Secondly, because poor adhesion lowers the thermal and mechanical 
properties of composites [23,24], creating a good adhesion between the clay-polymer interface at the nanolevel becomes 
another remarkable issue to affect the mechanical properties of film composite, positively. Besides, the dispersion of HNTs 
into the polymer matrix properly ensures the improvement of other important characteristics of packaging material such 
as enhancing barrier properties which is a critical issue for being used of the material in food packaging applications [25]. 
Thus, the issue of well-dispersion of nanoparticles into the packaging film should be focused on for being a multifunctional 
packaging product including its degree of crystallinity which is directly related to barrier property.
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In this study, nanocomposite films were designed considering these two main approaches explained above. HNT 
nanotubes were coated with polydopamine (PD), which has strong adhesive properties, the ability of coating the whole 
surface of the material, and perfect biocompatibility [26]. Prepared PD-coated HNTs (PDHNTs) were separated into three 
different size grades as detailedly explained in our previous study [22]. Polydopamine-coated HNTs with different sizes 
and agglomeration grades were embedded into the LDPE matrix for the concentration of 1% and nanocomposite films 
were prepared with film blown technique. The effect of polydopamine coating and size dispersion on the mechanical and 
thermal properties of LDPE nanocomposite films were investigated by thermal and mechanical instrumentation methods.  

2. Materials and methods     
2.1 Chemicals
Low-density polyethylene (LDPE) powders (PETİLEN F2-12) and raw HNTs were supplied by PETKİM Petrokimya A.Ş. 
and Sigma-Aldrich Inc., respectively. Ultrapure Tris base (Tris(hydroxymethyl)aminomethane) and 3-hydroxytyramine 
hydrochloride (Dopamine) were purchased from MP Biomedicals, LLC, and Acros Organics Inc., respectively. In all 
necessary steps of nanoparticle preparation, Milli-Q purified water was utilized. 
2.2 Coating of HNT surface with polydopamine
PDHNTs were prepared by using the traditional PD coating method [27–29]. As the protocol steps, first, a certain amount 
of raw HNTs was dispersed in distilled water via ultrasound sonication to create a well-dispersion of the HNTs in the 
aqueous medium. For this purpose, the concentration of the HNT/aqueous medium was adjusted to 10mg/mL, and 
ultrasound sonication at 100% amplitude (120W-5 s pulse on and 2 s pulse off) was applied to the system in an ice bath for 
30 min. Following the dispersion step, the dopamine monomer (2 mg/mL) was put into the dispersion, and the pH of the 
system was set to 8.5 with Tris base powder. The dispersion was stirred at 30 °C for 30 min, and PDHNTs were collected 
from the system at the end of the 30 min with centrifugation at 5000 rpm for 5 min. The prepared PDHNTs were washed 
with water several times and dried at 50 °C for 24 h in a vacuum oven.
2.3 Separation of PDHNTs into three different size grades
PDHNTs were separated into three different grades by preparing a main aqueous system in a concentration of 20 mg/mL. 
The prepared aqueous system was dispersed by Ultra-TURRAX T18 for 30 min at approximately 11,000 rpm to provide 
a predispersion, first.  Following, the predispersed mixture was transferred to an ultrasound sonicator and ultrasonicated 
for 45 min in an ice bath with the parameters of 120W/5 s pulse on and 2 s pulse off. Finally, the obtained well-dispersion 
of PDHNT was centrifuged at 2000–6000–11,000 rpm for 10 min each. At the end of each centrifugation, the precipitated 
PDHNTs for different grades were collected, and the supernatant part was centrifuged with the next rpm level. Each 
PDHNT quality, which was precipitated after the centrifugations at 2000, 6000, and 11,000 rpm, was labeled as “grade 1”, 
“grade 2” and “grade 3”, respectively, and dried in an oven at 100 °C overnight. This section was detailedly examined and 
explained in the previous work of Tas et al. [22].
2.4 Preparation of LDPE-PDHNT nanocomposite films 
The mixture of polyethylene and PDHNT powders in the ratio of 99:1 (wt./wt. %) was fed into a twin-screw extruder (Zamac 
Mercator with a screw diameter of 12 mm and L/D of 40). Powder mixtures were processed at the zone temperature range 
between 160 °C  and 180 °C with the screw speed of 300 rpm.  Nanocomposite melt flowing from the extrusion die was 
cooled in a water bath and pelletized. Obtained pellet form of nanocomposite mixture was transferred to a single screw 
film blowing machine (Scientific Laboratory Ultra Micro Film Blowing Line Type LUMF-150 with L8-30/C, LabTech 
Engineering), processed at 150–160 °C with a single screw speed of 80 rpm and blown into 55–65 µm thick films. 
2.5 Characterization methods
Nicolet IS10 Fourier transform infrared (FTIR) spectroscopy with an ATR system was used for the chemical analysis of 
samples.  The hydrodynamic diameter of samples was determined using a dynamic light scattering (DLS) instrument 
(Zetasizer Nano - ZS, Malvern Instruments Ltd., UK) at 25 °C at a sample concentration of 2 mg/mL for each sample. The 
samples were visualized with Zeiss LEO Supra 35VP scanning electron microscopy (SEM). As the sample preparation 
methods for SEM imaging, 0.1 mg/mL aqueous PDHNT mixture was dispersed by ultrasonication in an ice bath for 2 min 
(at 75 W with 5 s pulse on and 2 s pulse off), dropped on the silicon wafer and dried. For the imaging of LDPE/PDHNT 
nanocomposite films, samples were coated with Au-Pd, and images were recorded with a secondary electron detector under 
a high vacuum at 5 kV. The size distribution of HNT specimens was analyzed using SEM images at 50k magnification by 
ImageJ software. Mechanical properties of nanocomposite films were examined by Zwick Roell universal testing machine 
(Z100 UTM), with a load cell of 200 N and a crosshead speed of 12.5 mm min−1 according to the ASTM D1708–10 testing 
method. Dog-bone test specimens had a length of 38 mm and width of 15 mm, a narrow section width of 5 mm, and a 
grip distance of 22 mm. An average of at least four replicates of each sample was reported. TGA analysis was carried out 
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by Shimadzu Corp. DTG-60H (TGA/DTA) instrument in the temperature range of 30–1000 °C with a rate of 10 °C/min 
under nitrogen. The thermal properties of samples were investigated by DSC (Thermal Analysis MDSC TAQ2000) with 
the heating and cooling cycle between 60 °C and 200 °C at a heating/cooling rate of 10 °C/min under nitrogen flow. The 
DSC parameters were calculated using the TA Universal Analysis Software. The thicknesses of the films were determined 
by a digimatic micrometer (Mitutoyo Quicmike, no. 99MAB041M). Contact angle studies were performed by the Theta 
Lite Contact Angle Measurement system with a sessile drop method and an automatic video-based contact angle device. 
The characterization was done at room temperature and results were reported as averages of the measurements at three 
different points on the nanocomposite film surface.

