

Turkish Journal of Chemistry

http://journals.tubitak.gov.tr/chem/

Research Article

Turk J Chem (2023) 47: 837-863 © TÜBİTAK doi:10.55730/1300-0527.3583

Water-soluble phthalocyanine photosensitizers for photodynamic therapy

İpek ÖMEROĞLU💿, Mahmut DURMUŞ*💿

Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkiye

Received: 01.04.2023	٠	Accepted/Published Online: 26.09.2023	٠	Final Version: 31.10.2023
----------------------	---	---------------------------------------	---	---------------------------

Abstract: Photodynamic therapy (PDT) is based on a photochemical reaction that is started when a photosensitizing process is activated by the light and results in the death of tumor cells. Solubility is crucial in PDT applications to investigate the physical and chemical characteristics of phthalocyanines, but, unfortunately, most phthalocyanines show limited solubility especially in water. To increase the solubility of phthalocyanines in polar solvents and water, ionic groups such as -SO₄⁺, -RR₄⁺, -COO⁺, and nonionic groups such as polyoxy chains are frequently added to the peripheral or nonperipheral positions of the phthalocyanine framework. Since water-solubility and NIR-absorbing properties are essential for efficient PDT activation, studies have been focused on the synthesis of these types of phthalocyanine derivatives. This review focuses on the photophysical, photochemical, and some in vitro or in vivo studies of the recently published ionic and nonionic phthalocyanine-mediated photosensitizers carried out in the last five years. This review will have positive contributions to future studies on phthalocyanine chemistry and their PDT applications as well as photochemistry.

Key words: Phthalocyanine, water-soluble, photodynamic therapy, ionic or nonionic, photosensitizer, singlet oxygen.

1. Introduction

Cancer, one of the most threatening diseases to human health worldwide, causes the deaths of millions of people, despite the research carried out in recent years. Despite the success of traditional treatment methods such as surgery, immunotherapy, radiotherapy, or chemotherapy, these treatments have some serious side effects. Therefore, scientists are focused on the improvement of new therapeutic treatment methods [1,2]. Photodynamic therapy (PDT) is accepted as a suitable treatment method to achieve rapid therapeutic results and reduce drug resistance in tumor cells [3]. In addition, PDT is an alternative treatment process for malign tumors that relies on photosensitizers to transfer light energy to reactive oxygen species (ROS) to induce cell apoptosis and tissue damage [4]. PDT performs its anticancer effect directly through cell death, damage to the vasculature, and activation of the immune system [5]. Cellular damage is due to the action of three components: a harmless photosensitizer, suitable light irradiation, and molecular oxygen [6]. This modern and appealing process depends on the usage of a combination of a photosensitizer, long wavelength light (620-690 nm), and molecular oxygen to selectively destroy or damage localized cancer tumors [7].

In Figure, the two photochemical mechanisms of PDT called Type I and Type II are schematically shown in the Jablonski diagram [8]. Reactive oxygen species (ROS) such as superoxide (O_2^{\bullet}) , hydroxyl radical (OH^{\bullet}) , and hydrogen peroxide (H_2O_2) [9] are known as Type I photochemical mechanisms. When the photosensitizer transmits its energy to biomolecules in the excited ternary state, hydrogen or electron is transmitted to the free radicals. As a result of this transfer, photosensitizer and anion radicals of the substrate are formed between the photosensitizer and cancerous tissue. When electrons and oxygen molecules interact with each other, this process leads to the production of ROS. The other mechanism of PDT, called Type II, is defined as the formation of singlet molecular oxygen (¹O₂), which is the most important in the destruction of cancer cells. When the photosensitizer is exposed to electronic excitation from the ground state (S_0) to the excited singlet (S_1) state, the S_1 state is highly unstable, and the electron rapidly transitions to the longer-lived excited triplet (T_1) state via intersystem crossing. The photosensitizer then transfers its energy to molecular oxygen to form singlet oxygen (¹O₂) which is a highly reactive oxygen species. Singlet oxygen can cause the death of bacteria, fungi, or tumor cells in a specific location [10].

For a photosensitizer to be considered suitable for a Type I or Type II process, it should contain the following criteria:

- Powerful red or near-infrared absorption to authorize deep penetration of light into tissue,
- Insignificant dark toxicity and small side effects,

^{*} Correspondence: durmus@gtu.edu.tr

Figure. Type I and Type II mechanisms of photodynamic therapy.

- High cytotoxicity under light irradiation,
- Good solubility (The solubility in aqueous solutions is very important for PDT applications. On the other hand, solvents with low cytotoxicity such as DMSO are very important as an alternative to aqueous solutions.),
- Stability in media,
- Preferred gathering in cancerous tissue [11].

Phthalocyanines are macrocyclic compounds formed by the coordination of four iminoisoindoline units. They are thermally, physically, and chemically consistent compounds due to their delocalized π electron systems. They are used in many applications such as semiconductors [12], dye-based solar cells [13], electrochromic systems [14], molecular electronics [15], liquid crystals [16], data storage materials [17], laser dyes [18], chemical sensors [19], catalysts [20], and PDT for cancer treatment [21] due to their excellent electrochemical, thermal, and optical properties. Since phthalocyanines have a very similar structure to that of porphyrins and have suitable properties for ideal photosensitizers, they are known as a class of second-generation photosensitizers [22,23]. Moreover, these compounds are used as photosensitizers in PDT because they show strong light absorption between 600 and 800 nm in the electronic spectrum, do not show toxicity in the absence of light, and destroy tumor tissues by producing high singlet oxygen or radicals [24]. On the other hand, the solubility problems of the phthalocyanines lead to a decrease in the absorption coefficient, which is important for singlet oxygen production. To solve this problem, peripheral/nonperipheral and/or axial substitution can be added to the phthalocyanine ring or metal ion to reduce aggregation and increase solubility [25,26]. The substituents placed on the skeleton and the metal atoms located in the cavity of the phthalocyanine ring can change the photophysical and photochemical properties of phthalocyanine compounds [27]. Studies have shown that diamagnetic metals increase singlet oxygen production and photoactivity compared to paramagnetic metals. Zinc, silicon, indium, gallium, and aluminum phthalocyanines, which have diamagnetic center atoms, are widely used as photosensitizers in photodynamic therapy [23]. These metal atoms promote a high quantum yield of excited triplet state in the PDT application and indicate high singlet oxygen yield [28,29]. Despite their strong properties, their poor solubility in water and their aggregation in polar environments complicate the applicability of these compounds in PDT [30]. Many photosensitizers are used for PDT, including those approved for humans; they tend to form aggregations, resulting in low water solubility. The aggregation and low water solubility render photosensitizers inactive in PDT, significantly limiting their in vivo studies. For these reasons, water-soluble and NIR (near-IR)-absorbing photosensitizers are essential for efficient PDT [31]. Studies have focused on the synthesis of water-soluble phthalocyanines because these compounds are suitable for different applications such as antioxidant, antibacterial, DNA binding/cleavage, enzyme inhibition, cytotoxic/phototoxic anticancer, and PDT activities [32]. Solubility is very important for the examination of the physical and chemical properties of phthalocyanines, but they indicate restricted solubility in most solvents. Substitutions at peripheral or nonperipheral positions of the macrocycle for these compounds improve their solubility. In addition, the solubility of phthalocyanines in organic solvents and water is often enhanced by the addition of polar or ionic groups (-SO₃⁺, -NR₃⁺, -COO⁻) at peripheral or nonperipheral positions [33,34]. Moreover, nonionic phthalocyanines contain polyethylene glycol/polyhydroxy, and carbohydrates can also gain their water solubility [35].

This review focuses on the photophysical, photochemical, in vitro, and in vivo studies of the water-soluble phthalocyanine compounds containing ionic or nonionic groups for PDT applications in the last five years. The results of these studies for different water-soluble phthalocyanine compounds are summarized. The photophysical, photochemical, and in vitro or in vivo biological properties of the phthalocyanine compounds are given as tables and these properties are compared with

each other according to the central atom, the nature, and number of substituted groups. In the studies on the water-soluble phthalocyanines carried out in the last five years, the highest singlet oxygen quantum yield was obtained as 0.93 in H2O + Triton X-100 solution for the phthalocyanine derivative bearing indium (III) as a central metal atom and tetra quaternized 7-oxy-4-(pyridine-3-yl) groups on the peripheral positions of the phthalocyanine framework [58].

2. Ionic water-soluble phthalocyanines

Ionic water-soluble phthalocyanine compounds are classified into three groups: anionic, cationic, and zwitterionic [35,36].

Anionic groups such as carboxylate (-COO⁻), sulfonate (-SO₃⁻), and phosphorus-based functions are generally used to bring water solubility to phthalocyanines. These groups are added directly to the phthalocyanine ring or by linker atoms such as oxygen, sulfur, or nitrogen. Phthalocyanines bearing sulfonate or sulfonic acid groups are synthesized by direct sulfonation of the phthalocyanine macrocycle or addition of the sulfonate-bearing substituted groups on the peripheral, nonperipheral, or axial positions [33]. Although both anionic and cationic phthalocyanines provide solubility in water, there are significant differences between anionic (containing carboxy or sulfo groups) and cationic (containing quaternary ammonium groups) phthalocyanines. In vitro studies show that cationic phthalocyanines are generally much more active in PDT applications than anionic phthalocyanines [37]. This observed behavior is explained by the effect of better ionization, subcellular localization and relocalization following radiation exposure, interactions with biomembranes, and differential binding to serum proteins of the cationic phthalocyanines [38].

Cationic groups are synthesized by the quaternization of the phthalocyanines on the aliphatic or aromatic nitrogen atoms in the substituted groups [35]. Metallophthalocyanines, especially silicon phthalocyanine derivatives containing cationic substituents, have some advantages over neutral and anionic substituents, such as improving water solubility, being a more efficient PDT agent by preventing aggregation, improving cell uptake, and selectively localizing in cell mitochondria [39].

Phthalocyanine compounds that carry anionic and cationic charges on the same molecule are called zwitterionic compounds. 1,3-propanesultone is usually used to obtain water-soluble zwitterionic phthalocyanine, and the sulfonate group is obtained by opening of 1,3-propanesultane ring [40].

