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1. Introduction 
Polyoxometalates (POMs) are metal oxide polyanionic clusters. A large number of POMs have been reported since the first POM, 
(NH4)3[PMo12O40], was reported by Berzelius in 1826. These numerous POMs compositions and structural architectures are 
generally divided into two fundamental classes such as isopolyanions [MxOy]

m− and heteropolyanions [XzMxOy]
n−. Among these 

heteropolyanions, the Keggin, Anderson-Evans and Wells-Dawson types are the most widely studied in the literature [1-7]. The 
chemistry of POMs is an extensive and growing area of modern coordination chemistry. Much attention has been focused on 
engineering materials, photocatalysis, nanotechnology, catalysis, electrochemistry, biochemistry, and medicine [8-31].

Anderson-Evans type POMs are an important subfamily among the polyoxometalates because they are composed of a single 
metal atom supported by a polytungstate or polymolybdate. There are two types of Anderson-Evans POM: The general formula 
of the A-type is [Xn+M6O24]

(12-n)- with the heteroatom in its highest oxidation state (e.g., Sb5+, Te6+, I7+), the B-type has the general 
formula [Xn+(OH)6M6O18]

(6-n)- where the heteroatom has lower oxidation states (e.g., Co2+, Ni2+, Al3+, Fe3+) [5]. In the B-type 
hydroxy groups can be replaced by the organic ligands to obtain a new polyoxometalate, thus providing different modifications 
[32-35]. The binding tendency of metal ions is utilized to obtain Anderson-Evans type heteropolyanions. Due to the high binding 
tendency of aluminium metal, [Al(OH)6Mo6O18]

3- is used to obtain new materials. However, although there are many Anderson-
Evans type POMs, studies on aluminium-containing Anderson-Evans type structures are very limited in the literature. In this 
paper, it is aimed to provide a new perspective to the studies in the literature with the synthesis and antimicrobial applications 
of new aluminium-containing Anderson-Evans type compounds. When we examine the studies on this subject in the literature, 
we come across the following studies: [Ln(H2O)7{Al(OH)6Mo6O18}]·yH2O [36], (C6H10N3O2)2Na(H2O)2[Al(OH)6Mo6O18]·6H2O 
[37], [Al(H2O)6][Al(OH)6Mo6O18]·10H2O [38], Na0.5Cs1.75[H0.25Fe0.25Al(OH)6Mo6O18]·8H2O [39], [Al(OH)6Mo6O18{Cu(Phen)
(H2O)2}2][Al(OH)6Mo6O18{Cu(Phen)(H2O)Cl}2]·5H2O [40], [CuII(2,2’-bipy)(H2O)2Al(OH)6Mo6O18]n

n- [41], [Eu(H2O)7]
[Al(OH)6Mo6O18]·4H2O and {(C2H5NO2)2[Eu(H2O)5]}[Al(OH)6Mo6O18]·10H2O [42], Na2(H2O)4(H3O)[Al(OH)6Mo6O18] [43].

In this study, four aluminum substituted Anderson-Evans type POMs were synthesized and fully characterized by 
spectroscopic methods. The antibacterial activity of these compounds was investigated.

