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Abstract: Photodynamic therapy (PDT) is based on a photochemical reaction that is started when a photosensitizing process is acti-
vated by the light and results in the death of tumor cells. Solubility is crucial in PDT applications to investigate the physical and chemical
characteristics of phthalocyanines, but, unfortunately, most phthalocyanines show limited solubility especially in water. To increase the
solubility of phthalocyanines in polar solvents and water, ionic groups such as -SO,’, -NR,*, -COO, and nonionic groups such as poly-
oxy chains are frequently added to the peripheral or nonperipheral positions of the phthalocyanine framework. Since water-solubility
and NIR-absorbing properties are essential for efficient PDT activation, studies have been focused on the synthesis of these types of
phthalocyanine derivatives. This review focuses on the photophysical, photochemical, and some in vitro or in vivo studies of the recently
published ionic and nonionic phthalocyanine-mediated photosensitizers carried out in the last five years. This review will have positive
contributions to future studies on phthalocyanine chemistry and their PDT applications as well as photochemistry.
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1. Introduction

Cancer, one of the most threatening diseases to human health worldwide, causes the deaths of millions of people, despite the
research carried out in recent years. Despite the success of traditional treatment methods such as surgery, immunotherapy,
radiotherapy, or chemotherapy, these treatments have some serious side effects. Therefore, scientists are focused on the im-
provement of new therapeutic treatment methods [1,2]. Photodynamic therapy (PDT) is accepted as a suitable treatment
method to achieve rapid therapeutic results and reduce drug resistance in tumor cells [3]. In addition, PDT is an alternative
treatment process for malign tumors that relies on photosensitizers to transfer light energy to reactive oxygen species (ROS)
to induce cell apoptosis and tissue damage [4]. PDT performs its anticancer effect directly through cell death, damage to the
vasculature, and activation of the immune system [5]. Cellular damage is due to the action of three components: a harmless
photosensitizer, suitable light irradiation, and molecular oxygen [6]. This modern and appealing process depends on the us-
age of a combination of a photosensitizer, long wavelength light (620-690 nm), and molecular oxygen to selectively destroy
or damage localized cancer tumors [7].

In Figure, the two photochemical mechanisms of PDT called Type I and Type II are schematically shown in the Jablonski
diagram [8]. Reactive oxygen species (ROS) such as superoxide (O,*), hydroxyl radical (OH*), and hydrogen peroxide (H,0,)
[9] are known as Type I photochemical mechanisms. When the photosensitizer transmits its energy to biomolecules in the
excited ternary state, hydrogen or electron is transmitted to the free radicals. As a result of this transfer, photosensitizer and
anion radicals of the substrate are formed between the photosensitizer and cancerous tissue. When electrons and oxygen
molecules interact with each other, this process leads to the production of ROS. The other mechanism of PDT, called Type II,
is defined as the formation of singlet molecular oxygen ('O,), which is the most important in the destruction of cancer cells.
When the photosensitizer is exposed to electronic excitation from the ground state (S ) to the excited singlet (S,) state, the S,
state is highly unstable, and the electron rapidly transitions to the longer-lived excited triplet (T ) state via intersystem cross-
ing. The photosensitizer then transfers its energy to molecular oxygen to form singlet oxygen (‘O,) which is a highly reactive
oxygen species. Singlet oxygen can cause the death of bacteria, fungi, or tumor cells in a specific location [10].

For a photosensitizer to be considered suitable for a Type I or Type II process, it should contain the following criteria:

+  Powerful red or near-infrared absorption to authorize deep penetration of light into tissue,
+  Insignificant dark toxicity and small side effects,
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Figure. Type I and Type II mechanisms of photodynamic therapy.

+  High cytotoxicity under light irradiation,

+  Good solubility (The solubility in aqueous solutions is very important for PDT applications. On the other hand, solvents
with low cytotoxicity such as DMSO are very important as an alternative to aqueous solutions.),

+  Stability in media,

+  Preferred gathering in cancerous tissue [11].