3. Result and discussion
Raw HNTs which were supplied from any resource can be separated into homogeneous, smaller-size grades, and 
agglomeration-free levels by applying the three-step separation method. The brief methodology of this technique is that 
raw HNTs are coated with polydopamine to enhance the hydrophilicity of the nanotube surface and provided colloidal 
stability in the water medium, firstly. Afterward, polydopamine-coated HNTs are cut by ultrasound sonication to a smaller 
size, and finally, size-graded PDHNTs are collected by centrifugation at different speeds. With this pathway, homogeneous-
smaller-sized and agglomeration-free PDHNTs have been obtained [22].

Fundamental results of three different-sized PDHNTs were presented in Figure 1 and Table. In Figure 1a, the FT-IR 
spectrum of raw HNTs and PDHNTs at different size grades were presented. As assigned on the spectrum, indicator peaks 
of polydopamine coating at 1625 cm–1, 1337 cm–1, 1499 cm–1, and 1276 cm–1 corresponded to -NH bending, symmetric 
and asymmetric -NH stretching, aromatic C=C bending, and C-N stretching, respectively [30], and the intensity of 
characteristic peaks of polydopamine coating on HNT surface increased toward  grade 3 PDHNTs. 

SEM images of raw HNTs and PDHNTs at different size grades were given in Figure 1b. As seen on SEM images, raw 
HNTs possessed a widescale of size distribution and microsized agglomeration, while distribution and the size length of 
nanotubes reached the smallest and more homogeneous level from grade 1 PDHNTs toward grade 3 PDHNTs. Also, grade 
3 PDHNTs presented a minimum amount of aggregates when compared with other size-graded PDHNTs and raw HNTs. 