3. Nonionic water-soluble phthalocyanines

Although nonionic water-soluble phthalocyanines are scarce compared to ionic phthalocyanines, they attract attention because they can interact with the cell membrane and components of biological fluids differently from ionic species. Therefore, phthalocyanine compounds containing nonionic groups such as carbohydrate or polyoxy are synthesized to obtain watersoluble phthalocyanines [41].

The functionalization of phthalocyanine compounds with polyethylene glycol is becoming progressively significant as it contributes positively to the chemical inertness, biocompatibility, improved serum life, and tumor cell accumulation of the compounds [42]. The addition of the hydrophilic moieties to the hydrophobic phthalocyanine core increases solubility and forms amphiphilic molecules, which is a desirable property for an effective photosensitizer [43]. The increasing number and length of polyoxy chains enhance the water solubility of the phthalocyanine compounds [35]. Moreover, nonionic polyhydroxylated groups are used to obtain water-soluble phthalocyanines [41,44].

Carbohydrates are used as biocompatible substituents that increase the water solubility of the phthalocyanines, which provides a potential for selective recognition by targeted cancer cells [45,46]. It has been determined that sugar-containing phthalocyanine compounds improve PDT efficiency due to increased glycolysis levels and overexpression of sugar carrier proteins in various human cancers, and glycosylated phthalocyanines are ideal photosensitizers [47].

4. Photophysical and photochemical studies of water-soluble phthalocyanines

The determination of the photophysical (fluorescence quantum yields and lifetimes) and photochemical (single oxygen yields) properties of the phthalocyanines are very important for photosensitizers in PDT applications.

Fluorescence properties such as fluorescence quantum yield ($\Phi_{\rm F}$) and fluorescence lifetime ($\tau_{\rm F}$) play an important role in PDT applications for visualizing of the photosensitizers in the body [48]. One of the most important factors in the evaluation of PDT is the singlet oxygen production. The highly effective reactivity of singlet oxygen can cause severe damage to biological systems such as DNA and RNA, resulting in cell death. When enough singlet oxygen is produced during the energy transfer from the photosensitizer to the oxygen molecule, effective cell death can be obtained [49].

4.1. Fluorescence quantum yields ($\Phi_{\rm F}$) and lifetimes ($\tau_{\rm F}$)

Fluorescence is the phenomenon where light is emitted by a molecule that has absorbed light. The fluorescence quantum yield $(\Phi_{\rm F})$ is a quantification of the performance of the fluorescence process. Fluorescence lifetime $(\tau_{\rm F})$ attributes to the average time a molecule remains in the excited state before fluorescence and is closely related to fluorescence quantum yield. It is

very important to determine these values since an ideal photosensitizer should have a certain fluorescence quantum efficiency and fluorescence lifetime for the determination of the photosensitizers in the body [50]. The optimum fluorescence quantum yield is an essential component for the photosensitizer due to its deposition and subsequent evacuation from the tissue. Fluorescent emission may be utilized to monitor the use of photosensitizers in the body [51].

Fluorescence quantum yield (Φ_r) is determined by using equation (1):

$$\Phi_{\rm F} = \Phi_{\rm F\,(Std)} \frac{F \,A_{Std} \,n^2}{F_{Std} \,A \,n_{Std}^2} \tag{1}$$

where F and F_{std} are the areas under the fluorescence curves of the sample and the standard, respectively. A and A_{std} are the absorbances of the sample and standard at the excitation wavelength, and n and n_{std} are the refractive indices of the solvents used for the sample and standard, respectively [52].

Fluorescence lifetime ($\tau_{\rm p}$), which is directly concerned with fluorescence quantum yield ($\Phi_{\rm p}$), refers to the average time a molecule stays in its excited state before fluorescing. When a compound has a longer lifetime, it has a higher fluorescence quantum yield [53].

Temperature, molecular structure, and solvent properties, including polarity, viscosity, refractive index, and the presence of heavy atoms in the solvent molecule, can all have an impact on the fluorescence quantum yield values [54]. The fluorescence lifetime of a photosensitizer is also affected by a variety of parameters including internal conversion, intersystem migration, aggregation, and solvent [55].

4.2. Singlet oxygen quantum yields (Φ_{λ})

Since PDT is a treatment method based on the destruction of cancer cells by singlet oxygen [56], an efficient photosensitizer must produce effective singlet oxygen to be used in the treatment of cancer with photodynamic therapy. The amount of the production of singlet oxygen is given as singlet oxygen quantum yield (Φ_{λ}) [57].

Singlet oxygen quantum yield (Φ_{λ}) is described as the quenching of absorption for a singlet oxygen quenching compound. The decrease in the quencher absorption at 417 nm for 1,3-diphenylisobenzofuran (DPBF) in organic solutions and 380 nm for 9,10-antracenediyl-bis(methylene)dimalonoic acid (ADMA) in aqueous media are monitored by UV-Vis spectrophotometry. Singlet oxygen quantum yield (Φ_{λ}) is determined by using equation (2):

$$\Phi_{\Delta} = \Phi_{\Delta}^{Std} \frac{R \cdot I_{abs}^{Std}}{R^{Std} \cdot I_{abs}}$$
(2)

where Φ_{Δ}^{Std} is the singlet oxygen quantum yield of the standard, R and R_{std} are the quencher's photobleaching rates in the presence of the sample and standard, respectively. I_{abs} and I_{std} abs are the rates of light absorption by the sample and standard, respectively [53].

Photophysical and photochemical properties of ionic and nonionic phthalocyanine compounds containing different groups are given in Table 1. When the studies in the last five years were examined, the highest singlet oxygen yield was determined as 0.93 in H₂O + Triton X-100 solution for indium (III) phthalocyanine compound containing peripheral quaternized 7-oxy-4-(pyridine-3-yl)coumarin groups [58]. The nonperipheral substituted zinc(II) phthalocyanine counterpart of this phthalocyanine showed a singlet oxygen quantum yield of 0.92 in the same solution [58]. The singlet oxygen quantum yield of the water-soluble asymmetric zinc (II) phthalocyanine compound containing six thiophene moieties was found as 0.81 in H₂O [59]. ,Moreover, the axially silicon (IV) phthalocyanine compound bearing bis-benzimidazole moieties showed acceptable singlet oxygen quantum yield in aqueous solution ($\Phi_{\Lambda} = 0.78$) [60]. These compounds can be candidates for photosensitizers in PDT applications due to their high singlet oxygen yields in water.

5. In vitro and in vivo biological applications of water-soluble phthalocyanines

The peripheral or nonperipheral positions and the central atom of the phthalocyanine ring can be made of these compounds as potential photosensitizers for biological and medical research areas [34]. Phthalocyanines are of great interest as photosensitizers for the treatment of malignant tumors in PDT. The therapeutic effects of these compounds are based on the formation of singlet oxygen $({}^{1}O_{2})$ and other reactive oxygen species (ROS) formed upon light activation which is more uptake in malignant cells than in nonmalignant cells [61].

Water-soluble sulfonated aluminum phthalocyanine (Photosens), a phthalocyanine used in clinical tests, is investigated for the treatment of many cancer types, such as skin, breast, lung oropharyngeal, neck, larynx, and cervical cancers. Zinc phthalocyanine compound encapsulated in liposomes made from palmitoyl-oleoyl-phosphatidylcholine (POPC)

Table 1. Photophysical and photochemical properties of ionic and nonionic water-soluble phthalocyanines.

Group	Metal	Solvent	λ _{abs} (nm)	τ _F (ns)	Φ _F	Φ_{Δ}	Ref.
$R_1 = R_3 = R_4 = H$							
$R_2 = \underbrace{\underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Zn	H2O	688	2.86	0.11	0.27	[36]
$R_2 = R_3 = R_4 = H$							
$R_1 = \underbrace{\xi_{-0}}_{N} \underbrace{S_{-1}}_{S} \underbrace{S_{-1}}_{N} \underbrace{S_{-1}$	Zn	H2O	706	1.76	0.08	0.23	[36]
$\mathbf{R}_2 = \mathbf{R}_2 = \mathbf{R}_4 = \mathbf{H}$	Pd	H ₂ O	657			0.26	
$\kappa_2 - \kappa_3 = \kappa_4 = \mathbf{H}$	14	$H_2O + TX^a$	666	_	_	0.46	[6]
$R_1 = $	Ni	H ₂ O	668	-	-	0.01	נטן
	111	$\mathrm{H_{2}O}+\mathrm{TX^{a}}$	679			0.02	

Group	Metal	Solvent	λ _{abs} (nm)	τ _F (ns)	$\Phi_{\rm F}$	Φ_{Δ}	Ref.
$R_1 = R_3 = R_4 = H$	H ₂		604			0.24	
	Zn	H ₂ O	636	-	-	0.32	[32]
	Ga		687			0.40	
$R_1 = R_3 = R_4 = \mathbf{H}$ $R_2 = \underbrace{}_{N \to N} \underbrace{\bigoplus}_{N \to$	Zn	$H_2O + TX^a$	694	2.69	0.38	0.16	[63]
$R_1 = R_4 = H$	Zn	H ₂ O + TX ^a	692	2.99	0.36	0.15	[63]
$R_2 = R_3 = \underbrace{ \begin{array}{c} \\ \end{array}} $							
$R_1 = R_4 = \mathbf{H}$ $R_2 = R_3 = \mathbf{E}_0 0_0 0_0 0_0$							
$R_1' = R_4' = H$	Zn	DMSO ^b	685	-	0.09	0.44	[64]
$R_2' = R_3' = 4 $							
$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{H}$							
$X_1 = X_2 = 1 $	Si	H ₂ O	691	4.46	0.17	0.26	[65]
$R_1 = R_3 = R_4 = H$ $X_1 = X_2 = OH$							
$R_2 = \xi - o - \sqrt{\sum_{HO}^{N}} = o$	Si	H ₂ O	679	-	0.12	0.03	[66]
$R_1 = R_3 = R_4 = H$ $X_1 = X_2 = OH$							
$R_2 = \xi - 0 - \sum_{\substack{N \\ HN \\ Chitosan}}^{N \otimes } 0$	Si	H ₂ O	679	-	0.10	0.27	[66]
$R_1 = R_2 = R_3 = R_4 = H$		Aqueous					
$X_1 = X_2 = \frac{1}{2} \circ - \sqrt{2} \cdot \sqrt{2} \circ \sqrt{2}$	Si	solution	691	1.12	0.02	0.78	[60]

