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1. Introduction
Cancer, one of the most threatening diseases to human health worldwide, causes the deaths of millions of people, despite the 
research carried out in recent years. Despite the success of traditional treatment methods such as surgery, immunotherapy, 
radiotherapy, or chemotherapy, these treatments have some serious side effects. Therefore, scientists are focused on the im-
provement of new therapeutic treatment methods [1,2]. Photodynamic therapy (PDT) is accepted as a suitable treatment 
method to achieve rapid therapeutic results and reduce drug resistance in tumor cells [3]. In addition, PDT is an alternative 
treatment process for malign tumors that relies on photosensitizers to transfer light energy to reactive oxygen species (ROS) 
to induce cell apoptosis and tissue damage [4]. PDT performs its anticancer effect directly through cell death, damage to the 
vasculature, and activation of the immune system [5]. Cellular damage is due to the action of three components: a harmless 
photosensitizer, suitable light irradiation, and molecular oxygen [6]. This modern and appealing process depends on the us-
age of a combination of a photosensitizer, long wavelength light (620–690 nm), and molecular oxygen to selectively destroy 
or damage localized cancer tumors [7].

In Figure, the two photochemical mechanisms of PDT called Type I and Type II are schematically shown in the Jablonski 
diagram [8]. Reactive oxygen species (ROS) such as superoxide (O2

●), hydroxyl radical (OH●), and hydrogen peroxide (H2O2) 
[9] are known as Type I photochemical mechanisms. When the photosensitizer transmits its energy to biomolecules in the 
excited ternary state, hydrogen or electron is transmitted to the free radicals. As a result of this transfer, photosensitizer and 
anion radicals of the substrate are formed between the photosensitizer and cancerous tissue. When electrons and oxygen 
molecules interact with each other, this process leads to the production of ROS. The other mechanism of PDT, called Type II, 
is defined as the formation of singlet molecular oxygen (1O2), which is the most important in the destruction of cancer cells. 
When the photosensitizer is exposed to electronic excitation from the ground state (S0) to the excited singlet (S1) state, the S1 
state is highly unstable, and the electron rapidly transitions to the longer-lived excited triplet (T1) state via intersystem cross-
ing. The photosensitizer then transfers its energy to molecular oxygen to form singlet oxygen (1O2) which is a highly reactive 
oxygen species. Singlet oxygen can cause the death of bacteria, fungi, or tumor cells in a specific location [10].

For a photosensitizer to be considered suitable for a Type I or Type II process, it should contain the following criteria:
• Powerful red or near-infrared absorption to authorize deep penetration of light into tissue,
• Insignificant dark toxicity and small side effects,
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• High cytotoxicity under light irradiation,
• Good solubility (The solubility in aqueous solutions is very important for PDT applications. On the other hand, solvents 

with low cytotoxicity such as DMSO are very important as an alternative to aqueous solutions.),
• Stability in media,
• Preferred gathering in cancerous tissue [11].

