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1. Introduction
Amines, organic derivatives of ammonia, are extensively found in bioactive molecules and medicines [1]. Amines are the key 
precursor in the manufacture of a number of relevant therapeutics medicines [2-4]. Conventionally, the most common meth-
ods for producing alkylated amines involve alkyl halides [5] or stoichiometric reducing agents, which are used for reduction 
of imines formed between carbonyls and amines [6,7]. The toxicity of the alkylating and reducing reagents and the generation 
of huge volumes of undesired byproducts are all significant disadvantages of these reactions. To address these difficulties, 
catalytic techniques have been devised including Buchwald–Hartwig amination [8], hydroamination [9,10], and hydroami-
nomethylation [11] as well as hydrogen borrowing or hydrogen autotransfer (HB/HA) methodologies [12].

In the HB/HA procedure, first dehydrogenation of the alcohol produces the equivalent aldehyde, which then undergoes re-
ductive amination to produce the required amine. Because the alcohol functions as the hydrogen donor, an additional hydrogen 
source is not required in this approach. Furthermore, because a variety of alcohol derivatives are easily available from renewable 
feedstocks, this technology is particularly well suited for the valorization of biomass or biomass-derived building blocks. The HB/
HA technique is the most attractive methodology for their synthesis [13-15]. These reactions are notable for being not only eco-
logically friendly, but also atom efficient, with only water as a byproduct. Grigg [16] and Watanabe [17] independently described 
the first examples of amine alkylation with alcohols via hydrogen borrowing while employing the homogeneous ruthenium cata-
lysts [(PPh3)4RhH] and [(PPh3)3RuCl2]. Since that time, several noble metal-based Ru [18-21], Pd [22-24], Ir [25-27], and Pt [28] 
complexes and nonnoble metal-based Mn [29] Co [30] Ni [31], and Fe [32] complexes have been used. Heterogeneous catalysts 
[33], biocatalysts [34,35], and chiral catalysts [36,37] have also been used. Importantly, many of the catalysts that have previously 
been described for this reaction require relatively high temperatures of 100 °C or greater and high catalytic loading [38-43], but 
some other complexes have comparative working conditions for this reaction [18,44].
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N-Heterocyclic carbene (NHC) ligands have become a common alternative to phosphine ligands in homogeneous 
catalysis over the last 30 years [45-48], especially in combination with ruthenium salts [44,49-52]. We recently described 
the synthesis of benzimidazolium salts (the precursors to benzimidazole-based NHC (BNHC) ligands) and their silver(I) 
complexes, which were determined to be active catalysts for carboxylation of epoxides to generate carbonates [53] and 
aldehyde–amine–alkyne coupling. The preparation and identification of new ruthenium(II) complexes having the general 
formula [(η6-p-cymene)(BNHC)RuCl2] (1a-g) are described in the present paper (Scheme 1). The hydrogen borrowing 
approach was used to test these complexes as catalysts for the N-alkylation of anilines and amine-substituted heterocycles 
with a variety of alcohols.

2. Experimental section
2.1. Materials and methods
All metal complex preparation methods and catalytic reactions were performed using normal Schlenk procedures. Re-
agents were bought from commercial sources and were not purified prior to use. The melting point of the produced 
compounds was determined using open capillary tubes in an Electrothermal 9200 melting point device. A PerkinElmer 
Spectrum 100 spectrometer with a range of 4000–400 cm–1 was utilized for FT-IR analysis. NMR spectra were obtained 
using a Bruker Ascend 400 Avance III HD, which operated at 400 MHz (1H) and 100 MHz (13C) using tetramethyl silane 
as an internal reference. NMR experiments were conducted in high-quality 5-mm Young NMR tubes. Chemical shifts (δ) 
and coupling constants (J) are expressed in parts per million (ppm) and hertz (Hz). 13C chemical shifts are given relative to 
deuterated solvents (=77.16 ppm for CDCl3). 1H NMR spectra are referenced to residual protonated solvents (=7.26 ppm 
for CDCl3). 
2.2. General synthetic methodologies used for the synthesis of benzimidazol-2-ylidene ruthenium complexes, 1a-g 
Complexes [(η6-p-cymene)(BNHC)RuCl2] were synthesized in a one-step process through transmetalation. Dimeric com-
plex of ruthenium [RuCl2(p-cymene)]2 (0.19 mmol) was added to Ag(I)–BNHC complexes (0.383 mmol) in situ without 
isolation and the mixture was stirred at 25 °C in dichloromethane (DCM) for 48 h. Orange–brown complexes 1a, 1b, 1c, 
1d, 1e, 1f, and 1g of ruthenium carbene were isolated in good yields of 42.5%–80%. Data regarding the 1H and 13C NMR 
spectra are given in Tables 1 and 2.

1a. Yield: 63%; orange–brown solid: mp 172–174 °C. 
1b. Yield: 55%; orange–brown solid: mp 172–174 °C. 