2.Experimental section
2.1. General methods
All chemicals used in this study were all of analytical grade purchased from Sigma-Aldrich, or Merck and used without 
purification. 1H and 31P NMR spectra were recorded on a AVANCE III 400 MHz NaNoBay FT-NMR spectrometer operating 
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at 400 MHz (1H), (31P) in DMSO-d6. FT-IR spectrum was obtained from a sample powder palletized with KBr on Perkin Elmer 
LR 64912 C spectrometer over the range 400–4000 cm–1. C, H and N elemental analyses were performed on a LECO-932 CHNS 
element analyzer. Thermogravimetric analysis (TGA) was carried out on a Hitachi Exstar TG/DTA 7300 thermal analyzer in 
flowing N2 between 25 and 800 °C at a heating rate of 10 °C/min. 
2.2. Synthesis of compounds 
Two solutions were prepared separately. Solution 1: Na2MO4·2H2O (1.30 mmol) (M=Mo, W) was dissolved in water (10 mL) 
under stirring. Solution 2: AlCl3·6H2O (0.52 mmol) was dissolved in water (10 mL) under stirring. Solution 2 was added to 
solution 1. The resulting mixture was kept at 60 oC and acidified with glacial acetic acid. In 1–2 h at this temperature, the mixture 
was cooled to room temperature. After o-toluidine hydrochloride (excess) was dissolved in 2 mL water; Ph4PBr (excess) was 
dissolved in chloroform and precipitate was formed by dropwise addition. The solid was filtered, washed with H2O and finally 
dried under a vacuum at 60 ºC.
2.2.1. [Ph4P]3[Al(OH)6Mo6O18]·4H2O (1)
Yield: 380 mg, 35%. FT-IR (KBr pellets): ʋ = 439 (s), 527 (s), 572 (m), 614 (m), 688 (m), 723 (s), 755 (m), 798 (m), 895 (m), 
918 (m), 948 (s), 996 (m), 1111 (s), 1163 (m), 1187 (m), 1438 (s), 1483 (m), 1586 (m), 3172 (w) cm–1. Elem. Anal. Calcd. 
C72H74P3AlMo6O28 (2082,88 g/mol): C, 40.70, H, 3.58. found: C, 41.52, H, 5.58. TGA (loss of 4 H2O): calcd. 3.46%, found 3.28%, 
(loss of 3 PPh4): calcd. 48.88%, found 47.95%. 1H NMR (DMSO-d6): δ 7.72-7.99 (m, 60H, Ar). 31P NMR (DMSO-d6): δ 22.51.
2.2.2. [Ph4P]3[Al(OH)6W6O18]·4H2O  (2)
Yield: 278 mg, 20%. FT-IR (KBr pellets): ʋ = 442 (s), 572 (s), 647 (s), 756 (s), 892 (m), 922 (m), 943 (m), 1129 (m), 1310 (m), 
1493(s), 1524 (m), 1591 (m), 1940 (w), 2569 (m), 3204 (w) cm–1. Elem. Anal. Calcd. C72H74P3AlW6O28 (2610,28 g/mol): C, 33.13, 
H, 2.86. found: C, 33.73, H, 2.56. TGA (loss of 4 H2O): calcd. 2.76%, found 2.47%, (loss of 3 PPh4): calcd. 39.00%, found 39.01%. 
1H NMR (DMSO-d6): δ 7.73–8.01 (m, 60H, Ar). 31P NMR (DMSO-d6): δ 22.52.
2.2.3. [C7H10N]3[Al(OH)6Mo6O18]·4H2O  (3)
Yield: 260 mg, 38%. FT-IR (KBr pellets): ʋ = 432 (m), 526 (s), 688 (s), 721 (s), 800 (s), 889 (s), 915 (s), 996 (s), 1107 (s), 1188 
(m), 1317 (m), 1435 (s), 1483 (m), 1585 (s), 3061 (m), 3445 (w) cm–1. Elem. Anal. Calcd. C21H44N3AlMo6O28 (1389.20 g/mol): 
C, 18.16, H, 3.19, N, 3.02. found: C, 18.27, H, 3.41, N, 3.00. TGA (loss of 4 H2O): calcd. 5.18%, found 5.56%, (loss of 3 C7H10N): 
calcd. 23.35%, found 23.25%. 1H NMR (DMSO-d6): δ 2.05 (s, 9H, Me), 3.34 (s, 6H, NH2), 6.49 (t, 6H, CH) 6.62 (d, 3H, CH), 6.90 
(dd, 6H, CH and H+).         
2.2.4. [C7H10N]3[Al(OH)6W6O18]·4H2O  (4)
Yield: 100 mg, 10%. FT-IR (KBr pellets): ʋ = 437 (m), 522 (m), 802 (s), 893 (m), 947 (m), 1110 (m), 1153 (m), 1224 (m), 1299 
(m), 1493 (m), 1592 (m), 2580 (m), 2921 (m), 3204 (w) cm–1. Elem. Anal. Calcd. C21H44N3AlW6O28 (1916.60 g/mol): C, 13.16, 
H, 2.31, N, 2.19. found: C, 13.48, H, 2.83, N, 2.04. TGA (loss of 4 H2O): calcd. 3.76%, found 3.77%, (loss of 3 C7H10N): calcd. 
23.37%, found 23.28%. 1H NMR (DMSO-d6): δ 2.20 (s, 9H, Me), 3.34 (s, 6H, NH2), 6.89 (s, 6H, CH), 6.98 (s, 3H, CH) 7.10 (dd, 
6H, CH and H+).   
2.3. Antibacterial tests
Antibacterial tests of all compounds (1-4) were carried out by disk diffusion method with gram-positive and gram-negative 
bacteria. Staphylcoccus aureus ATCC 25923 was used as gram-positive bacteria, whereas Escherichia coli ATCC 25922 was 
used as gram-negative bacteria. Bacteria stored at –20 °C in media containing 16% glycerol were inoculated on Mueller 
Hinton Agar (MHA) by streaking method and incubated at 37 °C for 16-24 h. After incubation, bacterial colonies of which 
purity was checked were selected and inoculated into sterile Mueller Hinton Broth media using sterile loops. Density 
was adjusted as Mc Farland 0.5 using DEN-1B Densitometer device. Sterile Mueller Hinton Broth medium was used as a 
control in the Mc Farland measurement. (McFarland 0.5: corresponds to 1–2.108 bacteria.) Bacteria were inoculated into 
different petri dishes for each bacterium, covering the entire surface with sterile swab sticks. Fifteen minutes were waited. 
After 20 microliter samples were impregnated on the blank discs and the blank discs were placed in the petri dish, they 
were incubated for 16-24 h at 37 °C after waiting for another 15 min. (Sterile empty discs treated with DMSO served as a 
negative control whereas discs impregnated Erythromycin was used as a positive control.) After incubation, if there is a 
zone formed by the sample, it was observed and measured. Zone formation of the antibiotic used as a positive control was 
confirmed. Experiments were repeated three times.