Phthalocyanines are macrocyclic compounds formed by the coordination of four iminoisoindoline units. They are ther-
mally, physically, and chemically consistent compounds due to their delocalized m electron systems. They are used in many
applications such as semiconductors [12], dye-based solar cells [13], electrochromic systems [14], molecular electronics [15],
liquid crystals [16], data storage materials [17], laser dyes [18], chemical sensors [19], catalysts [20], and PDT for cancer
treatment [21] due to their excellent electrochemical, thermal, and optical properties. Since phthalocyanines have a very
similar structure to that of porphyrins and have suitable properties for ideal photosensitizers, they are known as a class of
second-generation photosensitizers [22,23]. Moreover, these compounds are used as photosensitizers in PDT because they
show strong light absorption between 600 and 800 nm in the electronic spectrum, do not show toxicity in the absence of light,
and destroy tumor tissues by producing high singlet oxygen or radicals [24]. On the other hand, the solubility problems of the
phthalocyanines lead to a decrease in the absorption coefficient, which is important for singlet oxygen production. To solve
this problem, peripheral/nonperipheral and/or axial substitution can be added to the phthalocyanine ring or metal ion to
reduce aggregation and increase solubility [25,26]. The substituents placed on the skeleton and the metal atoms located in the
cavity of the phthalocyanine ring can change the photophysical and photochemical properties of phthalocyanine compounds
[27]. Studies have shown that diamagnetic metals increase singlet oxygen production and photoactivity compared to para-
magnetic metals. Zinc, silicon, indium, gallium, and aluminum phthalocyanines, which have diamagnetic center atoms, are
widely used as photosensitizers in photodynamic therapy [23]. These metal atoms promote a high quantum yield of excited
triplet state in the PDT application and indicate high singlet oxygen yield [28,29]. Despite their strong properties, their poor
solubility in water and their aggregation in polar environments complicate the applicability of these compounds in PDT [30].
Many photosensitizers are used for PDT, including those approved for humans; they tend to form aggregations, resulting in
low water solubility. The aggregation and low water solubility render photosensitizers inactive in PDT, significantly limiting
their in vivo studies. For these reasons, water-soluble and NIR (near-IR)-absorbing photosensitizers are essential for efficient
PDT [31]. Studies have focused on the synthesis of water-soluble phthalocyanines because these compounds are suitable
for different applications such as antioxidant, antibacterial, DNA binding/cleavage, enzyme inhibition, cytotoxic/phototoxic
anticancer, and PDT activities [32]. Solubility is very important for the examination of the physical and chemical properties
of phthalocyanines, but they indicate restricted solubility in most solvents. Substitutions at peripheral or nonperipheral posi-
tions of the macrocycle for these compounds improve their solubility. In addition, the solubility of phthalocyanines in organic
solvents and water is often enhanced by the addition of polar or ionic groups (-SO,, -NR*, -COO) at peripheral or nonpe-
ripheral positions [33,34]. Moreover, nonionic phthalocyanines contain polyethylene glycol/polyhydroxy, and carbohydrates
can also gain their water solubility [35].

This review focuses on the photophysical, photochemical, in vitro, and in vivo studies of the water-soluble phthalocya-
nine compounds containing ionic or nonionic groups for PDT applications in the last five years. The results of these studies
for different water-soluble phthalocyanine compounds are summarized. The photophysical, photochemical, and in vitro or
in vivo biological properties of the phthalocyanine compounds are given as tables and these properties are compared with
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each other according to the central atom, the nature, and number of substituted groups. In the studies on the water-soluble
phthalocyanines carried out in the last five years, the highest singlet oxygen quantum yield was obtained as 0.93 in H20 +
Triton X-100 solution for the phthalocyanine derivative bearing indium (III) as a central metal atom and tetra quaternized
7-0xy-4-(pyridine-3-yl) groups on the peripheral positions of the phthalocyanine framework [58].

2. Ionic water-soluble phthalocyanines
Ionic water-soluble phthalocyanine compounds are classified into three groups: anionic, cationic, and zwitterionic [35,36].

Anionic groups such as carboxylate (-COO"), sulfonate (-SO,’), and phosphorus-based functions are generally used to
bring water solubility to phthalocyanines. These groups are added directly to the phthalocyanine ring or by linker atoms such
as oxygen, sulfur, or nitrogen. Phthalocyanines bearing sulfonate or sulfonic acid groups are synthesized by direct sulfonation
of the phthalocyanine macrocycle or addition of the sulfonate-bearing substituted groups on the peripheral, nonperipheral,
or axial positions [33]. Although both anionic and cationic phthalocyanines provide solubility in water, there are significant
differences between anionic (containing carboxy or sulfo groups) and cationic (containing quaternary ammonium groups)
phthalocyanines. In vitro studies show that cationic phthalocyanines are generally much more active in PDT applications
than anionic phthalocyanines [37]. This observed behavior is explained by the effect of better ionization, subcellular local-
ization and relocalization following radiation exposure, interactions with biomembranes, and differential binding to serum
proteins of the cationic phthalocyanines [38].