1c. Yield: 67%; orange–brown solid: mp 180–182 °C. 

 

Scheme 1. Synthesis of ruthenium p-cymene BNHC complexes. 

 

Scheme 1. Synthesis of ruthenium p-cymene BNHC complexes.
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1d. Yield: 78%; orange–brown solid: mp 180–182 °C. 

1e. Yield: 48%; orange–brown solid: mp 298.5–298.7 °C. 
1f. Yield: 80%; light brown solid: mp 145–148 °C. 
1g. Yield: 42.5%; dark brown solid: mp 242–243 °C. 

2.2.1. X-ray crystallography
X-ray measurements were performed with a STOE IPDS II diffractometer at room temperature using graphite-mono-
chromated MoKα radiation by applying the w-scan method. Data collection and cell refinement were carried out using 
X-AREA, while data reduction was applied using X-RED32. The structure was solved by direct methods with SIR2019 
[54] and refined by means of the full-matrix least-squares calculations on F2 using SHELXL-2018 [55]. All H atoms were 
located in difference maps and then treated as riding atoms, fixing the bond lengths at 0.98, 0.93, 0.97, and 0.96 Å for 
methine CH, aromatic CH, CH2, and CH3 atoms, respectively. The displacement parameters of the H atoms were fixed at 
Uiso(H) = 1.2 Ueq (1.5 Ueq for CH3). Crystal data, data collection, and structure refinement details are given in Table 3. The 
molecular graphic was generated using OLEX2 [56].

 Table 2. Selected 13C NMR data for 1.

N

N

O

Ru

R

R'

R'

Cl

Cl

1a-g

1

2
3

4 5

6
7

8 9

10

11

12

13

14

15

16

Comp. 2 4 5,13,16 6 7 8 9 10 11 12 14 15

1a 190.3 -

138.7, 137.2, 135.6, 
135.5, 128.8, 128.3, 
126.7, 122.9, 112.0, 
109.3

52.7 40.3 98.9 21.5 18.5 21.7 30.7 55.5 20.6

1b 187.7 -
137.4, 135.9, 135.4, 
128.5, 111.5, 109.9, 
109.6

50.0 40.8 98.6 21.3 18.5 21.6 30.7 54.2 20.9

1c 187.5 -
135.9, 135.4, 131.9, 
131.5, 122.9, 122.8, 
111.8, 109.7, 109.5

50.8 40.8 98.5 21.2 18.6 23.2 30.7 54.2 20.9, 20.5, 
16.2

1d 187.5 -
135.9, 135.5, 135.2, 
128.9, 122.9, 122.6, 
112.0, 109.6, 109.5

51.4 40.8 98.5 21.1 18.6 21.1 30.8 54.4 17.2

1e 189.7 -

153.4, 137.3, 135.7, 
135.4, 132.4, 123.4, 
112.0, 110.4, 109.9, 
104.0

53.3 40.7 98.6 20.7 18.6 21.3 30.7 54.6 60.9, 56.1

1f 184.9 20.4, 
20.3

134.6, 134.1, 131.8, 
131.7, 109.8, 109.6, 
98.6

50.6 40.9 98.6 21.3 18.5 21.2 30.6 53.9 20.4, 20.3

1g 184.9 20.4, 
20.3

135.1, 134.6, 134.2, 
131.6, 131.6, 129.0, 
112.5, 109.8, 109.5

51.1 40.8 98.6 21.2 18.5 21.3 30.7 54.1 20.4, 20.3, 
17.2
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2.3. A general approach: N-alkylation of amines with alcohols 
At room temperature, compound 1e (1 mol %), KOtBu (75 mol %), alcohols (1 mmol), and amine (1 mmol) were added to 
a 15-mL reaction tube in a glove box. The tube was then closed and taken out of the glove box. The reaction mixture was 
then heated at 120 °C for 12 h with degassed toluene (3 mL). After cooling to room temperature, the reaction mixture was 
diluted with ethyl acetate, filtered, and vacuum dried. The product was purified using a suitable mixture of petroleum ether 
and ethyl acetate in column chromatography over silica gel (300–400 mesh) (80:1).
2.4. A general approach: aniline N-methylation with methanol
In a glove box, amine (1 mmol), MeOH (2 mL), 1e (1 mol %), and KOtBu were introduced into a 15-mL sealing tube (75 
mol %). The tube was then removed from the glove box and sealed with a screw cap. At 110 °C, the reaction mixture was 
agitated for 12 h. The liquid was diluted with ethyl acetate and filtered through a short pad of silica after cooling to room 
temperature (2 cm in a Pasteur pipette). Ethyl acetate was used to wash the silica. The crude residue was refined by column chromatog-
raphy (SiO2, petroleum ether:ethyl acetate = 80:1) after the filtrate had evaporated.

Table 3. Crystal data and structure refinement parameters for 1f and 1g.