Table 1	1. Con	tinued.
---------	--------	---------

Group	Metal	Solvent	$\lambda_{abs} (nm)$	τ _F (ns)	Φ_{F}	Φ_{Δ}	Ref.
$R_1 = R_4 = H$ $R_2 = R_3 = \underbrace{ \underbrace{ \begin{array}{c} & & \\ &$	In	H2O	684	0.50 2.61	0.06	0.43 (D ₂ O)	[67]
$R_{1} = R_{3} = R_{4} = H$ $R_{2} = \underbrace{\underbrace{R_{1}}_{0}}_{0} \underbrace{\underbrace{R_{1}}_{0}}_{0} = R_{4} = H$ $R_{2}' = \underbrace{\underbrace{R_{2}}_{0}}_{0} \underbrace{\underbrace{R_{1}}_{0}}_{0} = H$ $COOH$	Zn	DMSO ^b	672	2.70	0.13	0.76	[68]
$R_{1} = R_{3} = R_{4} = \mathbf{H}$ $R_{2} = \mathbf{H}$ $\mathbf{R}_{2} = \mathbf{H}$ $\mathbf{R}_{3} = \mathbf{R}_{4} = \mathbf{H}$ $\mathbf{R}_{2} = \mathbf{H}$ $\mathbf{R}_{2} = \mathbf{H}$	Zn	DMSO ^b	678	-	-	0.27 (H ₂ O)	[68]
$\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{H}$ $\mathbf{R}_2 = \mathbf{E}_{\mathbf{O}} \mathbf{P}_{\mathbf{O}} \mathbf{P}_{\mathbf{O}} \mathbf{P}_{\mathbf{O}}$	Zn	H_2O $H_2O + TX^a$ H_2O	648 679 689, 653	- 1.29 -	- 0.06 -	0.01 0.15 0.48	[58]
	in Mg	$\begin{array}{l} H_2O+TX^a\\ H_2O\\ H_2O+TX^a \end{array}$	693 600 699	0.05 - 1.93	0.04 - 0.08	0.93 0.09 0.12	

Table 1. Continued.

Group	Metal	Solvent	λ _{abs} (nm)	τ _F (ns)	Φ _F	Φ_{Δ}	Ref.
	Zn	H ₂ O	688, 650	-	-	0.06	
$R_2 = R_3 = R_4 = H$		$H_2O + TX^a$	692	0.67	0.06	0.92	
$R_1 = $	In	H ₂ O	704, 650	-	-	0.08	[43]
Ť,		$\mathrm{H_2O}+\mathrm{TX^a}$	703	0.03	0.02	0.41	[43]
	Mg	H ₂ O	694, 643	-	-	0.10	
		$\mathrm{H_2O} + \mathrm{TX^a}$	685	0.93	0.11	0.14	
$R_2 = R_3 = R_4 = H$		DMSO ^b	700		0.063	0.66	
$R_1 = \xi - s$	In	H ₂ O	654, 703	-	0.020	0.17	[69]
۳ <u>٬</u>		$\mathrm{H_2O} + \mathrm{TX^a}$	700		0.016	0.42	
$R_1 = R_2 = R_3 = R_4 = H$							
	Si	H ₂ O	676	-	0.15	0.44	[70]
$X_1 = X_2 = _{a} o _{si}$							
$R_2 = R_3 = R_4 = H$	H_2		704, 672		0.22	0.13 (H ₂ O)	
	Zn	DMSO ^b	682	-	0.18	0.05 (H ₂ O)	[71]
$K_1 = K_0 \longrightarrow K_{n=4/5}$	Mg		680		0.29	0.04 (H ₂ O)	
$\mathbf{R}_2 = \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{H}$		DMSO	704	1.84	0.072	0.85	
	Zn	PBS°	703	1.58	0.1	0.58	[72]
$R_1 = R_3 = R_4 = H$ $R_2 = \mathbf{E} \mathbf{o} \mathbf{v} \mathbf{s} \mathbf{s}$	7	DMSO ^b	683	2.67	0.093	0.82	[70]
	ΖΠ	PBS ^c	685, 647	2.30	0.195	0.80	[/2]
$R_2 = R_3 = R_4 = \mathbf{H}$		DMSO ^b	703	2.91	0.059	0.42	
$R_1 = \frac{s}{s}$	Zn	PBS ^c	703	2.76	0.16	0.29	[72]

Table 1. Continued.

Group	Metal	Solvent	λ _{abs (} nm)	τ _F (ns)	$\Phi_{\rm F}$	Φ_{Δ}	Ref.
$R_1 = R_3 = R_4 = \mathbf{H}$		DMSO ^b	683	3.28	0.075	0.50	
$R_2 = $	Zn	PBS ^c	683, 631	0.679	0.023	0.12	[72]
$R_1 = R_4 = H$							
$R_2 = R_3 = 5 $	Zn	H ₂ O	692	-	-	0.01	[73]
$R_{1}' = R_{3}' = R_{4}' = H$,						
$R_{1} = R_{2} = R_{3} = R_{4} = H$ $R_{2}' = R_{3}' = R_{4}' = H$ $R_{1}' = - 0 - 0$ OH	Zn	H ₂ O	676	-	0	1.09	[74]
$R_1 = R_2 = R_3 = R_4 = H$ $R_2' = R_3' = R_4' = H$ $R_1' = $	Zn	H ₂ O	678	-	10.66 × 10 ⁻³	5.84 × 10 ⁻³	[74]
$R_1 = R_2 = R_3 = R_4 = H$ $R_2' = R_3' = R_4' = H$ $R_1' = \frac{1}{2}$ o o o o o o o o o o o o o o o o o o o	Zn 2	H ₂ O	678	-	6.92 × 10 ⁻³	1.50 × 10 ⁻³	[74]

Table	1.	Continued.
-------	----	------------

Group	Metal	Solvent	λ _{abs} (nm)	$ au_{\mathrm{F}}\left(\mathrm{ns} ight)$	$\Phi_{\rm F}$	Φ_{Δ}	Ref.
$R_1 = R_2 = R_3 = R_4 = H$ $R_2' = R_3' = R_4' = H$							
$R_{1}' = \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	Zn	H ₂ O	680	-	31.51 × 10 ⁻³	14.91 × 10 ⁻³	[74]
MW = 2 kDa,DD = 88%							
$R_{1} = R_{2} = R_{3} = R_{4} = \mathbf{H}$ $R_{2}' = R_{3}' = R_{4}' = \mathbf{H}$ $R_{1}' = \underbrace{\bullet_{0}}_{HN} - \underbrace{\frown_{0}}_{HN} - \underbrace{\frown_{0}}_{NH} + \underbrace{\frown_{0}}_{HO} - \underbrace{\frown_{0}}_{NH} + \underbrace{\bullet_{0}}_{NH} + \underbrace{\frown_{0}}_{NH} + \underbrace{\frown_{0}}_{NH} + \underbrace{\frown_{0}}_{NH} + \underbrace{\frown_{0}}_{NH} + \underbrace{\frown_{0}}_{NH} + \underbrace{\frown_{0}}_{NH} + \underbrace{\bullet_{0}}_{NH} + \underbrace{\bullet_{0}}_{$	Zn	H ₂ O	678	-	15.43 × 10 ⁻³	6.43 × 10 ⁻³	[74]
MW = 7 kDa, DD = 90%							
$R_{1} = R_{2} = R_{3} = R_{4} = \mathbf{H}$ $R_{2}' = R_{3}' = R_{4}' = \mathbf{H}$ $R_{1}' = \underbrace{\mathbf{E}}_{0} \circ \underbrace{\mathbf{E}}_{\mathbf{N}} \circ \underbrace{\mathbf{E}}$	Zn	DMF ^d	682	-	0.20	0.66 (DMF) 0.61 (H ₂ O)	[59]
$R_{2} = R_{3} = R_{4} = \mathbf{H}$ $R_{1} = \mathbf{E} \cdot \mathbf{S} \cdot \mathbf{S}$ $R_{2}' = R_{3}' = R_{4}' = \mathbf{H}$ $R_{1}' = \mathbf{E} \cdot \mathbf{O} \cdot \mathbf{S} \cdot \mathbf{S}$	Zn	DMF ^d	705	-	0.06	0.72 (DMF) 0.76 (H ₂ O)	[59]

Table 1. Continued.

Group	Metal	Solvent	$\lambda_{abs}(\mathbf{nm})$	$ au_{\mathrm{F}}\left(\mathrm{ns} ight)$	$\Phi_{\rm F}$	Φ_{Δ}	Ref.
$R_2 = R_3 = H$							
$R_1 = R_4 = $							
$R_2' = R_3' = R_4' = H$	7		750		0.02	0.89 (DMF)	[20]
⊕N—	Zn	DMF ^u	/58	-	0.02	0.81 (H ₂ O)	[59]
$R_1 = R_2 = R_3 = R_4 = H$ $P_1 = P_2 = P_2 = P_4 = H$							
$K_1 - K_3 - K_4 - H$	Zn	DMF ^d	671	-	0.26	0.35 (H ₂ O)	[75]
$R_2' = $							
$R_1 = R_2 = R_3 = R_4 = H$ $R_1' = R_3' = R_4' = H$	_	1					
R2' = - 0-	Zn	DMF ^a	670	-	0.30	0.31 (H ₂ O)	[75]
$R_1 = R_4 = \mathbf{H}$							
	Zn	HaO	701	_		0.34	[76]
	2.11	1120	/01	-		0.34	[/0]
$\mathbf{R}_2 = \mathbf{R}_3 = \mathbf{H}$							
	Zn	H ₂ O	776		-	0.11	[76]
$R_1 = R_4 = \frac{1}{2} s$							
aTX: Triton X-100							

^bDMSO: Dimethyl sulfoxide ^cPBS: Phosphate-buffered saline ^dDMF: *N*,*N*-Dimethylformamide