Phthalocyanines are macrocyclic compounds formed by the coordination of four iminoisoindoline units. They are ther-
mally, physically, and chemically consistent compounds due to their delocalized π electron systems. They are used in many 
applications such as semiconductors [12], dye-based solar cells [13], electrochromic systems [14], molecular electronics [15], 
liquid crystals [16], data storage materials [17], laser dyes [18], chemical sensors [19], catalysts [20], and PDT for cancer 
treatment [21] due to their excellent electrochemical, thermal, and optical properties. Since phthalocyanines have a very 
similar structure to that of porphyrins and have suitable properties for ideal photosensitizers, they are known as a class of 
second-generation photosensitizers [22,23]. Moreover, these compounds are used as photosensitizers in PDT because they 
show strong light absorption between 600 and 800 nm in the electronic spectrum, do not show toxicity in the absence of light, 
and destroy tumor tissues by producing high singlet oxygen or radicals [24]. On the other hand, the solubility problems of the 
phthalocyanines lead to a decrease in the absorption coefficient, which is important for singlet oxygen production. To solve 
this problem, peripheral/nonperipheral and/or axial substitution can be added to the phthalocyanine ring or metal ion to 
reduce aggregation and increase solubility [25,26]. The substituents placed on the skeleton and the metal atoms located in the 
cavity of the phthalocyanine ring can change the photophysical and photochemical properties of phthalocyanine compounds 
[27]. Studies have shown that diamagnetic metals increase singlet oxygen production and photoactivity compared to para-
magnetic metals. Zinc, silicon, indium, gallium, and aluminum phthalocyanines, which have diamagnetic center atoms, are 
widely used as photosensitizers in photodynamic therapy [23]. These metal atoms promote a high quantum yield of excited 
triplet state in the PDT application and indicate high singlet oxygen yield [28,29]. Despite their strong properties, their poor 
solubility in water and their aggregation in polar environments complicate the applicability of these compounds in PDT [30]. 
Many photosensitizers are used for PDT, including those approved for humans; they tend to form aggregations, resulting in 
low water solubility. The aggregation and low water solubility render photosensitizers inactive in PDT, significantly limiting 
their in vivo studies. For these reasons, water-soluble and NIR (near-IR)-absorbing photosensitizers are essential for efficient 
PDT [31]. Studies have focused on the synthesis of water-soluble phthalocyanines because these compounds are suitable 
for different applications such as antioxidant, antibacterial, DNA binding/cleavage, enzyme inhibition, cytotoxic/phototoxic 
anticancer, and PDT activities [32]. Solubility is very important for the examination of the physical and chemical properties 
of phthalocyanines, but they indicate restricted solubility in most solvents. Substitutions at peripheral or nonperipheral posi-
tions of the macrocycle for these compounds improve their solubility. In addition, the solubility of phthalocyanines in organic 
solvents and water is often enhanced by the addition of polar or ionic groups (-SO3

-, -NR3
+, -COO-) at peripheral or nonpe-

ripheral positions [33,34]. Moreover, nonionic phthalocyanines contain polyethylene glycol/polyhydroxy, and carbohydrates 
can also gain their water solubility [35].

This review focuses on the photophysical, photochemical, in vitro, and in vivo studies of the water-soluble phthalocya-
nine compounds containing ionic or nonionic groups for PDT applications in the last five years. The results of these studies 
for different water-soluble phthalocyanine compounds are summarized. The photophysical, photochemical, and in vitro or 
in vivo biological properties of the phthalocyanine compounds are given as tables and these properties are compared with 

Figure. Type I and Type II mechanisms of photodynamic therapy.
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each other according to the central atom, the nature, and number of substituted groups. In the studies on the water-soluble 
phthalocyanines carried out in the last five years, the highest singlet oxygen quantum yield was obtained as 0.93 in H2O + 
Triton X-100 solution for the phthalocyanine derivative bearing indium (III) as a central metal atom and tetra quaternized 
7-oxy-4-(pyridine-3-yl) groups on the peripheral positions of the phthalocyanine framework [58].

2. Ionic water-soluble phthalocyanines
Ionic water-soluble phthalocyanine compounds are classified into three groups: anionic, cationic, and zwitterionic [35,36].

Anionic groups such as carboxylate (-COO-), sulfonate (-SO3
-), and phosphorus-based functions are generally used to 

bring water solubility to phthalocyanines. These groups are added directly to the phthalocyanine ring or by linker atoms such 
as oxygen, sulfur, or nitrogen. Phthalocyanines bearing sulfonate or sulfonic acid groups are synthesized by direct sulfonation 
of the phthalocyanine macrocycle or addition of the sulfonate-bearing substituted groups on the peripheral, nonperipheral, 
or axial positions [33]. Although both anionic and cationic phthalocyanines provide solubility in water, there are significant 
differences between anionic (containing carboxy or sulfo groups) and cationic (containing quaternary ammonium groups) 
phthalocyanines. In vitro studies show that cationic phthalocyanines are generally much more active in PDT applications 
than anionic phthalocyanines [37]. This observed behavior is explained by the effect of better ionization, subcellular local-
ization and relocalization following radiation exposure, interactions with biomembranes, and differential binding to serum 
proteins of the cationic phthalocyanines [38].