Parameters 1f 1g
CCDC depository 2085163 2173756
Color/shape Dark red/prism Light brown/prism
Chemical formula [RuCl2(C10H14)(C25H32N2O)] [RuCl2(C10H14)(C26H34N2O)]
Formula weight 682.71 696.73
Temperature (K) 296(2) 296(2)
Wavelength (Å) 0.71073 Mo Kα 0.71073 Mo Kα
Crystal system Triclinic Orthorhombic
Space group P−1 (No. 2) Pbca (No. 61)
Unit cell parameters
  a, b, c (Å) 7.1553(5), 15.4318(12), 15.5762(12) 7.2829(2), 21.3438(5), 43.0193(13)
  α, β, γ (°) 86.525(6), 85.527(6), 77.055(6) 90, 90, 90
Volume (Å3) 1669.4(2) 6687.1(3)
Z 2 8
Dcalc. (g/cm3) 1.358 1.384
μ (mm−1) 0.659 0.659
Absorption correction Integration Integration
Tmin., Tmax. 0.7919, 0.9579 0.8533, 0.9667
F000 712 2912
Crystal size (mm3) 0.48 × 0.23 × 0.09 0.40 × 0.09 × 0.05
Diffractometer/measurement method STOE IPDS II/ω scan STOE IPDS II/ω scan
Index ranges −9 ≤ h ≤ 9, −20 ≤ k ≤ 20, −20 ≤ l ≤ 20 −8 ≤ h ≤ 8, −25 ≤ k ≤ 25, −52 ≤ l ≤ 52
θ range for data collection (°) 1.928 ≤ θ ≤ 27.676 1.894 ≤ θ ≤ 25.646
Reflections collected 26,948 48,873
Independent/observed reflections 7728/6314 6304/3620
Rint. 0.0768 0.0927
Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data/restraints/parameters 7728/0/380 6304/0/385
Goodness-of-fit on F2 0.999 0.906
Final R indices [I > 2σ(I)] R1 = 0.0362, wR2 = 0.0727 R1 = 0.0417, wR2 = 0.0708
R indices (all data) R1 = 0.0519, wR2 = 0.0768 R1 = 0.1006, wR2 = 0.0833
Δρmax., Δρmin. (e/Å3) 0.56, −0.34 0.37, −0.40
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3. Results and discussion
3.1. Preparation of ruthenium(II) complexes 
Starting with previously described benzimidazolium salts [53,57], the addition of Ag2O followed by [(p-cymene)RuCl2]2 in dry di-
chloromethane resulted in the formation of the corresponding [(η6-p-cymene)(RBNHCCH2OxMe)RuCl2] (1a–g) compounds 
after 48 h at ambient temperature (Scheme 1). A large band was observed in the FT-IR spectra of the free ligands in the 
1572–1556 cm–1 range, which corresponds to the vibration of the C=N bonds in ligands. In the ruthenium complex, these 
bands shifted to the 1461–1486 cm–1 range, which clearly indicated the shifting of double bond (C=N) character to single 
bond character υ(NCN). The 1H NMR spectra of these complexes revealed that the characteristic downfield NCHN signal of 
the salts had disappeared. The methine proton of the p-cymene group was located as a septet between 2.97 and 3.02 ppm 
for the respective complexes, while the methyl protons of the p-cymene appeared at 1.15–1.21 ppm. In the 13C NMR spec-
tra of complexes 1a–g, the carbene carbon attached to ruthenium gave characteristic signals in the range of 184.9–190.3 
ppm (see Tables 1 and 2 and Sup Inf). 
3.2. Structural analysis

The molecular structures of 1f and 1g with complete atom numbering are displayed in the Figure, while important bond 
distances and angles are listed in Tables 3 and 4. Both structures consist of a BNHC ligand coordinated to a ruthenium 
center, which also features a p-cymene and two chloride ligands in the coordination sphere. Compound 1f crystallizes in 
triclinic space group P−1 with two molecules in the unit cell, while 1g crystallizes in orthorhombic space group Pbca with 
eight molecules in the unit cell.

In the structures, the BNHC ligand is coordinated to Ru(II) in a monodentate manner via a neutral carbenic carbon, 
while the arene ring of p-cymene is coordinated to the metal ion in an η6-fashion. The complexes can be identified as 
characteristic three-legged piano stool complexes with a pseudooctahedral geometry that is common for ruthenium half-
sandwich arene complexes. Furthermore, the geometry around the metal atoms may be regarded as a tetrahedron with 
considerable trigonal distortion, if bonding to the p-cymene centroid is considered.