Cationic groups are synthesized by the quaternization of the phthalocyanines on the aliphatic or aromatic nitrogen at-
oms in the substituted groups [35]. Metallophthalocyanines, especially silicon phthalocyanine derivatives containing cationic
substituents, have some advantages over neutral and anionic substituents, such as improving water solubility, being a more
efficient PDT agent by preventing aggregation, improving cell uptake, and selectively localizing in cell mitochondria [39].

Phthalocyanine compounds that carry anionic and cationic charges on the same molecule are called zwitterionic com-
pounds. 1,3-propanesultone is usually used to obtain water-soluble zwitterionic phthalocyanine, and the sulfonate group is
obtained by opening of 1,3-propanesultane ring [40].

3. Nonionic water-soluble phthalocyanines

Although nonionic water-soluble phthalocyanines are scarce compared to ionic phthalocyanines, they attract attention be-
cause they can interact with the cell membrane and components of biological fluids differently from ionic species. Therefore,
phthalocyanine compounds containing nonionic groups such as carbohydrate or polyoxy are synthesized to obtain water-
soluble phthalocyanines [41].

The functionalization of phthalocyanine compounds with polyethylene glycol is becoming progressively significant as it
contributes positively to the chemical inertness, biocompatibility, improved serum life, and tumor cell accumulation of the
compounds [42]. The addition of the hydrophilic moieties to the hydrophobic phthalocyanine core increases solubility and
forms amphiphilic molecules, which is a desirable property for an effective photosensitizer [43]. The increasing number and
length of polyoxy chains enhance the water solubility of the phthalocyanine compounds [35]. Moreover, nonionic polyhy-
droxylated groups are used to obtain water-soluble phthalocyanines [41,44].

Carbohydrates are used as biocompatible substituents that increase the water solubility of the phthalocyanines, which
provides a potential for selective recognition by targeted cancer cells [45,46]. It has been determined that sugar-containing
phthalocyanine compounds improve PDT efficiency due to increased glycolysis levels and overexpression of sugar carrier
proteins in various human cancers, and glycosylated phthalocyanines are ideal photosensitizers [47].

4. Photophysical and photochemical studies of water-soluble phthalocyanines
The determination of the photophysical (fluorescence quantum yields and lifetimes) and photochemical (single oxygen
yields) properties of the phthalocyanines are very important for photosensitizers in PDT applications.

Fluorescence properties such as fluorescence quantum yield (®,) and fluorescence lifetime (t,) play an important role in
PDT applications for visualizing of the photosensitizers in the body [48]. One of the most important factors in the evaluation
of PDT is the singlet oxygen production. The highly effective reactivity of singlet oxygen can cause severe damage to biological
systems such as DNA and RNA, resulting in cell death. When enough singlet oxygen is produced during the energy transfer
from the photosensitizer to the oxygen molecule, effective cell death can be obtained [49].

4.1. Fluorescence quantum yields (®,) and lifetimes (t,)

Fluorescence is the phenomenon where light is emitted by a molecule that has absorbed light. The fluorescence quantum yield
(®,) is a quantification of the performance of the fluorescence process. Fluorescence lifetime (t,) attributes to the average
time a molecule remains in the excited state before fluorescence and is closely related to fluorescence quantum vyield. It is
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very important to determine these values since an ideal photosensitizer should have a certain fluorescence quantum effi-
ciency and fluorescence lifetime for the determination of the photosensitizers in the body [50]. The optimum fluorescence
quantum yield is an essential component for the photosensitizer due to its deposition and subsequent evacuation from the
tissue. Fluorescent emission may be utilized to monitor the use of photosensitizers in the body [51].