3. Results and discussion
3.1. Synthesis and characterization
Compounds 1-4 were synthesized by reaction of aluminum (III) chloride hexahydrate, sodium tungstate dihydrate/
sodium molybdate dihydrate at temperature 60 °C in an acidic aqueous medium (Figure 1). The compounds were isolated 
as organo-soluble salts using counter ion (o-toluidinium chloride, tetraphenyl phosphonium bromide). The compounds 
were characterized by elemental analysis, 1H NMR, 31P NMR (for 1 and 2), TGA and FT-IR.
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3.1.1.  FT-IR
The FT-IR spectra (Figures S1–S4.) confirmed that these compounds (1-4) were an Anderson-type polyoxometalate, 
which had the same structure as the reported compounds [36-40, 44]. Two areas of characteristic peaks at 895–615 and 
600–430 cm–1 are attributed to antisymmetric and symmetric deformation vibrations of M−O−M and M−O−Al (M=Mo, 
W) bridging fragments. The typical absorption peak of Anderson-Evans polyoxoanion is observed at about 948 (1), 943(2), 
951(3), 947 (4) cm–1, which is attributed to the stretching vibration of terminal M=O units. For compounds 1 and 2, the 
stretching vibrations between 995 and 1591 cm–1 were attributed to the Ph4P

+; for compounds 3 and 4, the stretching 
vibrations between 1107 and 1592 cm–1 were attributed to the C7H10N

+. The broad bands at 3172 (1), 3204 (2), 3445 (3), 
3204 (4) cm-1 of compounds (1-4) could be attributed to О-Н bonds of crystalline water molecules.
3.1.2. 1H and 31P NMR
The 1H NMR data for the compounds 1-4 in dimethyl sulfoxide (DMSO-d6) are presented in Figures S5–S8. The 1H NMR 
spectrum of 1 and 2 revealed phenyl protons (δ 7.72–7.99 1) (δ 7.73-8.01 2). 3 and 4 revealed the methyl protons (δ 2.05 3) 
(2.20 4); -NH2 signals (δ 3.34); methylene signals (δ 6.49, 6.62 and 6.90 3) (δ 6.89, 6.98 and 7.10 4). The 1H NMR results are 
in agreement with those from previous study [9,45]. The 31P NMR spectrum of 1 and 2 were recorded in dimethyl sulfoxide 
(DMSO-d6) and are depicted in Figures S9 and S10. The sharp and singlet peak appearing in the 31P NMR spectra, both 
with 1 and 2 cation resonances at 22.51 and 22.52 ppm respectively, can be attributed to Ph4P