Defining Cg as the centroid of the arene ring, the Ru–Cg distance is 1.7098(11) Å in 1f and 1.7058(17) Å in 1g, while 
the Cl1–Ru1–Cg, Cl2–Ru1–Cg and C1–Ru1–Cg angles are 124.38(4), 127.60(4), and 123.23(7)° in 1f, and 122.90(7), 
126.94(7), and 124.93(12)° in 1g, respectively. The Cl1–Ru1–Cl2, Cl1–Ru1–C1 and Cl2–Ru1–C1 angles are smaller than 
the ideal tetrahedral angle (109.47°), which is compensated for by extension of the Cg–Ru–L (L is Cl1, Cl2, or C1) angles. 
The ruthenium atom is bound to the arene ring with a mean Ru–C bond distance of 2.21 Å in both complexes. The Ru1–C1 

 

 

Figure. Molecular structures of 1f (a) and 1g (b) drawn at the 30% probability level. H 

atoms have been omitted for clarity. 

 

Figure. Molecular structures of 1f (a) and 1g (b) drawn at the 30% probability level. H atoms have been 
omitted for clarity.
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bond distance is 2.074(2) Å in 1f and 2.096(4) Å in 1g, while the Ru–Cl bonds range from 2.4122(7) to 2.4307(11) Å. The 
structural data of the complexes are consistent with those of previously reported NHC-Ru(II)(p-cymene)Cl2 complexes 
[51,58–63].
3.3. Optimization of amine alkylation with alcohols
The ability of synthesized (BNHC)Ru complexes that might promote amine alkylation was then evaluated, as shown in 
Table 5. In the presence of potassium tert-butoxide, 1.0 mol % of ruthenium complex 1e, which features meta and para 
methoxy substitution, was fully benzylated 4-methoxy aniline (>99% conversion, entry) after 12 h at 120 °C to generate 
secondary amine product A. KOtBu was an efficient base for obtaining high yields. However, conversion was not possible 
when substituting weaker bases for KOtBu, such as K2CO3 and Na2CO3. KOtBu was required at 75 mol % to achieve satis-
factory conversion. Surprisingly, the reaction still reached 98% conversion at a lower temperature of 70 °C (Table 5, entry 
2). However, this trial did lead to the observation of imine product B (92:8 A:B ratio). 

Lowering the temperature even further to 50 °C still allowed 96% conversion with lower selectivity for product A 
(88:12, Table 5, entry 3). A more pronounced loss of selectivity was observed when the catalyst loading was lowered to 
0.5 mol % (65:35, Table 5, entry 4). Similarly, stopping a 70 °C reaction after 5 h revealed 98% conversion, but incomplete 
imine hydrogenation. Compounds 1f and 1g, featuring significant methyl substitution, were slightly less effective for this 
reaction (Table 5, entries 6 and 7). When the reaction was carried out in an open-air environment or in water, conversion 
was significantly reduced (Table 5, entries 8 and 9).
3.4. N-Alkylation on aniline with substituted primary alcohols
Encouraged by these findings, the scope of aniline N-alkylation under mild conditions (70 °C, 12 h) using 1e was explored. 
Table 6 illustrates that both electron-rich and electron-deficient benzylic alcohols worked well, yielding alkylated aniline 
derivatives 2a–j in 55%–94% isolated yield. Catalysis was compatible with several functional groups, including methoxy 
groups (2c and 2f), halides (2a and 2d), and trifluoromethyl groups (2i). Debromination was observed in the case of 
para-bromobenzyl alcohol, but the brominated product was extracted in a reasonable yield (Table 6, 55%). At 90 °C, the 
sterically hindered ortho-methyl benzylic alcohol and ortho-methoxy benzylic alcohol still allow monoalkylated amine 
products 2e and 2f in 90% and 87% yield, respectively. Products 2g and 2h were obtained in 65% and 71% yield when 
heterocyclic alcohols such as 2-furylmethanol and 2-thiophenemethanol were utilized as substrates. Using the aliphatic 
alcohol heptanol afforded aniline derivative 2j in 75% isolated yield (Table 6). The N-alkylation of anilines with second-
ary alcohols like 1-phenethyl alcohol, cyclohexanol, and isopropyl alcohol, on the other hand, was ineffective, generating 

Table 4. Selected geometric parameters for 1f and 1g.

Parameters 1f 1g Parameters 1f 1g

Bond lengths 
(Å)

Bond angles (°)

Ru1–Cg 1.7098(11) 1.7058(17) Cl1–Ru1–Cl2 84.35(3) 84.05(4)

Ru1–Cl1 2.4122(7) 2.4193(11) Cl1–Ru1–C1 95.53(7) 95.76(10)

Ru1–Cl2 2.4288(7) 2.4307(11) Cl1–Ru1–Cg 124.38(4) 122.90(7)

Ru1–C1 2.074(2) 2.096(4) Cl1–Ru1–Carene
88.20(7)–158.11(7) 85.23(11)–

159.05(10)
Ru1–Carene 2.161(2)–2.249(2) 2.194(4)–2.240(4) Cl2–Ru1–C1 90.89(7) 91.24(10)

N1–C1 1.361(3) 1.364(5) Cl2–Ru1–Cg 127.60(4) 126.94(7)

N2–C1 1.370(3) 1.366(4) Cl2–Ru1–Carene
91.24(7)–156.33(6) 89.88(11)–

157.66(11)