Fluorescence quantum yield (®,) is determined by using equation (1):

F -AStd .nz (1)
Fstq A N3y

Op = Of (stq)

where F and F,  are the areas under the fluorescence curves of the sample and the standard, respectively. A and A, are
the absorbances of the sample and standard at the excitation wavelength, and n and ng, are the refractive indices of the
solvents used for the sample and standard, respectively [52].

Fluorescence lifetime (t,), which is directly concerned with fluorescence quantum yield (®,), refers to the average time
amolecule stays in its excited state before fluorescing. When a compound has a longer lifetime, it has a higher fluorescence
quantum yield [53].

Temperature, molecular structure, and solvent properties, including polarity, viscosity, refractive index, and the pres-
ence of heavy atoms in the solvent molecule, can all have an impact on the fluorescence quantum yield values [54]. The
fluorescence lifetime of a photosensitizer is also affected by a variety of parameters including internal conversion, intersys-

tem migration, aggregation, and solvent [55].

4.2. Singlet oxygen quantum yields (®,)

Since PDT is a treatment method based on the destruction of cancer cells by singlet oxygen [56], an efficient photosensi-
tizer must produce effective singlet oxygen to be used in the treatment of cancer with photodynamic therapy. The amount
of the production of singlet oxygen is given as singlet oxygen quantum yield (®,) [57].

Singlet oxygen quantum yield (®,) is described as the quenching of absorption for a singlet oxygen quenching com-
pound. The decrease in the quencher absorption at 417 nm for 1,3-diphenylisobenzofuran (DPBF) in organic solutions
and 380 nm for 9,10-antracenediyl-bis(methylene)dimalonoic acid (ADMA) in aqueous media are monitored by UV-Vis
spectrophotometry. Singlet oxygen quantum yield (®,) is determined by using equation (2):

®, = @ Std _R-Tabs (2)
A a RSt | abs
OB td
where = 4 is the singlet oxygen quantum yield of the standard, R and R, are the quencher’s photobleaching rates

in the presence of the sample and standard, respectively. I, and I, abs are the rates of light absorption by the sample and
standard, respectively [53].

Photophysical and photochemical properties of ionic and nonionic phthalocyanine compounds containing different
groups are given in Table 1. When the studies in the last five years were examined, the highest singlet oxygen yield was
determined as 0.93 in H,O + Triton X-100 solution for indium (III) phthalocyanine compound containing peripheral
quaternized 7-oxy-4-(pyridine-3-yl)coumarin groups [58]. The nonperipheral substituted zinc(II) phthalocyanine coun-
terpart of this phthalocyanine showed a singlet oxygen quantum yield of 0.92 in the same solution [58]. The singlet oxygen
quantum yield of the water-soluble asymmetric zinc (II) phthalocyanine compound containing six thiophene moieties
was found as 0.81 in H,O [59]. ,Moreover, the axially silicon (IV) phthalocyanine compound bearing bis-benzimidazole
moieties showed acceptable singlet oxygen quantum yield in aqueous solution (®, = 0.78) [60]. These compounds can be
candidates for photosensitizers in PDT applications due to their high singlet oxygen yields in water.

5. In vitro and in vivo biological applications of water-soluble phthalocyanines
The peripheral or nonperipheral positions and the central atom of the phthalocyanine ring can be made of these com-
pounds as potential photosensitizers for biological and medical research areas [34]. Phthalocyanines are of great interest as
photosensitizers for the treatment of malignant tumors in PDT. The therapeutic effects of these compounds are based on
the formation of singlet oxygen ('O,) and other reactive oxygen species (ROS) formed upon light activation which is more
uptake in malignant cells than in nonmalignant cells [61].