Cationic groups are synthesized by the quaternization of the phthalocyanines on the aliphatic or aromatic nitrogen at-
oms in the substituted groups [35]. Metallophthalocyanines, especially silicon phthalocyanine derivatives containing cationic 
substituents, have some advantages over neutral and anionic substituents, such as improving water solubility, being a more 
efficient PDT agent by preventing aggregation, improving cell uptake, and selectively localizing in cell mitochondria [39]. 

Phthalocyanine compounds that carry anionic and cationic charges on the same molecule are called zwitterionic com-
pounds. 1,3-propanesultone is usually used to obtain water-soluble zwitterionic phthalocyanine, and the sulfonate group is 
obtained by opening of 1,3-propanesultane ring [40].

3. Nonionic water-soluble phthalocyanines
Although nonionic water-soluble phthalocyanines are scarce compared to ionic phthalocyanines, they attract attention be-
cause they can interact with the cell membrane and components of biological fluids differently from ionic species. Therefore, 
phthalocyanine compounds containing nonionic groups such as carbohydrate or polyoxy are synthesized to obtain water-
soluble phthalocyanines [41].

The functionalization of phthalocyanine compounds with polyethylene glycol is becoming progressively significant as it 
contributes positively to the chemical inertness, biocompatibility, improved serum life, and tumor cell accumulation of the 
compounds [42]. The addition of the hydrophilic moieties to the hydrophobic phthalocyanine core increases solubility and 
forms amphiphilic molecules, which is a desirable property for an effective photosensitizer [43]. The increasing number and 
length of polyoxy chains enhance the water solubility of the phthalocyanine compounds [35]. Moreover, nonionic polyhy-
droxylated groups are used to obtain water-soluble phthalocyanines [41,44].

Carbohydrates are used as biocompatible substituents that increase the water solubility of the phthalocyanines, which 
provides a potential for selective recognition by targeted cancer cells [45,46]. It has been determined that sugar-containing 
phthalocyanine compounds improve PDT efficiency due to increased glycolysis levels and overexpression of sugar carrier 
proteins in various human cancers, and glycosylated phthalocyanines are ideal photosensitizers [47].

4. Photophysical and photochemical studies of water-soluble phthalocyanines
The determination of the photophysical (fluorescence quantum yields and lifetimes) and photochemical (single oxygen 
yields) properties of the phthalocyanines are very important for photosensitizers in PDT applications.

Fluorescence properties such as fluorescence quantum yield (ՓF) and fluorescence lifetime (τF) play an important role in 
PDT applications for visualizing of the photosensitizers in the body [48]. One of the most important factors in the evaluation 
of PDT is the singlet oxygen production. The highly effective reactivity of singlet oxygen can cause severe damage to biological 
systems such as DNA and RNA, resulting in cell death. When enough singlet oxygen is produced during the energy transfer 
from the photosensitizer to the oxygen molecule, effective cell death can be obtained [49].
4.1. Fluorescence quantum yields (ՓF) and lifetimes (τF)
Fluorescence is the phenomenon where light is emitted by a molecule that has absorbed light. The fluorescence quantum yield 
(ՓF) is a quantification of the performance of the fluorescence process. Fluorescence lifetime (τF) attributes to the average 
time a molecule remains in the excited state before fluorescence and is closely related to fluorescence quantum yield. It is 
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very important to determine these values since an ideal photosensitizer should have a certain fluorescence quantum effi-
ciency and fluorescence lifetime for the determination of the photosensitizers in the body [50]. The optimum fluorescence 
quantum yield is an essential component for the photosensitizer due to its deposition and subsequent evacuation from the 
tissue. Fluorescent emission may be utilized to monitor the use of photosensitizers in the body [51].

Fluorescence quantum yield (ΦF) is determined by using equation (1): 

ՓF = ՓF (Std)
𝐹𝐹 .𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 .𝑛𝑛2

𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆 .𝐴𝐴 .𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆
2

Փ𝚫𝚫 = Փ 𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅 .  𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎
𝑆𝑆𝑆𝑆𝑆𝑆

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 .  𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎

      (1)

where F and FStd are the areas under the fluorescence curves of the sample and the standard, respectively. A and AStd are 
the absorbances of the sample and standard at the excitation wavelength, and n and nStd are the refractive indices of the 
solvents used for the sample and standard, respectively [52].