Group	Metal	Solvent	$\lambda_{abs}(nm)$	$\Phi_{\rm F}$	Φ_{Δ}	Cell type	Dark toxicity	Light IC ₅₀	Ref.
$R_1 = R_4 = \mathbf{H}$ $R_2 = R_3 = \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$	Zn	PBS	677			B16F10 ^a	Slightly toxic at 0.1 mM	5.4 µM	[77]
$R_1 = R_3 = R_4 = H$ $R_2 = \underbrace{ \underbrace{ \underbrace{ K_2 = \underbrace{ \underbrace{ K_3 = \underbrace{ K_3 $	H_{2} $R = H$ Zn $R = H$ Zn $R = C_{2}H_{5}$	DMSO	678 678 675	,	0.10 0.89 0.96	MDA-MB-231 ^b MCF-7 ^b A125 ^c A431 ^c HaCat ^d SW-480 ^d DU145 ^c BDU145 ^c BDU145 ^c	Nontoxic		[78]

Continued.	
નં	
Table	

Group	Metal	Solvent	λ _{abs} (nm)	$\Phi_{\rm F}$	Φ_{Δ}	Cell type	Dark toxicity	Light IC ₅₀	Ref.
	Fe R = H		660						
$R_1 = R_3 = R_4 = H$	Fe $R = C_2H_5$		634		ı	MDA-MB-231 ^b MCF-7 ^b A125 ^c			
$\mathbb{R}_2 = \underbrace{\xi - N}_{0}$	$\begin{array}{l} Mg\\ R=H \end{array}$	DMSO	674		0.30	A431 ^c HaCat ^d	Nontoxic	ı	[62]
● ∕⊻	$\underset{R}{Mg}{Mg}$		678		0.28	SW-480 ⁴ DU145 ⁶ BPH-1 ⁶			
	$Mn \\ R = C_2 H_5$		712		0.006				
$R_1 = R_3 = R_4 = H$	Zn X = 0		681.5	0.18	0.62		Toxic	1	
$\mathbf{R}_2 = \mathbf{F} \mathbf{x}^2$	Zn X = S	DMSO	691.5	0.11	0.58	CT26 ^f	Nontoxic	1.40 μM	[80]
⊻	Zn X = Se		690.5	0.08	0.61		Nontoxic	8.50 µM	
$R_1 = R_3 = R_4 = H$	$\mathbf{O} = \mathbf{X}$		682	0.13	0.68		Toxic	ı	
$\mathbb{R}_2 = \frac{1}{2} - x \xrightarrow{\mathbf{O}_1} \mathbf{O}_2$	Zn X = S	DMSO	692	0.08	0.64	$CT26^{f}$	Nontoxic	2.20 μM	[80]
\sum	Zn X = Se		692.5	0.07	69.0		Nontoxic	3.50 μM	

Continued.	
Table 2. (

Group	Metal	Solvent	λ _{abs} (nm)	$\Phi_{\rm F}$	Φ_{Λ}	Cell type	Dark toxicity	Light IC ₅₀	Ref.
$R_1 = R_2 = R_3 = R_4 = \mathbf{H}$ $X_1 = X_2 = \mathbf{F}_0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	Si	H_2O	683	1	0.12	HO-8910 ^g	Almost no	2.0 µМ	[81]
$R_1 = R_4 = H$	Ga	DMSO	681 679	0.12	4.4% 0.029%	ł		> 100 µМ	
$K_2 = K_3 = \frac{1}{2} - \frac{1}{\sqrt{2}}$	Zn	DMSO	678 673	0.15	5.3% 0.009%	Hep2"	Nontoxic	5.3 µМ	[82]
$R_1 = R_3 = R_4 = H$ $R_2 = 4 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot$	Zn	H2O	683	0.17	0.52	HepG2'	Nontoxic at 1 µM	ı	[83]
$R_1 = R_4 = H$ $R_2 = R_3 = \mathbf{f}_{0} \underbrace{\left(\sum_{i=1}^{N} \mathbf{e}^{-0} \cdot \mathbf{e}^{-0} \right)^{-0} \mathbf{e}^{-0} $	Zn	H_2O	681	0.15	0.64	HepG2'	Nontoxic at 1 µM	ı	[83]
$R_1 = R_2 = R_3 = R_4 = \mathbf{H}$ $X_1 = X_2 = \underbrace{\underbrace{\underbrace{K_2 = \underbrace{K_2 = K_2 = \underbrace{K_2 = \underbrace{K_2 = \underbrace{K_2 = K_2 = \underbrace{K_2 = K_2 = \underbrace{K_2 = K_2 = K_2 = \underbrace{K_2 = K_2 $	Si	H_2O	673 (DMSO)	,	0.29	PC3i	ı		[84]

Table 2. Continued.

Group	Metal	Solvent	λ _{abs} (nm)	$\Phi_{\rm F}$	Φ_{Δ}	Cell type	Dark toxicity	Light IC ₅₀	Ref.
$R_1 = R_2 = R_3 = R_4 = \mathbf{H}$ $X_1 = X_2 = \underbrace{\xi_{-0}}_{\bigotimes_N}$	Si	H ₂ O	676 (DMSO)	0.13	0.20	PC3i	·		[84]
$R_1 = R_3 = R_4 = H$ $R_2 = \frac{1}{2} - 0 - \frac{1}{2} = \frac{1}{2} - 0 - \frac{1}{2} = \frac{1}{2} - 0 - \frac{1}{2} - \frac{1}{$	Zn	DMSO	683	0.03	0.62	MCF-7 ^k	Negligible	8.2 µМ	[85]
$R_1 = R_3 = R_4 = H$ $R_2 = \frac{1}{2} - 0 - \frac{1}{\sqrt{2}} + $	Zn	DMSO	684	0.06	0.53	MCF-7 ^k	Negligible	Ми 9.4	[85]
$R_1 = R_3 = R_4 = \mathbf{H}$ $R_2 = \underbrace{ \underbrace{ \underbrace{ \underbrace{ \underbrace{ \underbrace{ \underbrace{ \underbrace{ \underbrace{ \underbrace{ \underbrace{ \underbrace{ $	Zn	DMSO	675	0.20	0.42	MCF-7 ^k	85% viable cells at concentration ≤80 μM	≤40% viable cells at 40 μM and 80 μM	[86]
$R_1 = R_4 = C_6H_{13}$ $R_2 = R_3 = \underbrace{ \underbrace{ \bigoplus_{N \in \mathbb{N}} }_{N}}_{N = N}$	Zn	DMSO	725	0.06	0.67	MCF-7 ^k	85% viable cells at concentration ≤80 μM	~ 55% viable cells at 40 μM and 80 μM	[86]

inued.
. Cont
r,
Table

Group	Metal	Solvent	λ _{abs} (nm)	$\Phi_{\rm F}$	Φ_{Δ}	Cell type	Dark toxicity	Light IC ₅₀	Ref.
$R_1 = R_3 = R_4 = H$ $R_2 = \underbrace{\bigoplus_{k=0}^{k}}_{k=0}$	Zn	DMSO	681	ı	0.76	HCT-116			[87]
$R_2 = R_3 = R_4 = \mathbf{H}$ $R_1 = \underbrace{\textcircled{\bullet}_N}_{\clubsuit 0}$	Zn	DMSO	701	ı.	0.78	HCT-116 ¹ A549 ^m	Low cytotoxic Toxic at 1, 5, and 10 µM		[87]
$R_1 = R_3 = R_4 = H$ $R_2 = \frac{1}{2} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + $	Zn	DMSO	695	ı	0.87 (DMSO)	MDA-MB- 231 ^b	Negligible	Cancer cells decreased to 27%	[88]
$R_1 = R_3 = R_4 = H$ $R_2 = \underbrace{ \underbrace{ \begin{array}{c} R_3 = R_4 = H \\ 0 & \text{M}_2 \end{array}}}_{R_2} \underbrace{ \begin{array}{c} R_3 = R_4 = H \\ 0 & \text{M}_2 \end{array}}_{n=3} \underbrace{ \begin{array}{c} R_3 = R_4 = H \\ 0 & \text{M}_2 \end{array}}_{n=3}$	Zn	DMSO	700		0.95 (DMSO)	MDA-MB- 231 ^b	Negligible	Cancer cells decreased to 19%	[88]
$R_2 = R_3 = R_4 = H$ $R_1 = s + 0 + 0$	H ₂ Zn	DMSO	701, 727, 704	0.13 0.15	0.21 0.73	A253, FaDu ⁿ HT29º	Modest Nontoxic		[89]
$R_1 = R_3 = R_4 = H$ $R_2 = s^{4} \circ \sqrt{-0}_{4}$	H ₂ Zn	DMSO	674, 706, 683	0.12 0.15	0.12 0.70	A253, FaDu ⁿ HT29°	Modest Nontoxic		[68]

Table 2. Continued.

Group	Metal	Solvent	λ _{abs} (nm)	$\Phi_{\rm F}$	Φ_{Δ}	Cell type	Dark toxicity	Light IC ₅₀	Ref.
$R_2 = R_3 = H$ $R_1 = R_4 = \underbrace{_{0} - _$	Zn	DMSO	680, 613	0.041	0.38	MDA-MB-231 ^b MCF-7 ^k	Nontoxic	1	[06]
$R_{1} = R_{2} = R_{3} = R_{4} = H$ $X_{1} = X_{2} = \underbrace{ \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	Si	DMF	690 PBS	0.38	Higher ability	UM-UC-3P	Not significant		[91]
$\mathbf{R}_{2} = \mathbf{R}_{3} = \mathbf{R}_{4} = \mathbf{H}$						HeLa ^r	14.7 µM	0.426 µM	
$R_1 = \frac{1}{2} - 0 - 0 - 0 - 0$ $R_2^{-1} = R_3^{-1} = R_4^{-1} = H$	Ľ				0.49	A2780 ^s	31 µМ	0.211 µМ	[92]
HO	UZ	OSIMU	060		MeOH	A2780 / CP70t	69.5 µM	1.2 µМ	
						MRC-5 ^u	48.1 µМ	1.11 µМ	

Table 2. Continued.