Water-soluble sulfonated aluminum phthalocyanine (Photosens), a phthalocyanine used in clinical tests, is investi-
gated for the treatment of many cancer types, such as skin, breast, lung oropharyngeal, neck, larynx, and cervical cancers.
Zinc phthalocyanine compound encapsulated in liposomes made from palmitoyl-oleoyl-phosphatidylcholine (POPC)
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Table 1. Photophysical and photochemical properties of ionic and nonionic water-soluble phthalocyanines.
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Group Metal Solvent Aabs (Nnm) TF (ns) (02 (O Ref.
Ri=Rs3=Rs=H H> 604 0.24
\uo Zn H:0 636 ; ) 0.32 [32]
R2 = %—S—<\ |
N Ga 687 0.40
Ri=R3=Rs=H
Zn H20 + TX? 694 2.69 0.38 0.16 [63]
R,= N @ N<
Ri=R4=H
Zn H.O + TX? 692 2.99 0.36 0.15 [63]
Ry =Ry = 3~y o<
Ri=R4=H
R,=R;= §—0/\/0\/\0/\/0\
Ri'=R4s=H
@ /=
) Zn DMSOP 685 - 0.09 0.44 [64]
' = R3 §—O
@ —
N 7
Ri=R2=R3=Rs4=H
@ Si H20 691 4.46 0.17 026 [65]
®
Ri=R3=R4=H
X1=X2=0H
Si H20 679 - 0.12 0.03 [66]
o
Ri=R3=Rs=H
Xi1=X2=0H
Si H20 679 - 0.10 0.27 [66]
—=N®
HN
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Ri=R:=R3=Rs4=H
Si Aqueous 691 1.12 0.02  0.78 [60]
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Table 1. Continued.

Group Metal Solvent Aans (Nm) TFr (ns) @r [0 Ref.
Ri=Rs=H
I\V@ le
¢
N—N
0.50
In H.0 684 0.06  0.43 (D:20) [67]
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N
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R = N—
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O\ //O
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0’ Y Zn DMSOP 678 - - 0.27 (H:0) [68]
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H>O + TX? 679 1.29 0.06 0.15
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Z In
H.0 + TX? 693 0.05 0.04 0.93
z
e H.0 600 - - 0.09
®
Mg
H20 + TX*? 699 1.93 0.08 0.12
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Group Metal Solvent Mabs(nm)  TF(ns) DF Dy Ref.
Zn H.0 688,650 - - 0.06
R:=R;=Rs4=H H>O + TX? 692 0.67 0.06 0.92
= 0. (0} 0
Ry §_ In H20 704,650 - - 0.08
£ [43]
H,0 + TX® 703 0.03 0.02 0.41
7
N.
X o™ Mg H.0 694,643 - - 0.10
H20 + TX? 685 0.93 0.11 0.14
R:=Rs=Rs=H DMSO®P 700 0.063 0.66
R, = In H:0 654,703 - 0.020 0.17 [69]
H20 + TX? 700 0.016 0.42
Ri=R2=R3=R4=H
AV} Si H0 676 - 0.15 0.44 [70]
X1=X,= §—0>S|i—/_/
Roe Ree Rie H Ho 704, 672 0.22 0.13 (H20)
2= R3= R4=
Zn DMSQP 682 ) 0.18 0.05 (H20) [71]
= 0.
R, ’&o’{'\/ ‘I;g s Mg 680 0.29 0.04 (H20)
R:=R;=R4=H DMSO 704 1.84  0.072 0.85
Ry =%-o0 S\II Zn [72]
N\ N PBS® 703 158 0.1 0.58
®
Ri=Rs=Rs=H DMSOP 683 267 0.093 0.82
R2 = §_0 S
o PBS® 685,647 230  0.195 0.80
R2=R3=Rs=H
DMSOP 703 291 0.059 0.42
R;=}—0 s Zn [72]
g
NS0 PBS® 703 276  0.16 0.29
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Group

Metal Solvent Aabs (NIM) TF (ns) @

Ref.

Ri=R3=Rs=H

R, =%—o s
2 §_ —\_3\]\1
®\/\/SO3'

DMSOb 683 3.28 0.075

PBS¢ 683, 631 0.679 0.023

[72]

Ri=Rs=H

HN
Ry=}=— 0

Zn H20 692 - -

0.01

(73]

Ri= R27R37R47H
Ry=R3'=R4'=

Ry'- §'°_©_\_/<

H20 676 - 0

1.09

[74]

Ri= Rz—Rz—R4—H
Ry =R3=R4'=

Ry *?"‘@—\_q

HN=—Chitosan,
MW=2 kDa, DD=88%

Zn H20 678 - 10.66 x 1073

5.84 x 1073

[74]

Ri= Rz—R3—R4—H
Ry=Riy'=R4'=

%o—@—\_,(

HN=Chitosan,
MW=7 kDa, DD=90%

Zn H20 678 - 6.92 x 1073

1.50 x 1073

[74]
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Table 1. Continued.