+ [9,45].
3.1.3. TGA
In order to characterize the thermal stability of compounds 1-4, their thermal behavior was investigated by TGA. In 
this investigation, heating rates were suitably controlled at 10 °C min–1 under N2 atmosphere and the weight loss was 
measured from ambient temperature up to 800 °C. The thermal behavior of all metal compounds is generally similar. 
Firstly, the thermograms of 1-4 (Figures S11–S14) show weight loss which starts at room temperature with a dehydration 
corresponding to the loss of four crystal water molecules. Table 1 shows the other degradation products for compounds 
1-4 and the TGA results obtained are in agreement with the calculated value.
3.2. Antibacterial analysis
The antibacterial activity of the new Anderson-Evans type POMs (1-4) was studied against one gram-positive bacteria 
(Staphylcoccus aureus ATCC 25923) and one gram-negative bacteria Escherichia coli ATCC 25922. The results of the 

Figure 1. Synthesis of 1-4.

Table 1. Results for the TGA analysis.

Compound Losses part Calculated (%) Experimental (%) Losses part Calculated 
(%) Experimental (%)

1 4 H2O 3.46 3.28 3 PPh4 48.88 47.85
2 4 H2O 2.76 2.47 3 PPh4 39.00 39.01
3 4 H2O 5.18 5.56 3 C7H10N 23.35 23.25
4 4 H2O 3.76 3.77 3 C7H10N 23.37 23.28
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antibacterial activities are presented in Table 2 and Figures 2–5. Compound 1-2 have inhibitory action against both 
microorganisms. But compound 3-4 have no antibacterial activity. This difference in compounds is thought to be due to 
the counter ion. It has been reported in the literature that POM compounds containing PPh4

+ cation show antimicrobial 
activity [9]. Compounds 1 and 2 exhibited potent antibacterial activity for Staphylcoccus aureus and Escherichia coli as the 
standard drugs Erythromycin 36 mm and 23.5 mm, respectively.

Table 2. Antimicrobial activity of 1-4 against test microorganisms.

Microorganisms
(Inhibition zone, mm) a Compounds Antibiotic Control

1 2 3 4 Erythromycin DMSO
Staphylococcus aureus 35 35 CZ CZ 36 CZ
Escherichia coli 23.66 24 CZ CZ 23.5 CZ

a Inhibition zone diameter in millimeters, CZ: contact zone.

Figure 2. Antibacterial activity of 1-2 against Staphylcoccus aureus ATCC 25923.

Figure 3. Antibacterial activity of 3-4 against Staphylcoccus aureus ATCC 25923.
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4. Conclusion
This paper reports synthesis, characterization, and antibacterial properties of the new four aluminum substituted 
Anderson-Evans type polyoxometalates. Their structures were identified using elemental analysis, FT-IR, 1H NMR, 31P 
NMR and TGA. In antibacterial studies, 1 and 2 have shown high antibacterial activity. 
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Figure 4. Antibacterial activity of 1-2 against Escherichia coli ATCC 25922.
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Figure S 1. FT-IR spectra of 1 
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Figure S2. FT‐IR spectra of 2 
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Figure S3. FT‐IR spectra of 3 
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Figure S4. FT‐IR spectra of 4 
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Figure S6. 1H NMR spectra of 2 (DMSO‐d6, 400 MHz) 
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Figure S6. 1H NMR spectra of 2 (DMSO-d6, 400 MHz).

 

 

Figure S5. 1H NMR spectra of 1 (DMSO‐d6, 400 MHz) 
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Figure S5. 1H NMR spectra of 1 (DMSO-d6, 400 MHz).
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Figure S7. 1H NMR spectra of 3 (DMSO‐d6, 400 MHz) 
 

Figure S7. 1H NMR spectra of 3 (DMSO-d6, 400 MHz).

 

 

Figure S8. 1H NMR spectra of 4 (DMSO‐d6, 400 MHz) 
 

Figure S8. 1H NMR spectra of 4 (DMSO-d6, 400 MHz).
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Figure S9. 31P NMR spectra of 1 (DMSO‐d6, 400 MHz) 
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Figure S9. 31P NMR spectra of 1 (DMSO-d6, 400 MHz).

 

 

Figure S10. 31P NMR spectra of 2 (DMSO‐d6, 400 MHz) 
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Figure S10. 31P NMR spectra of 2 (DMSO-d6, 400 MHz). TGA spectra
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 Figure S11. TGA spectra of 1.
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 Figure S12. TGA spectra of 2.
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Figure S13. TGA spectra of 3.
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Figure S14. TGA spectra of 4.