Group	Metal	Solvent	λ _{abs} (nm)	Φ	Φ_{Λ}	Cell type	Dark toxicity	Light IC ₅₀	Ref.
$R_2 = R_3 = R_4 = H$						HeLa ^r	5.2 µМ	Мц 600.0	
$R_1 = \underbrace{\begin{array}{c} \begin{array}{c} \bullet \\ \bullet \end{array}}_{R_2} = R_4 = H \end{array}$					-	A2780 ^s	44 µM	0.018 µМ	
	Zn	DMSO	694	ı	0.84 MeOH	A2780/CP70t	117.5 µM	0.157 µM	[92]
$R_{l}' = \frac{1}{2} O \frac{1}{\sqrt{2}} H = 0$						MRC-5 ^u	12.8 µM	Мц 910.0	
PI 6F10: Murine melanoma cancer cell MDA-MB-231 and MCF-7: Human breast canc A125 and A431: Lung cancer cell dta 67 and A430. Colon concer cell	cer cell								

^eA125 and A431: Lung cancer cell
 ^eA125 and BPH-1: Prostate cancer cell
 ^eDU145 and BPH-1: Prostate cancer cell
 ^fCT26: Colon carcinoma cell
 ^eHO-8910: Human ovarian cancer cell
 ^hHep2: Human acrinoma cell
 ^hHep2: Human carcinoma cell
 ^hFepG2: Human nepatocarcinoma cell
 ^hMCF-7: Breast cancer cell
 ^hMCF-7: Breast cancer cell
 ^mA549: Human lung adenocarcinoma cell
 ^mA549: Human lung adenocarcinoma cell
 ^mA549: Human lung adenocarcinoma cell
 ^mA545; FaDu: Head and neck cancer cell
 ^mA253, FaDu: Head and neck cancer cell
 ^mA253, FaDu: Head and neck cancer cell
 ^mA253, FaDu: Head and neck cancer cell
 ^mA2780: Cisplatin-sensitive human ovarian endometrioid adenocarcinoma cell
 ^MA2780/CP70: Cisplatin-resistant ovarian endometrioid adenocarcinoma cell
 ^mA2780/CP70: Cisplatin-resistant ovarian endometrioid adenocarcinoma cell

Ľ,

ะั

ډ

Group	Metal	Solvent	λ _{abs} (nm)	$\Phi_{ m F}$	Φ_{Δ}	In vitro and in vivo assays	Ref.
$R_1 = R_4 = OC_6 H_{13}$	H_2					HeLa cells	
	Zn	H_2O	730	ı	ı	Low cytotoxicity 4T1 tumor bearing BALB/c mice	[93]
$N_2 - N_3 - 8 - 9$	Cu				32.3%	mammary carcinoma model	
$R_2 = R_3 = R_4 = \mathbf{H}$ $R_1 = \mathbf{E} \mathbf{V} \mathbf{V} \mathbf{S} \mathbf{O}_3 \mathbf{N} \mathbf{a}$	Zn	DMF	712	1	Generate ROS	HepG2 No significant dark toxicity IC ₅₀ = 11 μM H22 tumor-bearing mice	[94]
$R_1 = R_2 = R_3 = R_4 = \mathbf{H}$ $X_1 = X_2 = \underbrace{ \underbrace{ X_1 = X_2 = \underbrace{ \underbrace{ X_2 = X_2 = \underbrace{ X_2 = X$	Si	DMF	680	0.31	0.14	HepG2 Noncytotoxic $IC_{50} = 0.023 \mu M$ Mice bearing H22 murine hepatocellular tumor	[95]

Group	Metal	Solvent	λ _{abs} (nm)	$\Phi_{\rm F}$	Φ_{Λ}	In vitro and in vivo assays	Ref.
$\begin{split} R_1 &= R_4 = F \\ R_2 &= R_3 = \clubsuit - Glycosyl \end{split}$	Zn	PBS	711, 671	0.003	0.41 (D2O)	MDA-MB-231 and MCF-7 Not toxic in dark IC ₅₀ > 100 μM Mice with head and neck squamous carcinoma cells	[96]
$R_{1} = R_{3} = R_{4} = H$ $R_{2} = \underbrace{\underbrace{}_{s} 0^{*} 0^{*}}_{R_{1}^{*}} = H$ $R_{1}^{*} = R_{3}^{*} = R_{4}^{*} = H$ $R_{2}^{*} = \underbrace{\underbrace{}_{s} 0^{*} 0^{*}}_{H_{1}^{*}} \underbrace{\underbrace{}_{s} 0^{*} 0^{*}}_{H_{1}^{*}} \underbrace{_{s} 0^{*}}_{H_{1}^{*}} \underbrace{_{s} 0^{*} 0^{*}}_{H_{1}^{*}} \underbrace{_{s} 0^{*} 0^{*}}_{H_{1}^{*}} \underbrace{_{s} 0^{*} 0^{*}}_{H_{1}^{*}} \underbrace{_{s} 0^{*} 0^{*}}_{H_{1}^{*}} \underbrace{_{s} 0^{*}} \underbrace{_{s} 0^{*}}_{H_{1}^{*}} \underbrace{_{s} 0^{*}}_{H_{1}^{*}} \underbrace{_{s} 0^{*}} \underbrace{_{s} 0^{*}} \underbrace{_{s} 0^{*}} \underbrace{_{s} 0^{*}} \underbrace{_{s} 0^{*}} \underbrace$	Zn	DMSO	681		0.56	A431 IC ₅₀ = 380 nmol/L A549 IC ₅₀ = 380 nmol/L M549 IC ₅₀ = 220 nmol/L MCF-7 IC ₅₀ = 240 nmol/L PC-3 IC ₅₀ = 280 nmol/L Noncytotoxic in the dark Human A431 tumor bearing BALB/c nude mice	[26]
$R_{1} = R_{3} = R_{4} = H$ $R_{2} = \underbrace{_{s} - _{s}	Zn	DMSO	681		0.60	A431 ICs ₀ = 240 nmol/L A549 ICs ₀ = 740 nmol/L MCF-7 ICs ₀ = 130 nmol/L PC-3 ICs ₀ = 330 nmol/L Noncytotoxic in the dark Human A431 tumor bearing BALB/c nude mice	[26]

Table 3. Continued.

ntinued.	
Col	
Э.	
Table	

Group	Metal	Solvent	λ _{abs} (nm)	$\Phi_{\rm F}$	Φ_{Δ}	In vitro and in vivo assays	Ref.
$R_{1} = R_{3} = R_{4} = H$ $R_{2} = \frac{1}{5} - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - $	Zn	DMSO	680	I	0.54	A431 ICs $_{0}$ = 220 mmol/L A549 ICs $_{0}$ = 170 mmol/L MCF-7 ICs $_{0}$ = 520 mmol/L PC-3 ICs $_{0}$ = 650 mmol/L Noncytotoxic in the dark Human A431 tumor bearing BALB/c nude mice	[97]
$R_{1} = R_{3} = R_{4} = H$ $R_{2} = \oint_{i} - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - $	Zn	DMSO	680	ı	0.49	A431 IC ₅₀ = 190 nmol / L A549 IC ₅₀ = 320 nmol / L MCF-7 IC ₅₀ = 230 nmol / L PC-3 IC ₅₀ = 440 nmol / L Noncytotoxic in the dark Human A431 tumor bearing BALB/c nude mice	[97]
$R_1 = R_2 = R_3 = R_4 = \mathbf{H}$ $X_1 = X_2 = \frac{1}{5} - \underbrace{\left(\sum_{k=1}^{n} \frac{1}{\sqrt{2}} + \int_{0}^{1} \frac{1}{\sqrt{2}} + \int_{0}^{$	Si	DMF	675	0.35	0.42	HeLa Almost noncytotoxic 123 nM Tumor-bearing mice	[98]

and dioleoylphosphatidylserine (DOPS) is used for the treatment of upper aerodigestive tract carcinoma. Another disulphonic-di-phthalimidomethyl zinc phthalocyanine-based Cremophor EL formulation was tested for skin or esophageal cancer treatment. Silicone-based phthalocyanine formulations that dissolve in propylene glycol or Cremophor EL with ethanol and reach clinical tests for various skin diseases and cancers have also been developed [62]. Researchers proceed to study the development of water-soluble phthalocyanine compounds with photosensitizing properties superior to commercial compounds.

In vitro and in vivo studies of ionic and nonionic phthalocyanine compounds containing different groups on varied cell lines are given in Tables 2 and 3, respectively. The effects of groups on the phthalocyanine ring can be examined by looking at these tables.

6. Conclusion

PDT is a successful treatment modality that allows the destruction of cancerous and malignant tumors, resulting in selective photodynamic destruction. Since PDT compounds are activated by light of a specific wavelength that corresponds to the absorption band with the lowest energy, they are commonly referred to as photosensitizers. These photosensitizers produce cytotoxic substances known as reactive oxygen species, which destroy various intracellular structures and biologically important macromolecules, ultimately causing the death of cancerous tissue. Many photosensitizers, particularly those used on people, have low water solubility due to their tendency to aggregate. In PDT, photosensitizers become inactive due to accumulation and limited water solubility, greatly reducing their ability to perform in vivo. Therefore, it is very important to synthesize water-soluble phthalocyanine compounds, which have ideal photosensitizers in PDT applications. The water solubility of the phthalocyanine compounds increases their usability in various biological, medical, or environmental applications. Therefore, within the scope of this review, the results obtained from photophysical, photochemical, in vitro, and in vivo studies of water-soluble phthalocyanine compounds synthesized in the last five years are given in tables. Since the synthesis of water-soluble photosensitizers is of great importance in PDT applications, further studies should focus on the development of better photosensitizers. This review will have positive contributions to future studies on phthalocyanine chemistry and their PDT applications as well as photochemistry.