C1–Ru1–Cg 123.23(7) 124.93(12)

C1–Ru1–Carene
86.78(9)–153.24(10) 87.70(14)–

157.11(15)

N1–C1–N2 105.29(18) 104.7(3)

Note: Cg represents the centroid of the arene ring.
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only trace amounts of products. This observation is consistent with a mechanism that involves alcohol dehydrogenation 
to generate an aldehyde intermediate. 
3.5. N-Alkylation of substituted anilines and heterocyclic amines with benzyl alcohol 
The scope of amines that could undergo alkylation was then explored (Table 7). The N-alkylated products 3a–i were ob-
tained in good yield (81%–92%) from substrates containing either electron-donating or electron-withdrawing substitu-
ents. For example, 1,3-benzodioxan-5-amine was treated with benzyl alcohol to produce 3h in high yield (Table 7, 87%). 
Heteroaromatic amines like 2-aminopyridine, 3-aminopyridine, and 2-aminopyrimidine were successfully converted into 
products 3d–f in good yield (Table 7, 81%–86%). The secondary amine morpholine (3i), on the other hand, was not tol-
erated. The N-alkylation of p-nitroaniline with benzyl alcohol and the N-alkylation of aniline with 4-nitrobenzyl alcohol 
were also not successful, even with a greater catalyst loading (2 mol %) when conducted at 110 °C. These observations 
indicate that nitro groups are not tolerated by 1e.
3.6. N-Methylation of anilines
N-Methylamines are commonly employed as intermediates and building blocks in the production of bulk and fine chemi-
cals, as well as materials [64,65]. Due to the higher activation barrier (21 kcal mol–1) of methanol dehydrogenation com-
pared to that of higher alcohols, such as ethanol (16 kcal mol–1), methanol can be a problematic substrate for the N-alkyl-
ation of amines [66]. Therefore, the N-methylation of amines with methanol was examined to further broaden the scope 
of 1e promoted C–N bond formation. To our delight, we were able to successfully N-methylate anilines with methanol 
in the presence of 1.0 mol % of 1e at 110 °C (Table 8). As indicated in Table 8, the majority of the catalytic reactions were 
efficient, yielding at least 81% of the desired product (Table 8, 4a–g in 46%–97% yield). When 2-iodoaniline was used, 
the reaction produced 5g in moderate isolated yields (46%) and was also dehalogenated. Biologically important motifs 

Table 5. The use of benzyl alcohol to optimize the N-alkylation of 4-methoxyaniline.

NH2

O

HO

OHN ON

A B

1e
toluene

Entry Cat (mol %) Base (75 mol %) Temp (°C) Time (h) Conversion (%) A/B

1 1e (1.0) KOtBu 120 12 > 99 >99/0

2 1e (1.0) KOtBu 70 12 98 92/8

3 1e (1.0) KOtBu 50 12 96 88/12

4 1e (0.5) KOtBu 70 12 96 65/35

5 1e (1.0) KOtBu 70 5 98 87/13

6 1f (1.0) KOtBu 70 12 94 85/15

7 1g (1.0) KOtBu 70 12 92 78/22

8a 1e (1.0) KOtBu 70 12 26 -b

9c 1e (1.0) KOtBu 70 12 5 -b

Reaction conditions: All reactions were conducted in 2 mL of toluene and conversion is based on 1H NMR spectroscopy. aAn open-air 
environment. bMixture of products. cReaction was conducted in water.
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Table 7. The use of benzyl alcohol to alkylate a variety of primary amines.

R
NH2 +

R

H
N

OH 1e (1 mol%)
KOtBu (0.75 equiv.)

Toluene, 70 oC, 12 h 3a-i

H
N

98% (92%)
MeO

H
N

99% (83%)

H
N

99% (87%)
Cl

N

H
N

92% (83%) N

H
N

96% (86%)
N

N
H
N

90% (81%)

H
N

94% (86%)

H
N

93% (87%)

F3C

CF3

O

O

3a 3b 3c

3d 3e 3f

3g 3h

N

O

trace

3i

Table 6. Aniline alkylation using a variety of primary alcohols.
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Table 8. Methylation of aromatic amines.

 
R

NH2

1e (1 mol%)

KOtBu (0.75 equiv.)
R

NH

110 oC, 12 h, MeOH (2 mL)

Me

4a-g

99% (97%) 99% (91%) 99% (92%)

NH

91% (88%)

F3C

CF3

Me

NH

Me

NH

Me

NHMeO

84% (81%)

Me

NH

N

74% (46%)

Me

NH

99% (86%)

Me

NH

Me

4a 4b 4c

4d 4e
4f

4g

Cl

I

Table 9. Comparison of Ru–NHC catalyst (1e) with reported NHC systems.