Group Metal Solvent Aabs (NM) @F (O Ref.
Ri=R2=R3=Rs=H
Ry=Riy=Rs=H
HN=Chitosan,
L Zn H20 680 31.51 x 103 1491 x 1073 [74]
HO
—N\@ cle
MW =2 kDa,DD = 88%
Ri=R;=R3=Rs=H
R)’=Ri=Rs=H
Ry = §-0 0
HN=Chitosan,
NH Zn H20 678 1543 %103  6.43 %107 [74]
HO
—N\@ cl
MW =7 kDa, DD = 90%
Ri=R;=R3=Rs=H
R)=R3i=Rs=H
o
- 0.66 (DMF)
d
@\N_ Zn DMF 682 0.20 0.61 (H20) [59]
R, = §—o
@N/—
/
Ro=Rs;=Rs=H
v
RyY=Ri=Rsi=H 0.72 (DMF)
" .
\/ Zn DMF 705 0.06 0.76 (H20) [59]
@®N—
©\N—
R,'= §—0
/
@ON—
/
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Group Metal Solvent Aabs (NM) (03 (O Ref.
R2=R3=H
R
R)’=Ri=Rs=H 0.89 (DMEF)
d .
\/ Zn DMF 758 0.02 0.81 (H:0) [59]
@ON—
o
R, =§o
o
/
Ri=R2=R3;=Rs4=H
Ri'=Ri=Rs=H
Zn DMF4 671 0.26 0.35 (H20) [75]
HN=—Chitosan
Ry'= §_°_©_§
0
Ri=R2=R3=Rs4=H
Ri’'=R3y=R4s=H
Zn DMF¢ 670 0.30 0.31 (H20) [75]
HN=—Polyethylenimine
0
Ri=R4s=H
0,
o/ ?
/ _ Zn H20 701 0.34 [76]
0_/—0 N\N,’N
Ry=Ry=§- o o
R2=R3=H
0,
o/
~ = H:0 776 - 0.11 [76]

Rere bl o

ATX: Triton X-100

"DMSO: Dimethyl sulfoxide
‘PBS: Phosphate-buffered saline
dDMF: N,N-Dimethylformamide
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and dioleoylphosphatidylserine (DOPS) is used for the treatment of upper aerodigestive tract carcinoma. Another di-
sulphonic-di-phthalimidomethyl zinc phthalocyanine-based Cremophor EL formulation was tested for skin or esophageal
cancer treatment. Silicone-based phthalocyanine formulations that dissolve in propylene glycol or Cremophor EL with
ethanol and reach clinical tests for various skin diseases and cancers have also been developed [62]. Researchers proceed
to study the development of water-soluble phthalocyanine compounds with photosensitizing properties superior to com-
mercial compounds.

In vitro and in vivo studies of ionic and nonionic phthalocyanine compounds containing different groups on varied
cell lines are given in Tables 2 and 3, respectively. The effects of groups on the phthalocyanine ring can be examined by
looking at these tables.

6. Conclusion

PDT is a successful treatment modality that allows the destruction of cancerous and malignant tumors, resulting in selec-
tive photodynamic destruction. Since PDT compounds are activated by light of a specific wavelength that corresponds to
the absorption band with the lowest energy, they are commonly referred to as photosensitizers. These photosensitizers
produce cytotoxic substances known as reactive oxygen species, which destroy various intracellular structures and bio-
logically important macromolecules, ultimately causing the death of cancerous tissue. Many photosensitizers, particularly
those used on people, have low water solubility due to their tendency to aggregate. In PDT, photosensitizers become inac-
tive due to accumulation and limited water solubility, greatly reducing their ability to perform in vivo. Therefore, it is very
important to synthesize water-soluble phthalocyanine compounds, which have ideal photosensitizers in PDT applications.
The water solubility of the phthalocyanine compounds increases their usability in various biological, medical, or environ-
mental applications. Therefore, within the scope of this review, the results obtained from photophysical, photochemical,
in vitro, and in vivo studies of water-soluble phthalocyanine compounds synthesized in the last five years are given in
tables. Since the synthesis of water-soluble photosensitizers is of great importance in PDT applications, further studies
should focus on the development of better photosensitizers. This review will have positive contributions to future studies
on phthalocyanine chemistry and their PDT applications as well as photochemistry.
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