References

- [1] Karges J. Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angewandte Chemie International Edition 2022; 61: e202112236. https://doi.org/10.1002/anie.202112236
- [2] Ahmetali E, Yıldız B, Ahi EE, Durmuş M, Şener MK. Synthesis, photophysical and photochemical properties of unsymmetrical zinc (II) phthalocyanines bearing 8-hydroxyquinoline unit. Polyhedron 2022; 226: 116111. https://doi.org/10.1016/j.poly.2022.116111
- [3] Mantareva V, Iliev I, Sulikovska I, Durmuş M, Angelov I. Cobalamin (Vitamin B12) in Anticancer Photodynamic Therapy with Zn (II) Phthalocyanines. International Journal of Molecular Sciences 2023; 24: 4400. https://doi.org/10.3390/ijms24054400
- [4] An J, Tang S, Hong G, Chen W, Chen M et al. An unexpected strategy to alleviate hypoxia limitation of photodynamic therapy by biotinylation of photosensitizers. Nature Communications 2022; 13: 2225. https://doi.org/10.1038/s41467-022-29862-9
- [5] Barut B, Yalçın CÖ, Altun Y, Akkaya D, Barut EN et al. Evaluation of PDT effects of novel Zn (II) phthalocyanine through a possible interaction with TLR signaling pathway. Applied Organometallic Chemistry 2023; 37: e7039. https://doi.org/10.1002/aoc.7039
- [6] Kulu I, Mantareva V, Kussovski V, Angelov I, Durmuş M. Effects of metal ion in cationic Pd (II) and Ni (II) phthalocyanines on physicochemical and photodynamic inactivation properties. Journal of Molecular Structure 2022; 1247: 131288. https://doi. org/10.1016/j.molstruc.2021.131288
- [7] Yalazan H, Barut B, Ertem B, Yalçın CÖ, Ünver Y et al. DNA interaction and anticancer properties of new peripheral phthalocyanines carrying tosylated 4-morpholinoaniline units. Polyhedron 2020; 177: 114319. https://doi.org/10.1016/j.poly.2019.114319
- [8] Hamblin MR. Upconversion in photodynamic therapy: plumbing the depths. Dalton Transactions 2018; 47: 8571-8580. https://doi. org/10.1039/c8dt00087e
- [9] He Z, Xu Q, Newland B, Foley R, Lara-Sáez I et al. Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. Journal of Materials Chemistry B 2021; 9: 6326-6346. https://doi. org/10.1039/d1tb00728a
- [10] Öztürk D, Ömeroğlu İ, Durmuş M. Quantum dots in photodynamic therapy. In: Nanomaterials for Photodynamic Therapy, Elsevier, 2023, pp. 401-439.

- [11] Rennie CC, Edkins RM. Targeted cancer phototherapy using phthalocyanine-anticancer drug conjugates. Dalton Transactions 2022; 51: 13157-13175. https://doi.org/10.1039/d2dt02040h
- [12] Zhang Y, Cai X, Bian Y, Jiang J. Organic Semiconductors of Phthalocyanine Compounds for Field Effect Transistors (FETs). In: Functional Phthalocyanine Molecular Materials, Springer, 2010, pp. 275-321.
- [13] Eu S, Katoh T, Umeyama T, Matano Y, Imahori H. Synthesis of sterically hindered phthalocyanines and their applications to dyesensitized solar cells. Dalton Transactions 2008; 40: 5476-5483. https://doi.org/10.1039/b803272f
- [14] Mortimer RJ, Dyer AL, Reynolds JR. Electrochromic organic and polymeric materials for display applications. Displays 2006; 27: 2-18. https://doi.org/10.1016/j.displa.2005.03.003
- [15] Hietschold M, Lackinger M, Griessl S, Heckl WM, Gopakumar TG et al. Molecular structures on crystalline metallic surfaces From STM images to molecular electronics. Microelectronic Engineering 2005; 82, 207-214. https://doi.org/10.1016/j.mee.2005.07.087
- [16] Kong S, Wang X, Bai L, Song Y, Meng F. Multi-arm ionic liquid crystals formed by pyridine-mesophase and copper phthalocyanine. Journal of Molecular Liquids 2019; 288: 111012. https://doi.org/10.1016/j.molliq.2019.111012
- [17] Aziz T, Sun Y, Wu ZH, Haider M, Qu TY et al. A flexible nickel phthalocyanine resistive random access memory with multi-level data storage capability. Journal of Materials Science & Technology 2021; 86: 151-157. https://doi.org/10.1016/j.jmst.2021.02.008
- [18] Reda SM. Stability and photodegradation of phthalocyanines and hematoporphyrin doped PMMA as solar concentrators. Solar Energy 2007; 81: 755-760. https://doi.org/10.1016/j.solener.2006.10.004
- [19] Öztürk ZZ, Kılınç N, Atilla D, Gürek AG, Ahsen V. Recent studies chemical sensors based on phthalocyanines. Journal of Porphyrins and Phthalocyanines 2009; 13: 1179-1187. https://doi.org/10.1142/S1088424609001522
- [20] Wöhrle D, Suvorova O, Gerdes R, Bartels O, Lapok L et al. Efficient oxidations and photooxidations with molecular oxygen using metal phthalocyanines as catalysts and photocatalysts. Journal of Porphyrins and Phthalocyanines 2004; 08: 1020-1041. https://doi. org/10.1142/s1088424604000398
- [21] Göksel M, Durmuş M, Biyiklioglu Z. Synthesis and photodynamic activities of novel silicon (IV) phthalocyanines axially substituted with water soluble groups against HeLa cancer cell line. Dalton Transactions 2021; 50: 2570-2584. https://doi.org/10.1039/ d0dt03858j
- [22] Dilber G, Nas A, Pişkin M, Durmuş M. Asymmetrically tetra-substituted phthalocyanine derivatives: synthesis, photophysical and photochemical properties. Transition Metal Chemistry 2022; 47: 157-168. https://doi.org/10.1007/s11243-022-00499-3
- [23] Kantekin H, Yalazan H, Barut B, Güngör Ö, Ünlüer D et al. Dual-purpose both peripheral and non-peripheral triazole substituted ZnII, MgII and PbII phthalocyanines: Synthesis, characterization, photophysicochemical and acetylcholinesterase inhibitory properties. Polyhedron 2021; 208: 115416. https://doi.org/10.1016/j.poly.2021.115416
- [24] Demirbaş Ü, Öztürk D, Akçay HT, Durmuş M, Menteşe E et al. Metallo-phthalocyanines containing triazole substituents: Synthesis, spectroscopic and photophysicochemical properties. Journal of Coordination Chemistry 2022; 75: 629-636. https://doi.org/10.1080/00958972.2022.2070487
- [25] Demirbaş Ü, Yanık H, Akçay HT, Durmuş M, Bekircan O et al. Synthesis, characterization, photophysical and photochemical properties of peripherally tetra-1, 2, 4-triazol-3-ylthio substituted metal-free phthalocyanine and its zinc (II) and lead (II) derivatives. Journal of Coordination Chemistry 2022; 75: 448-456. https://doi.org/10.1080/00958972.2022.2053846
- [26] Değirmencioğlu İ, İren K, Yalçin İ, Göl C, Durmuş M. Synthesis of axially disubstituted silicon (IV) phthalocyanines and investigation of their photophysical and photochemical properties. Journal of Molecular Structure 2022; 1249: 131599. https://doi.org/10.1016/j.molstruc.2021.131599
- [27] Sen P, Managa M, Nyokong T. New type of metal-free and Zinc (II), In (III), Ga (III) phthalocyanines carrying biologically active substituents: Synthesis and photophysicochemical properties and photodynamic therapy activity. Inorganica Chimica Acta 2019; 491: 1-8. https://doi. org/10.1016/j.ica.2019.03.010
- [28] Santos KLM, Barros RM, da Silva Lima DP, Nunes AMA, Sato MR et al. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: a mini-review. Photodiagnosis and Photodynamic Therapy 2020; 32: 102032. https://doi.org/10.1016/j. pdpdt.2020.102032
- [29] Openda YI, Sen P, Managa M, Nyokong T. Acetophenone substituted phthalocyanines and their graphene quantum dots conjugates as photosensitizers for photodynamic antimicrobial chemotherapy against Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy 2020; 29: 101607. https://doi.org/10.1016/j.pdpdt.2019.101607
- [30] Makhseed S, Machacek M, Alfadly W, Tuhl A, Vinodh M et al. Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chemical Communications 2013; 49: 11149-11151. https://doi.org/10.1039/C3CC44609C
- [31] Hameed S, Bhattarai P, Gong Z, Liang X, Yue X et al. Ultrasmall porphyrin-silica core-shell dots for enhanced fluorescence imaging-guided cancer photodynamic therapy. Nanoscale Advances 2023; 5: 277-289. https://doi.org/10.1039/D2NA00704E
- [32] Günsel A, Taslimi P, Atmaca GY, Bilgicli AT, Pişkin H et al. Novel potential metabolic enzymes inhibitor, photosensitizer and antibacterial agents based on water-soluble phthalocyanine bearing imidazole derivative. Journal of Molecular Structure 2021; 1237: 130402. https://doi.org/10.1016/j. molstruc.2021.130402