S/NO Cat (mol %) Substrate 1
Alcohol

Substrate 2
Primary amine

Temp
(°C)

Time
(h)

Yield
(%) Reference

1 1 aniline Substituted alcohol 70 12 92 This work
2 2.5 - - 120 24 97 [38]
3a 1.0 Substituted aniline MeOH 150 24 84 [67]
4 0.5 - - 130 24 85 [68]
5 1.0 - - 135 36 95 [69]

aFor the same reaction we use 1e (1 mol %) at 110 °C for 12 h and we get 97% selective yield.

like pyridine-2-amine and 3-trifluoromethylaniline were also successfully methylated (Table 8, 4d and 4e). Despite the 
use of copious MeOH and high temperatures, we did not observe dialkylation products in any case. Attempts to obtain 
N-methylate aliphatic amines like benzylamine and n-hexylamine, on the other hand, were ineffective, giving just traces 
of methylated product.

A comparison of the most active catalyst (1e) with other reported catalysts is shown in Table 9. It is the best Ru–
NHC-based catalyst in terms of low catalyst loading (1 mol %) and low temperature (70 °C). Furthermore, most of the 
literature reports that the hydrogen transfer reaction is used to convert the alcohol into ketone or aldehyde using Ru–NHC 
complexes. Very few reports of such secondary amine products through the coupling of primary amine and alcohols have 
been reported using ruthenium–NHC complexes. These Ru–NHC complexes are also applicable for the conversion of 
highly complicated products like methanol and convert them into secondary amines. 
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3.7. Proposed mechanism
Given that catalysis requires the presence of KOtBu (75 mol % relative to 1.0 mol % of 1e), it is reasonable to propose that 
a salt metathesis reaction occurs to form the corresponding bis(tert-butoxide) complex, which can undergo σ-bond me-
tathesis with incoming benzyl alcohol to generate intermediate A (Scheme 2).

Alternatively, intermediate A may be generated directly from 1e if any KOBn is generated in solution. This intermedi-
ate can undergo subsequent β-hydride elimination steps to generate B and ultimately dihydride complex C. As has been 
observed for other hydrogen borrowing C–N bond forming reactions, the in situ generation of aldehyde results in Schiff 
base condensation with any primary amine that is present to generate the corresponding aldimine (this is also the reason 
why secondary amines do not become alkylated again to yield tertiary amines). This aldimine can insert into dihydride 
C to generate intermediate E. At this point, the desired secondary amine product can be liberated in one of two ways. 
Reductive elimination from E can occur to generate intermediate D (as shown in Scheme 2) or E can undergo σ-bond 
metathesis with the next equivalent of benzyl alcohol to generate intermediate B. If Ru(0) intermediate D is formed during 
the reaction, it quickly reacts with any alcohol or hydrogen that is present to generate the corresponding hydride complex. 

4. Conclusion
We have described the synthesis and characterization of a series of ruthenium complexes with BNHC proligands that 
feature a variety of benzyl group substitution patterns. Through a HB/HA mechanism, these compounds were discovered 
to be highly effective catalysts for the selective monoalkylation of aromatic primary amines. Complex 1e was the most 
active of the catalysts tested, and it is one of the most active ruthenium catalysts ever reported for amine alkylation given 
that it operates efficiently at temperatures as low as 50 °C at low catalyst loadings (1.0 mol %). A wide range of (hetero)
aromatic amines and primary alcohols were successfully converted into secondary amines in good to exceptional isolated 
yields, including physiologically relevant examples. The methylation of primary amines was also achieved using methanol, 
a transformation that is particularly difficult to demonstrate. 

Acknowledgments
Z.N. gratefully acknowledges the Higher Education Commission of Pakistan (HEC) for research funding as an IRSIP fel-
low at Arizona State University (USA). The authors express their gratitude to TÜBİTAK for financing PhD research (2216 
Research Fellowship Program) and BÇ thanks TÜBA for financial support. This study was supported by the Scientific 
Research Projects Unit of Ondokuz Mayıs University (Project No: PYO.FEN.1906.19.001).

Appendix A. Supplementary data
CCDC 2085163 and 2173756 contain the supplementary crystallographic data for the compounds reported in this article. 
These data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. 
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Characterizing data of ruthenium–BNHC complex 1a
Dichloro-[1-((3-methyloxetan-3-yl)methyl)-3-(3-methylbenzyl)benzimidazole-2-ylidene](p-cymene) ruthenium(II) (1a)
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Figure S1. 1H NMR spectrum of Ruthenium-BNHC complex 1a (in CDCl3, 25 oC, TMS, 400 MHz). 
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Figure S1. 1H NMR spectrum of ruthenium–BNHC complex 1a (in CDCl3, 25 °C, TMS, 
400 MHz).
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Figure S2. 13C NMR spectrum of ruthenium–BNHC complex 1a (in CDCl3, 25 °C, TMS, 101 MHz).
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Figure S3. FT-IR spectrum of ruthenium–BNHC complex 1a.