The amount of polydopamine coating on PDHNTs was calculated by TGA (Table). The amount of PD layer on grade 
1, grade 2, and grade 3 PDHNTs was calculated as 1.51 wt %, 1.70 wt %, and 3.63 wt %, respectively. The results apparently 
exhibited that HNTs having the agglomeration-free form and smaller size were coated with the polydopamine layer in 
higher percentages than HNTs having larger agglomerated features. This was probably due to having larger surface areas 
of agglomeration-free HNTs relative to the surface areas of agglomerated HNTs.

In Table, the size distribution of PDHNTs was also presented by scanning electron microscopy (SEM) and dynamic light 
scattering (DLS) analysis. It was found that raw HNTs showed a wide distribution of nanotube lengths with micronsized 
aggregates. After the separation protocol, it was clearly seen that the size fractions of PDHNTs formed more homogeneous 
distributions of sizes with a minimum amount of aggregates. As seen in the hydrodynamic diameters calculated from DLS 
analysis, the size length of HNTs dropped to 200 nm for grade 3 HNTs. Moreover, statistical analysis of PDHNT length 
distributions on the SEM images also proved that the wide length distribution of raw HNTs was reached to narrower 
distributions with shorter average lengths that are grade 2 PDHNTs had shorter nanotubes, and grade 3 PDHNTs presented 
only individually separated nanotubes of shortest lengths.

Following the fundamental characterizations, obtained PDHNT grades and raw HNTs were integrated into the 
LDPE matrix. Thus, the effect of size-graded and PD-coated HNTs on the thermal and mechanical properties of LDPE 

Table. Amount of PD coating on HNT surface and analysis of size distribution of raw HNTs and PDHNTs at different size grade. 
#Calculated with TGA analysis using differences between total weight loss of raw HNTs and PDHNT samples. *Measured with 
DLS instrument in water medium. $ Calculated with SEM images at 50k magnification using ImageJ software.

Sample PD amount on PDHNTs (wt %)# Hydrodynamic diameter (d.nm)* Size length (nm)$

Raw HNTs - 1417 ± 378 527 ± 25
PDHNTs 5.90 2639 ± 893 416 ± 82
Grade 1 PDHNTs 1.51 514 ± 22 276 ± 17
Grade 2 PDHNTs 1.70 315 ± 9 248 ± 8
Grade 3 PDHNTs 3.63 199 ± 3 132 ± 3
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nanocomposite films was examined by focusing on the degree of crystallinity and fundamental mechanical properties 
such as Young’s modulus, tensile strength, and elongation at break.

Firstly, the influence of PD-coated nanotube incorporation on the surface hydrophilicity of LDPE nanocomposite 
films was investigated, and comparison results were presented in Figure 2. The integration of raw HNTs into the LDPE 
matrix decreased the contact angle value due to the hydroxyl character of the HNT surface, thus increasing the surface 
hydrophilicity of nanocomposite films. The incorporation of PD-coated HNTs decreased the contact angle more than raw 
HNTs, which was the expected result because of the hydrophilic character of PD coating arising catechol groups on PD 
structure. The low increment of contact angle values of LDPE/grade 1 PDHNTs and LDPE/grade 2 PDHNTs could be 
explained by the aggregation of PDHNT nanotubes at different points in the LDPE matrix. Finally, a significant decrease 
in the contact angle of LDPE/grade 3 PDHNTs nanocomposite films was observed, which could be an important indicator 
of the well-dispersion of grade 3 PDHNTs into the film matrix and the PD coating amount of HNT surface. Therefore, the 
hydrophilic character of LDPE/grade 3 PDHNTs nanocomposite film was ascended.

As reported in different studies, the concentration of HNTs in the composite system has a limited amount. When an 
excess amount of HNTs is added to a composite system, the mechanical properties of the prepared composite start to 
decrease, probably due to poor dispersion in the polymer matrix. In general, 3% of HNT concentration can be accepted 
as the maximum HNT filler content for the protection mechanical of parameters [14,31]. Because of this reason, the 
HNT amount in nanocomposite films was kept at 1% for investigating the size and PD coating effect clearly by avoiding 
the concentration effect. SEM images of prepared nanocomposite films and their mechanical parameters of them were 
presented in Figure 2.  