- [33] Güzel E, Koca A, Koçak MB. Anionic water-soluble sulfonated phthalocyanines: microwave-assisted synthesis, aggregation behaviours, electrochemical and in-situ spectroelectrochemical characterisation. Supramolecular Chemistry 2014; 29: 536-546. https://doi.org/10.1080/10610 278.2017.1288232
- [34] Yenilmez HY, Farajzadeh N, Güler Kuşçulu N, Bahar D, Özdemir S et al. Effect of axial ligand length on biological and anticancer properties of axially disubstituted silicon phthalocyanines. Chemistry & Biodiversity 2023; 20: e202201167. https://doi.org/10.1002/cbdv.202201167
- [35] Dumoulin F, Durmuş M, Ahsen V, Nyokong T. Synthetic pathways to water-soluble phthalocyanines and close analogs. Coordination Chemistry Reviews 2010; 254: 2792-2847. https://doi.org/10.1016/j.ccr.2010.05.002
- [36] Demir S, Yuksel F. Novel highly water soluble zinc (II) phthalocyanines: Synthesis, photochemistry and DNA binding behaviours. Inorganica Chimica Acta 2023; 548: 121373. https://doi.org/10.1016/j.ica.2022.121373
- [37] Kollar J, Machacek M, Halaskova M, Lenco J, Kucera R et al. Cationic versus anionic phthalocyanines for photodynamic therapy: What a difference the charge makes. Journal of Medicinal Chemistry 2020; 63: 7616-7632. https://doi.org/10.1021/acs.jmedchem.0c00481
- [38] Halaskova M, Rahali A, Almeida-Marrero V, Machacek M, Kucera R et al. Peripherally Crowded Cationic Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy. ACS Medicinal Chemistry Letters 2021; 12: 502-507. https://doi.org/10.1021/acsmedchemlett.1c00045
- [39] Atmaca GY, Aksel M, Bilgin MD, Erdoğmuş A. Comparison of sonodynamic, photodynamic and sonophotodynamic therapy activity of fluorinated pyridine substituted silicon phthalocyanines on PC3 prostate cancer cell line Photodiagnosis and Photodynamic Therapy 2023; 42: 103339. https:// doi.org/10.1016/j.pdpdt.2023.103339
- [40] Göl C, Durmuş M. Investigation of photophysical, photochemical and bovine serum albumin binding properties of novel water-soluble zwitterionic zinc phthalocyanine complexes. Synthetic Metals 2012; 162: 605-613. https://doi.org/10.1016/j.synthmet.2012.02.017
- [41] Tuncel S, Dumoulin F, Gailer J, Sooriyaarachchi M, Atilla D et al. A set of highly water-soluble tetraethyleneglycol-substituted Zn (II) phthalocyanines: synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro phototoxicity. Dalton Transactions 2011; 40: 4067-4079. https://doi.org/10.1039/C0DT01260B
- [42] Dincer H, Mert H, Çalışkan E, Atmaca GY, Erdoğmuş A. Synthesis and photophysicochemical studies of poly (ethylene glycol) conjugated symmetrical and asymmetrical zinc phthalocyanines. Journal of Molecular Structure 2015; 1102: 190-196. https://doi.org/10.1016/j. molstruc.2015.08.067
- [43] Jia X, Yang FF, Li J, Liu JY, Xue JP. Synthesis and in vitro photodynamic activity of oligomeric ethylene glycol-quinoline substituted zinc (II) phthalocyanine derivatives. Journal of Medicinal Chemistry 2013; 56: 5797-5805. https://doi.org/10.1021/jm400722d
- [44] Tekdaş DA, Kumru U, Gürek AG, Durmuş M, Ahsen V et al. Towards near-infrared photosensitisation: a photosensitising hydrophilic nonperipherally octasulfanyl-substituted Zn phthalocyanine. Tetrahedron Letters 2012; 53: 5227-5230. https://doi.org/10.1016/j.tetlet.2012.07.062
- [45] Zorlu Y, Dumoulin F, Bouchu D, Ahsen V, Lafont D. Monoglycoconjugated water-soluble phthalocyanines. Design and synthesis of potential selectively targeting PDT photosensitisers. Tetrahedron Letters 2010; 51: 6615-6618. https://doi.org/10.1016/j.tetlet.2010.10.044
- [46] Lafont D, Zorlu Y, Savoie H, Albrieux F, Ahsen V et al. Monoglycoconjugated phthalocyanines: Effect of sugar and linkage on photodynamic activity. Photodiagnosis and Photodynamic Therapy 2013; 10: 252-259. https://doi.org/10.1016/j.pdpdt.2012.11.009
- [47] Bächle F, Hanack M, Ziegler T. Synthesis and spectroscopic evaluation of two novel glycosylated zinc (II)-phthalocyanines. Molecules 2015; 20: 18367-18386. https://doi.org/10.3390/molecules201018367
- [48] Özdemir M, Karapınar B, Yalçın B, Salan Ü, Durmuş M et al. Synthesis and characterization of novel 7-oxy-3-ethyl-6-hexyl-4-methylcoumarin substituted metallo phthalocyanines and investigation of their photophysical and photochemical properties. Dalton Transactions 2019; 48: 13046-13056. https://doi.org/10.1039/c9dt02687h
- [49] Yalazan H, Kantekin H, Durmuş M. Peripherally, non-peripherally and axially pyrazoline-fused phthalocyanines: synthesis, aggregation behaviour, fluorescence, singlet oxygen generation, and photodegradation studies. New Journal of Chemistry 2023; 47: 7849-7861. https:// doi.org/10.1039/d3nj00355h
- [50] Demirbaş Ü, Ömeroğlu İ, Akçay HT, Durmuş M, Kantekin H. Synthesis, characterization, photophysical and photochemical properties of peripherally tetra benzodioxane substituted metal-free phthalocyanine and its zinc (II) and magnesium (II) derivatives. Journal of Molecular Structure 2021; 1223: 128992. https://doi.org/10.1016/j.molstruc.2020.128992
- [51] Kempa M, Kozub P, Kimball J, Rojkiewicz M, Kuś P et al. Physicochemical properties of potential porphyrin photosensitizers for photodynamic therapy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015; 146: 249-254. https://doi.org/10.1016/j.saa.2015.03.076
- [52] Moeno S, Antunes E, Khene S, Litwinski C, Nyokong T. The effect of substituents on the photoinduced energy transfer between CdTe quantum dots and mercapto substituted zinc phthalocyanine derivatives. Dalton Transactions 2010; 39: 460-3471. https://doi.org/10.1039/ B926535J
- [53] Durmuş M. Photochemical and photophysical characterization. In: Nyokong T, Ahsen V (editors) Photosensitizers in medicine, environment, and security, Springer, 2011, pp. 135-266

- [54] Chauke V, Durmuş M, Nyokong T. Photochemistry, photophysics and nonlinear optical parameters of phenoxy and tert-butylphenoxy substituted indium(III) phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry 2007; 192: 179-187. https://doi. org/10.1016/j.jphotochem.2007.05.022
- [55] Ertem B, Yalazan H, Güngör Ö, Sarkı G, Durmuş M et al. Synthesis, structural characterization, and investigation on photophysical and photochemical features of new metallophthalocyanines. Journal of Luminescence 2018; 204: 464-471. https://doi.org/10.1016/j. jlumin.2018.08.043
- [56] Köksoy B, Kaya EN, Hacıvelioğlu F, Yeşilot S, Durmuş M. Effect of iodine substitution pattern on the singlet oxygen generation and solvent depended keto-enol tautomerization behavior of BODIPY photosensitizers. Dyes and Pigments 2017; 140: 384-391. https://doi.org/10.1016/j. dyepig.2017.01.067
- [57] Can OS, Kuş A, Kaya EN, Durmuş M, Bulut M. Synthesis and characterization of 6, 8-di-tert-butyl-3-[p-(propynyl) phenoxy] coumarin substituted phthalocyanines and investigation of their photophysical and photochemical properties. Inorganica Chimica Acta 2017; 465: 31-37. https://doi.org/10.1016/j.ica.2017.05.031
- [58] Boyar CY, Çamur M. Novel water soluble 7-oxy-4-(pyridine-3-yl) coumarin substituted phthalocyanines as potential photosensitizers for photodynamic therapy. Inorganica Chimica Acta 2019; 494: 30-41. https://doi.org/10.1016/j.ica.2019.05.004
- [59] Galstyan A, Dobrindt U. Breaching the wall: morphological control of efficacy of phthalocyanine-based photoantimicrobials. Journal of Materials Chemistry B 2018; 6: 4630-4637. https://doi.org/10.1039/c8tb01357h
- [60] Sen P, Sindelo A, Mafukidze DM, Nyokong T. Synthesis and photophysicochemical properties of novel axially di-substituted silicon (IV) phthalocyanines and their photodynamic antimicrobial chemotherapy (PACT) activity against Staphylococcus aureus. Synthetic Metals 2019; 258: 116203. https://doi.org/10.1016/j.synthmet.2019.116203
- [61] Batibay GS, Karaoglan GK, Kose GG, Kazancioglu EO, Metin E et al. DNA groove binder and significant cytotoxic activity on human colon cancer cells: Potential of a dimeric zinc (II) phthalocyanine derivative. Biophysical Chemistry 2023; 295: 106974. https://doi.org/10.1016/j. bpc.2023.106974
- [62] Zhang Y. Lovell JF. Recent applications of phthalocyanines and naphthalocyanines for imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine Nanobiotechnology 2017; 9: e1420. https://doi.org/10.1002/wnan.1420
- [63] Khezami K, Harmandar K, Bağda E, Bağda E, Şahin G et al. BSA/DNA binding behavior and the photophysicochemical properties of novel water soluble zinc (II) phthalocyanines directly substituted with piperazine groups. JBIC Journal of Biological Inorganic Chemistry 2021; 26: 455-465. https://doi.org/10.1007/s00775-021-01868-6
- [64] Rahali A, Shaukat A, Almeida-Marrero V, Jamoussi B, de la Escosura A et al. A Janus-Type Phthalocyanine for the Assembly of Photoactive DNA Origami Coatings. Bioconjugate Chemistry 2021; 32: 1123-1129. https://doi.org/10.1021/acs.bioconjchem.1c00176
- [65] Al-Raqa SY, Khezami K, Kaya EN, Kocak A, Durmuş M. Experimental and theoretical investigation of water-soluble silicon (IV) phthalocyanine and its interaction with bovine serum albumin. Journal of Biological Inorganic Chemistry 2021; 26: 235-247. https://doi. org/10.1007/s00775-021-01848-w
- [66] Strokov K, Galstyan A. Chitosan-Silicon Phthalocyanine Conjugate as Effective Photo-Functional Hydrogel for Tracking and Killing of Bacteria. European Journal of Organic Chemistry 2020; 2020: 7327-7332. https://doi.org/10.1002/ejoc.202001363
- [67] Ghazal B, Ewies EF, Youssef AS, Makhseed S. Photo-physicochemical properties of water-soluble non-aggregated indium (III) phthalocyanines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020; 234: 118244. https://doi.org/10.1016/j. saa.2020.118244
- [68] Mafukidze DM, Nyokong T. Photodynamic antimicrobial chemotherapy of a dimethylamino-functionalized asymmetric zinc (II) phthalocyanine and its quaternized derivative against Staphylococcus aureus when supported on asymmetric polystyrene polymer membranes. Reactive and Functional Polymers 2020; 154: 104634. https://doi.org/10.1016/j.reactfunctpolym.2020.104634
- [69] Kutlu ÖD, Avcil D, Erdoğmuş A. New water-soluble cationic indium (III) phthalocyanine bearing thioquinoline moiety; Synthesis, photophysical and photochemical studies with high singlet oxygen yield. Main Group Chemistry 2019; 18: 139-151. https://doi. org/10.3233/MGC-180720
- [70] Grüner MC, Niemann S, Faust A, Strassert CA. Photobiology, Axially decorated SiIV-phthalocyanines bearing mannose-or ammoniumconjugated siloxanes: comparative bacterial labeling and photodynamic inactivation, Photochemistry and Photobiology 2018; 94: 890-899. https://doi.org/10.1111/php.12881
- [71] Pinto SM, Almeida SF, Tome VA, Prata AD, Calvete MJ et al. Water soluble near infrared dyes based on PEGylated-Tetrapyrrolic macrocycles. Dyes and Pigments 2021; 195: 109677. https://doi.org/10.1016/j.dyepig.2021.109677
- [72] Dilber G, Durmuş M, Kantekin H. Non-aggregated zwitterionic Zinc (II) phthalocyanine complexes in water with high singlet oxygen quantum yield. Dyes and Pigments 2019; 160: 267-284. https://doi.org/10.1016/j.dyepig.2018.08.019
- [73] Ghazal B, Kaya EN, Husain A, Ganesan A, Durmuş M et al. Biotinylated-cationic zinc (II) phthalocyanine towards photodynamic therapy. Journal of Porphyrins and Phthalocyanines 2019; 23: 46-55. https://doi.org/10.1142/S1088424618501158