Fluorescence lifetime (τF), which is directly concerned with fluorescence quantum yield (ΦF), refers to the average time 
a molecule stays in its excited state before fluorescing. When a compound has a longer lifetime, it has a higher fluorescence 
quantum yield [53].

Temperature, molecular structure, and solvent properties, including polarity, viscosity, refractive index, and the pres-
ence of heavy atoms in the solvent molecule, can all have an impact on the fluorescence quantum yield values [54]. The 
fluorescence lifetime of a photosensitizer is also affected by a variety of parameters including internal conversion, intersys-
tem migration, aggregation, and solvent [55].
4.2. Singlet oxygen quantum yields (ՓΔ)
Since PDT is a treatment method based on the destruction of cancer cells by singlet oxygen [56], an efficient photosensi-
tizer must produce effective singlet oxygen to be used in the treatment of cancer with photodynamic therapy. The amount 
of the production of singlet oxygen is given as singlet oxygen quantum yield (ՓΔ) [57].

Singlet oxygen quantum yield (ՓΔ) is described as the quenching of absorption for a singlet oxygen quenching com-
pound. The decrease in the quencher absorption at 417 nm for 1,3-diphenylisobenzofuran (DPBF) in organic solutions 
and 380 nm for 9,10-antracenediyl-bis(methylene)dimalonoic acid (ADMA) in aqueous media are monitored by UV-Vis 
spectrophotometry. Singlet oxygen quantum yield (ՓΔ) is determined by using equation (2):

ՓF = ՓF (Std)
𝐹𝐹 .𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 .𝑛𝑛2

𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆 .𝐴𝐴 .𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆
2

Փ𝚫𝚫 = Փ 𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅 .  𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎
𝑆𝑆𝑆𝑆𝑆𝑆

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 .  𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎
       (2)

where 

ՓF = ՓF (Std)
𝐹𝐹 .𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 .𝑛𝑛2

𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆 .𝐴𝐴 .𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆
2

Փ𝚫𝚫 = Փ 𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅 .  𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎
𝑆𝑆𝑆𝑆𝑆𝑆

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 .  𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 is the singlet oxygen quantum yield of the standard, R and RStd are the quencher’s photobleaching rates 
in the presence of the sample and standard, respectively. Iabs and IStd abs are the rates of light absorption by the sample and 
standard, respectively [53].

Photophysical and photochemical properties of ionic and nonionic phthalocyanine compounds containing different 
groups are given in Table 1. When the studies in the last five years were examined, the highest singlet oxygen yield was 
determined as 0.93 in H2O + Triton X-100 solution for indium (III) phthalocyanine compound containing peripheral 
quaternized 7-oxy-4-(pyridine-3-yl)coumarin groups [58]. The nonperipheral substituted zinc(II) phthalocyanine coun-
terpart of this phthalocyanine showed a singlet oxygen quantum yield of 0.92 in the same solution [58]. The singlet oxygen 
quantum yield of the water-soluble asymmetric zinc (II) phthalocyanine compound containing six thiophene moieties 
was found as 0.81 in H2O [59]. ,Moreover, the axially silicon (IV) phthalocyanine compound bearing bis-benzimidazole 
moieties showed acceptable singlet oxygen quantum yield in aqueous solution (ՓΔ = 0.78) [60]. These compounds can be 
candidates for photosensitizers in PDT applications due to their high singlet oxygen yields in water.

5. In vitro and in vivo biological applications of water-soluble phthalocyanines
The peripheral or nonperipheral positions and the central atom of the phthalocyanine ring can be made of these com-
pounds as potential photosensitizers for biological and medical research areas [34]. Phthalocyanines are of great interest as 
photosensitizers for the treatment of malignant tumors in PDT. The therapeutic effects of these compounds are based on 
the formation of singlet oxygen (1O2) and other reactive oxygen species (ROS) formed upon light activation which is more 
uptake in malignant cells than in nonmalignant cells  [61]. 