NAWAZ et al. / Turk J Chem

3

 
S5 

 

 

Characterising data of Ruthenium-BNHC complex 1b 

Dichloro-[1-((3-methyloxetan-3-yl)methyl)-3-(2,4,6-trimethylbenzyl)benzimidazole-2-
ylidene](p-cymene) ruthenium(II) (1b) 

 

  

Characterizing data of ruthenium–BNHC complex 1b
Dichloro-[1-((3-methyloxetan-3-yl)methyl)-3-(2,4,6-trimethylbenzyl)benzimidazole-2-ylidene](p-cymene) ruthenium(II) (1b)
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Figure S5. 13C NMR spectrum of Ruthenium-BNHC complex 1b (in CDCl3, 25 oC, TMS, 101 MHz). 
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Figure S4. 1H NMR spectrum of ruthenium–BNHC complex 1b (in CDCl3, 25 °C, TMS, 400 MHz).
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Figure S6. FT-IR spectrum of Ruthenium-BNHC complex 1b. 
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Figure S6. FT-IR spectrum of ruthenium–BNHC complex 1b.

Figure S5. 13C NMR spectrum of ruthenium–BNHC complex 1b (in CDCl3, 25 °C, TMS, 101 MHz).
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Characterizing data of ruthenium–BNHC complex 1c
Dichloro-[1-((3-methyloxetan-3-yl)methyl)-3-(2,3,5,6-tetramethylbenzyl)benzimidazole-2-ylidene](p-cymene) ruthenium(II) 
(1c)                      

                   

                    

          
Figure S7. 1H NMR spectrum of ruthenium–BNHC complex 1c (in CDCl3, 25 °C, TMS, 400 MHz).
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Figure S8. 13C NMR spectrum of Ruthenium-BNHC complex 1c (in CDCl3, 25 oC, TMS, 101 MHz). 
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Figure S8. 13C NMR spectrum of ruthenium–BNHC complex 1c (in CDCl3, 25 °C, TMS, 101 MHz).
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Characterising data of Ruthenium-BNHC complex 1d 

Dichloro-[1-((3-methyloxetan-3-yl)methyl)-3-(2,3,4,5,6-
pentamethylbenzyl)benzimidazole-2-ylidene](p-cymene) ruthenium(II) (1d) 
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Figure S9. FT-IR spectrum of Ruthenium-BNHC complex 1c  
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Figure S9. FT-IR spectrum of ruthenium–BNHC complex 1c. 

Characterizing data of ruthenium–BNHC complex 1d
Dichloro-[1-((3-methyloxetan-3-yl)methyl)-3-(2,3,4,5,6-pentamethylbenzyl)benzimidazole-2-ylidene](p-cymene) ruthenium(II) 
(1d)
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Figure S10. 1H NMR spectrum of ruthenium–BNHC complex 1d (in CDCl3, 25 °C, TMS, 400 MHz).
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Figure S11. 13C NMR spectrum of Ruthenium-BNHC complex 1d  (in CDCl3, 25 oC, TMS, 101 MHz). 
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Figure S11. 13C NMR spectrum of ruthenium–BNHC complex 1d (in CDCl3, 25 °C, TMS, 101 MHz).
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Figure S12. FT-IR spectrum of Ruthenium-BNHC complex 1d. 
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Figure S12. FT-IR spectrum of ruthenium–BNHC complex 1d.

Characterizing data of ruthenium–BNHC complex 1e
Dichloro-[1-((3-methyloxetan-3-yl)methyl)-3-(3,4,5-trimethoxybenzyl)benzimidazole-2-ylidene](p-cymene) ruthenium(II) (1e)
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Figure S13. 1H NMR spectrum of ruthenium–BNHC complex 1e (in CDCl3, 25 °C, TMS, 400 MHz).

 
S19 

 

 

Figure S14. 13C NMR spectrum of Ruthenium-BNHC complex 1e (in CDCl3, 25 oC, TMS, 101 MHz). 
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Figure S14. 13C NMR spectrum of ruthenium–BNHC complex 1e (in CDCl3, 25 °C, TMS, 101 MHz).
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Characterising data of Ruthenium-BNHC complex 1f 

Dichloro-[(5,6-dimethyl-1-((3-methyloxetan-3-yl)methyl)-3-(2,3,5,6-
tetramethylbenzyl)benzimidazole-2-ylidene](p-cymene) ruthenium(II) (1f) 
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Figure S15. FT-IR spectrum of Ruthenium-BNHC complex 1e. 
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Figure S15. FT-IR spectrum of ruthenium–BNHC complex 1e.