- [74] Tang FX, Li HC, Ren XD, Sun Y, Xie W et al. Preparation and antifungal properties of monosubstituted zinc (Π) phthalocyaninechitosan oligosaccharide conjugates and their quaternized derivatives Dyes and Pigments 2018; 159: 439-448. https://doi.org/10.1016/j. dyepig.2018.07.004
- [75] Baigorria E, Milanesio ME, Durantini EN. Synthesis, spectroscopic properties and photodynamic activity of Zn (II) phthalocyaninepolymer conjugates as antimicrobial agents. European Polymer Journal 2020; 134: 109816. https://doi.org/10.1016/j.eurpolymj.2020.109816
- [76] Baygu Y, Gök Y. Synthesis and characterization of new partially-aggregated water-soluble polyether-triazole linked zinc (II) phthalocyanines as photosensitizers for PDT studies. Synthetic Metals 2020; 260: 116256. https://doi.org/10.1016/j.synthmet.2019.116256
- [77] Lioret V, Saou S, Berrou A, Lernerman L, Arnould C et al. Water soluble octa-imidazolium zinc phthalocyanine for nucleus/nucleolus cell fluorescence microscopy and photodynamic therapy. Photochemical & Photobiological Sciences 2022; 22: 1-7. https://doi.org/10.1007/ s43630-022-00313-0
- [78] Ayaz F, Yetkin D, Yüzer A, Demircioğlu K, Ince M. Non-canonical anti-cancer, anti-metastatic, anti-angiogenic and immunomodulatory PDT potentials of water soluble phthalocyanine derivatives with imidazole groups and their intracellular mechanism of action. Photodiagnosis and Photodynamic Therapy 2022; 39: 103035. https://doi.org/10.1016/j.pdpdt.2022.103035
- [79] Abdulcelil Yüzer L, Kübra Demircioglu P, Derya Yetkin L, Ince M, Ayaz F. Beyond the Conventional Photodynamic Therapy by Water-Soluble Phthalocyanines. ChemistrySelect 2022; 7: e202202532. https://doi.org/10.1002/slct.202202532
- [80] Riega SDE, Valli F, Rodriguez HB, Marino J, Roguin LP et al. Chalcogen bearing tetrasubstituted zinc (II) phthalocyanines for CT26 colon carcinoma cells photodynamic therapy. Dyes and Pigments 2022; 201: 110110. https://doi.org/10.1016/j.dyepig.2022.110110
- [81] Chen K, Hou J, Huang B, Xiao S, Li X et al. Bromopropylate Imidazoliumyl Substituted Silicon Phthalocyanine for Mitochondria-Targeting, Two-Photon Imaging Guided in Vitro Photodynamic Therapy. Frontiers in Pharmacology 2022; 13: 921718. https://doi.org/10.3389/ fphar.2022.921718
- [82] Fujishiro R, Sonoyama H, Ide Y, Fujimura T, Sasai R et al. Synthesis, photodynamic activities, and cytotoxicity of new water-soluble cationic gallium (III) and zinc (II) phthalocyanines. Journal of Inorganic Biochemistry 2019, 192: 7-16. https://doi.org/10.1016/j. jinorgbio.2018.11.013
- [83] Sowa A, Höing A, Dobrindt U, Knauer SK, Galstyan A et al. Umbelliferone Decorated Water-soluble Zinc (II) Phthalocyanines-In Vitro Phototoxic Antimicrobial Anti-cancer Agents. Chemistry-A European Journal 2021; 27: 14672-14680. https://doi.org/10.1002/ chem.202102255
- [84] Atmaca GY, Aksel M, Keskin B, Bilgin MD, Erdoğmuş A. The photo-physicochemical properties and in vitro sonophotodynamic therapy activity of di-axially substituted silicon phthalocyanines on PC3 prostate cancer cell line. Dyes and Pigments 2021; 184: 108760. https:// doi.org/10.1016/j.dyepig.2020.108760
- [85] Magadla A, Babu B, Mack J, Nyokong T. Positively charged styryl pyridine substituted Zn (II) phthalocyanines for photodynamic therapy and photoantimicrobial chemotherapy: effect of the number of charges. Dalton Transactions 2021; 50: 9129-9136. https://doi.org/10.1039/ D1DT01047F
- [86] Oluwole DO, Sari FA, Prinsloo E, Dube E, Yuzer A et al. Photophysicochemical properties and photodynamic therapy activity of highly water-soluble Zn (II) phthalocyanines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018; 203: 236-243. https://doi.org/10.1016/j.saa.2018.05.090
- [87] Barut B, Yalçın CÖ, Demirbaş Ü, Akçay HT, Kantekin H et al. The novel Zn (II) phthalocyanines: Synthesis, characterization, photochemical, DNA interaction and cytotoxic / phototoxic properties. Journal of Molecular Structure 2020; 1218: 128502. https://doi.org/10.1016/j. molstruc.2020.128502
- [88] Reza Karimi A, Khodadadi A, Azadikhah F, Hadizadeh M. In Vitro Photodynamic Activities of Amphiphilic Phthalocyanine-Amino Appended β-Cyclodextrin Conjugates as Efficient Schiff Base Photosensitizer. ChemistrySelect 2023; 8: e202203378. https://doi. org/10.1002/slct.202203378
- [89] Akkoç B, Samsunlu T, Işık Ş, Özçeşmeci M, Atmaca GY et al. Pegylated metal-free and zinc (II) phthalocyanines: synthesis, photophysicochemical properties and in vitro photodynamic activities against head, neck and colon cancer cell lines. Dalton Transactions 2022; 51: 10136-10147. https://doi.org/10.1039/D2DT00704E
- [90] Aliosman M, Angelov I, Mitrev Y, Iliev I, Durmuş M et al. Novel Zn (II) phthalocyanine with tyrosine moieties for photodynamic therapy: Synthesis and comparative study of light-associated properties. Polyhedron 2019; 162: 121-128. https://doi.org/10.1016/j.poly.2019.01.029
- [91] Bispo M, Pereira PM, Setaro F, Rodríguez-Morgade MS, Fernandes R et al. A galactose dendritic silicon (IV) phthalocyanine as a photosensitizing agent in cancer photodynamic therapy. ChemPlusChem 2018; 83: 855-860. https://doi.org/10.1002/cplu.201800370
- [92] Klingler WW, Giger N, Schneider L, Babu V, König C et al. Low-Dose Near-Infrared Light-Activated Mitochondria-Targeting Photosensitizers for PDT Cancer Therapy. International Journal of Molecular Sciences 2022; 23; 9525. https://doi.org/10.3390/ ijms23179525

- [93] Li L, Yin X, Chen Z, Ma S, Zhao X et al. A novel water-soluble phthalocyanine-based organic molecule for the effective NIR triggered dual phototherapy of cancer. New Journal of Chemistry 2022; 46: 6353-6359. https://doi.org/10.1039/D1NJ06116J
- [94] Zhao YY, Chen JY, Hu JQ, Zhang L, Lin AL et al. The substituted zinc (II) phthalocyanines using "sulfur bridge" as the linkages. synthesis, red-shifted spectroscopic properties and structure-inherent targeted photodynamic activities. Dyes and Pigments 2021; 189: 109270. https://doi.org/10.1016/j.dyepig.2021.109270
- [95] Li D, Hu QY, Wang XZ, Li X, Hu JQ et al. A non-aggregated silicon (IV) phthalocyanine-lactose conjugate for photodynamic therapy. Bioorganic & Medicinal Chemistry Letters 2020; 30: 127164. https://doi.org/10.1016/j.bmcl.2020.127164
- [96] Singh S, Aggarwal A, Bhupathiraju NDK, Jovanovic IR, Landress M et al. Comparing a thioglycosylated chlorin and phthalocyanine as potential theranostic agents. Bioorganic & Medicinal Chemistry 2020; 28: 115259. https://doi.org/10.1016/j.bmc.2019.115259
- [97] Chen Q, Ma Y, Zhao J, Zhao M, Li W et al. In vitro and in vivo evaluation of improved EGFR targeting peptide-conjugated phthalocyanine photosensitizers for tumor photodynamic therapy. Chinese Chemical Letters 2018; 29: 1171-1178. https://doi.org/10.1016/j. cclet.2018.04.025
- [98] Li K, Dong W, Liu Q, Lv G, Xie M et al. A biotin receptor-targeted silicon (IV) phthalocyanine for in vivo tumor imaging and photodynamic therapy. Journal of Photochemistry Photobiology B: Biology 2019; 190: 1-7. https://doi.org/10.1016/j.jphotobiol.2018.09.001