Water-soluble sulfonated aluminum phthalocyanine (Photosens), a phthalocyanine used in clinical tests, is investi-
gated for the treatment of many cancer types, such as skin, breast, lung oropharyngeal, neck, larynx, and cervical cancers. 
Zinc phthalocyanine compound encapsulated in liposomes made from palmitoyl-oleoyl-phosphatidylcholine (POPC) 
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Table 1. Photophysical and photochemical properties of ionic and nonionic water-soluble phthalocyanines.
Table 1. Photophysical and photochemical properties of ionic and nonionic water-soluble phthalocyanines. 
 

 
 

Group Metal Solvent λabs (nm) τF (ns) ՓF ՓΔ Ref. 

 
R1 = R3 = R4 = H 
 

 

Zn H2O 688 2.86 0.11 0.27 [36] 

 
R2 = R3 = R4 = H 
 

 

Zn H2O 706 1.76 0.08 0.23 [36] 

R2 = R3 = R4 = H 
 

 

Pd 
H2O 657 

- - 

0.26 

[6] 
H2O + TXa 666 0.46 

Ni 
H2O 668 0.01 

H2O + TXa 679 0.02 
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Table 1. Continued. 
 

Group Metal Solvent λabs (nm) τF (ns) ՓF ՓΔ Ref. 

R1 = R3 = R4 = H 
 

 

H2 

H2O 

604 

- - 

0.24 

[32] Zn 636 0.32 

Ga 687 0.40 

 
R1 = R3 = R4 = H 
 

 

Zn H2O + TXa 694 2.69 0.38 0.16 [63] 

 
R1 = R4 = H 
 

 

Zn H2O + TXa 692 2.99 0.36 0.15 [63] 

 
R1 = R4 = H 

 
 
R1’ = R4’ = H 

 

Zn DMSOb 685 - 0.09 0.44 [64] 

 
R1 = R2 = R3 = R4 = H 
 

 

Si H2O 691 4.46 0.17 0.26 [65] 

 
R1 = R3 = R4 = H 
X1 = X2 = OH 
 

 

Si H2O 679 - 0.12 0.03 [66] 

 
R1 = R3 = R4 = H 
X1 = X2 = OH 

 

Si H2O 679 - 0.10 0.27 [66] 

 
R1 = R2 = R3 = R4 = H 

 

Si Aqueous 
solution 691 1.12 0.02 0.78 [60] 
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Table 1. Continued. 
 

Group Metal Solvent λabs (nm) τF (ns) ՓF ՓΔ Ref. 

 
R1 = R4 = H 

 

In H2O 684 0.50 
2.61 0.06 0.43 (D2O) [67] 

 
R1 = R3 = R4 = H 

 
 
 
R1’ = R3’ = R4’ = H 

 

Zn DMSOb 672 2.70 0.13 0.76 [68] 

 
R1 = R3 = R4 = H 

 
 
 
R1’ = R3’ = R4’ = H 

 

Zn DMSOb 678 - - 0.27 (H2O) [68] 

 
R1 = R3 = R4 = H 
 

  
 
 

Zn 
H2O 648 - - 0.01  

H2O + TXa 679 1.29 0.06 0.15  

In 
H2O 689, 653 - - 0.48      [58] 

H2O + TXa 693 0.05 0.04 0.93  

Mg 
H2O 600 - - 0.09  

H2O + TXa 699 1.93 0.08 0.12  
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Table 1. Continued. 
 

Group Metal Solvent λabs (nm) τF (ns) ՓF ՓΔ Ref. 

R2 = R3 = R4 = H 
 

 

Zn H2O 688, 650 - - 0.06 

[43] 

 H2O + TXa 692 0.67 0.06 0.92 

In H2O 704, 650 - - 0.08 

 H2O + TXa 703 0.03 0.02 0.41 

Mg H2O 694, 643 - - 0.10 

 H2O + TXa 685 0.93 0.11 0.14 

R2 = R3 = R4 = H 
 

 

 
In 
 

DMSOb 700 

- 

0.063 0.66 

 
[69] H2O 654, 703 0.020 0.17 

H2O + TXa 700 0.016 0.42 

 
R1 = R2 = R3 = R4 = H 
 

 