In Figure 3a, a general view of prepared nanocomposite films at 10k magnification was presented. As marked with white 
circles on the images, many small chunks were detected in the film matrix. However, these nanotube chunks decreased 
from grade 1 to grade 3 and obtained a negligible number of chunks in LDPE/Grade 3 PDHNTs nanocomposite film. 
These results showed that when the size of PDHNT nanotubes was decreased to a smaller level, better integration in the 
nanocomposite film was provided which was a very important indicator of well-embedding and dispersion of nanotubes 
into the polymer matrix.

In Figure 3b, Young’s modulus (YM), elongation at break (EB), and tensile strength (TS) values of prepared 
nanocomposite films were evaluated. An increasing trend was observed for Young’s modulus and TS of nanocomposite 
films. When compared with neat LDPE, 46% (YM) and 18% (TS) improvement were obtained for LDPE/grade 3 PDHNTs 
film. For EB values, almost similar and random results were found. The reason for obtaining large error bars that were seen 

Figure 1. FT-IR spectrum (a) and SEM images (b) of raw HNTs and PDHNTs at different size grade.
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for TS and EB values of LDPE/grade 1 PDHNTs was probably due to poor dispersion and large chunks in the film matrix 
causing defects on the film matrix, thus resulting in a wide range of results. Moreover, the effect of polydopamine coating 
on filler performance was compared by using mechanical parameters of LDPE/raw HNTs and LDPE/PDHNTs. It was 
obviously seen that the TS value of LDPE/PDHNTs had %14 higher than LDPE/raw HNTs, while YM values were almost 
the same. These improvements in modulus value mostly depend on the dispersion state of nanotubes and interfacial 
adhesion between filler and matrix due to the strong adhesion character of PD coating [23].

Figure 2. Contact angle comparison between neat LDPE and LDPE 
nanocomposite films.

Figure 3. SEM images (a) and mechanical parameters (b) of LDPE/HNTs and LDPE/PDHNTs nanocomposite films.
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The contribution of PD-coated HNT fillers on the thermal properties of LDPE was investigated by DSC measurement 
and results were given in Figure 4. DSC curves of film samples were presented in Figure 4a and melting properties with 
crystallinity % results were drawn in Figure 3b. The degree of crystallinity % (Xc) was calculated using the equation,

Xc = ΔH°m/ΔHm (1 − wt) x (100), 
where ΔHm is the specific melting heat, calculated by the integration of the area under the crystallization peak, ΔH°m is 

the theoretical specific melting heat of 100% crystalline PE (293 J g–127 and it is the weight fraction of HNTs in the polymer 
matrix.

As known that the integration of HNT nanotubes into a polymeric matrix increases the degree of crystallinity of 
nanocomposite film due to enhancing interaction between nanotubes and polymer matrix, where nanotubes may act 
as a nucleation site [19]. In this presented study, similar results were obtained as seen in Figure 4b. It was calculated 
that the degree of crystallinity increased by 13% by being added raw HNTs into the LDPE matrix and showed the same 
trend for PDHNT, grade 1 PDHNT, and grade 2 PDHNT containing nanocomposite films. For LDPE/grade 3 PDHNT 
nanocomposite films, the degree of crystallinity was found 24% higher than the neat film that was because of well dispersion 
and strong interfacial adhesion arising from PD coating. Parallel with the degree of crystallinity results, melting enthalpies 
exhibited a similar trend, while melting temperatures did not change notably.

In conclusion, the effect of polydopamine coating and size separation of HNTs on the dispersion state of nanotubes 
into the LDPE-based polymer matrix was analyzed in terms of contribution to the degree of crystallinity and mechanical 
properties of nanocomposite films, which are important parameters for application areas of LDPE such as food packaging. 
It was found that improvement of both degrees of crystallinity and the mechanical parameter was higher than results that 
were obtained in different studies used treated or raw HNTs for various targets[20,24,32–34], especially for LDPE/Grade 3 
PDHNTS that used homogeneous-smallest-sized and agglomeration free PDHNTs. Moreover, a comparison of the degree 

Figure 4. DSC curves (a) and thermal parameters (b) of Neat LDPE, and nanocomposite films.
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