Si H2O 676 - 0.15 0.44 [70] 

 
R2 = R3 = R4 = H 
 

 

H2 

DMSOb 

704, 672 

- 

0.22 0.13 (H2O)  

Zn 682 0.18 0.05 (H2O) [71] 

Mg 680 0.29 0.04 (H2O)  

 
R2 = R3 = R4 = H 

 

Zn 

DMSO 704 1.84 0.072 0.85 

[72] 
PBSc 703 1.58 0.1 0.58 

R1 = R3 = R4 = H 

 

Zn 

DMSOb 683 2.67 0.093 0.82 

[72] 

PBSc 685, 647 2.30 0.195 0.80 

R2 = R3 = R4 = H 
 

 

Zn 

DMSOb 703 2.91 0.059 0.42 

[72] 

PBSc 703 2.76 0.16 0.29 
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Table 1. Continued. 
 

Group Metal Solvent λabs (nm) τF (ns) ՓF ՓΔ Ref. 

R1 = R3 = R4 = H 
 

 

Zn 
DMSOb 683 3.28 0.075 0.50 

[72] 
PBSc 683, 631 0.679 0.023 0.12 

 
R1 = R4 = H 

 
 
R1’ = R3’ = R4’ = H 

 

Zn H2O 692 - - 0.01 [73] 

 
R1 = R2 = R3 = R4 = H 
R2’ = R3’ = R4’ = H 
 

 

Zn H2O 676 - 0 1.09 [74] 

 
R1 = R2 = R3 = R4 = H 
R2’ = R3’ = R4’ = H 
 

 
MW=2 kDa, DD=88% 
 

Zn H2O 678 - 10.66 × 10–3 5.84 × 10–3 [74] 

 
R1 = R2 = R3 = R4 = H 
R2’ = R3’ = R4’ = H 
 

 
MW=7 kDa, DD=90% 
 

Zn H2O 678 - 6.92 × 10–3 1.50 × 10–3 [74] 
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Table 1. Continued. 
 

Group Metal Solvent λabs (nm) τF (ns) ՓF ՓΔ Ref. 

 
R1 = R2 = R3 = R4 = H 
R2’ = R3’ = R4’ = H 
 

 
 
MW = 2 kDa,DD = 88% 
 

Zn H2O 680 - 31.51 × 10–3 14.91 × 10–3 [74] 

 
R1 = R2 = R3 = R4 = H 
R2’ = R3’ = R4’ = H 
 

 
 
MW = 7 kDa, DD = 90% 
 

Zn H2O 678 - 15.43 × 10–3 6.43 × 10–3 [74] 

 
R1 = R2 = R3 = R4 = H 
R2’ = R3’ = R4’ = H 
 

 

Zn DMFd 682 - 0.20 0.66 (DMF) 
0.61 (H2O) [59] 

 
R2 = R3 = R4 = H 
 

 
 
R2’ = R3’ = R4’ = H 
 

 

Zn DMFd 705 - 0.06 0.72 (DMF) 
0.76 (H2O) [59] 
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Table 1. Continued. 
 

Group Metal Solvent λabs (nm) τF (ns) ՓF ՓΔ Ref. 

 
R2 = R3 = H 
 

 
 
R2’ = R3’ = R4’ = H 
 

 

Zn DMFd 758 - 0.02 0.89 (DMF) 
0.81 (H2O) [59] 

 
R1 = R2 = R3 = R4 = H 
R1’ = R3’ = R4’ = H 
 

 

Zn DMFd 671 - 0.26 0.35 (H2O) [75] 

 
R1 = R2 = R3 = R4 = H 
R1’ = R3’ = R4’ = H 
 

 

Zn DMFd 670 - 0.30 0.31 (H2O) [75] 

 
R1 = R4 = H 
 

 

Zn H2O 701 -  0.34 [76] 

 
R2 = R3 = H 

 

Zn H2O 776  - 0.11 [76] 

aTX: Triton X-100 
bDMSO: Dimethyl sulfoxide 
cPBS: Phosphate-buffered saline 
dDMF: N,N-Dimethylformamide 
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