Characterizing data of ruthenium–BNHC complex 1f
Dichloro-[(5,6-dimethyl-1-((3-methyloxetan-3-yl)methyl)-3-(2,3,5,6-tetramethylbenzyl)benzimidazole-2-ylidene](p-cymene) 
ruthenium(II) (1f)
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Figure S16. 1H NMR spectrum of ruthenium–BNHC complex 1f (in CDCl3, 25 °C, TMS, 400 MHz).
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Figure S17. 13C NMR spectrum of Ruthenium-BNHC complex 1f (in CDCl3, 25 oC, TMS, 101 MHz). 
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Figure S17. 13C NMR spectrum of ruthenium–BNHC complex 1f (in CDCl3, 25 °C, TMS, 101 MHz).
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Characterising data of Ruthenium-BNHC complex 1g 

Dichloro-[(5,6-dimethyl-1-((3-methyloxetan-3-yl)methyl)-3-(2,3,4,5,6-
pentamethylbenzyl)benzimidazole-2-ylidene](p-cymene) ruthenium(II) (1g) 
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Figure S18. FT-IR spectrum of Ruthenium-BNHC complex 1f. 
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Figure S18. FT-IR spectrum of ruthenium–BNHC complex 1f.

Characterizing data of ruthenium–BNHC complex 1g
Dichloro-[(5,6-dimethyl-1-((3-methyloxetan-3-yl)methyl)-3-(2,3,4,5,6-pentamethylbenzyl)benzimidazole-2-ylidene](p-cymene) 
ruthenium(II) (1g)
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Figure S19. 1H NMR spectrum of ruthenium–BNHC complex 1g (in CDCl3, 25 °C, TMS, 400 MHz).
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Figure S20. 13C NMR spectrum of Ruthenium-BNHC complex 1g (in CDCl3, 25 oC, TMS, 101 MHz). 
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Figure S20. 13C NMR spectrum of ruthenium–BNHC complex 1g (in CDCl3, 25 °C, TMS, 101 MHz).
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Figure S21. FT-IR spectrum of Ruthenium-BNHC complex 1g. 
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Figure S21. FT-IR spectrum of ruthenium–BNHC complex 1g.
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Characterizing data of the tested (2a–h) substituted benzyl alcohol with aniline by the complex 1e. 
N-(4-chlorobenzyl)aniline (2a)

                     

                   

                    

          

1H NMR (400 MHz, CDCl3) δ 7.32 (s, 4H), 7.20 (dd, J = 8.4, 7.5 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 6.66–6.57 (m, 2H), 4.32 (s, 2H), 4.05 
(s, 1H).
13C NMR (101 MHz, CDCl3) δ 147.9, 138.0, 132.9, 129.3, 128.7, 117.8, 112.9, 47.6.

 
S31 

 

2. N-(4-methylbenzyl)analine (2b) 

1H NMR (400 MHz, cdcl3) δ 7.76 (d, J = 7.4 Hz, 2H), 7.68 (d, J = 11.1 Hz, 4H), 7.21 (t, J 
= 7.2 Hz, 1H), 7.13 (d, J = 7.7 Hz, 2H), 4.77 (s, 2H), 4.31 (s, 1H), 2.85 (s, 3H). 
 

H
N

2b

 
13C NMR (101 MHz, CDCl3) δ 148.7, 137.3, 136.8, 129.7, 128.0, 117.9, 113.3, 48.5, 21.6. 
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Figure S22. 1H NMR and 13C NMR spectrum of 2a (in CDCl3, 25 °C, TMS, 400 MHz).
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N-(4-methylbenzyl)aniline (2b)
1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 7.4 Hz, 2H), 7.68 (d, J = 11.1 Hz, 4H), 7.21 (t, J = 7.2 Hz, 1H), 7.13 (d, J = 7.7 Hz, 2H), 4.77 (s, 
2H), 4.31 (s, 1H), 2.85 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 148.7, 137.3, 136.8, 129.7, 128.0, 117.9, 113.3, 48.5, 21.6.

 
S31 

 

2. N-(4-methylbenzyl)analine (2b) 

1H NMR (400 MHz, cdcl3) δ 7.76 (d, J = 7.4 Hz, 2H), 7.68 (d, J = 11.1 Hz, 4H), 7.21 (t, J 
= 7.2 Hz, 1H), 7.13 (d, J = 7.7 Hz, 2H), 4.77 (s, 2H), 4.31 (s, 1H), 2.85 (s, 3H). 
 

H
N

2b

 
13C NMR (101 MHz, CDCl3) δ 148.7, 137.3, 136.8, 129.7, 128.0, 117.9, 113.3, 48.5, 21.6. 
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2. N-(4-methylbenzyl)analine (2b) 

1H NMR (400 MHz, cdcl3) δ 7.76 (d, J = 7.4 Hz, 2H), 7.68 (d, J = 11.1 Hz, 4H), 7.21 (t, J 
= 7.2 Hz, 1H), 7.13 (d, J = 7.7 Hz, 2H), 4.77 (s, 2H), 4.31 (s, 1H), 2.85 (s, 3H). 
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13C NMR (101 MHz, CDCl3) δ 148.7, 137.3, 136.8, 129.7, 128.0, 117.9, 113.3, 48.5, 21.6. 
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Figure S23. 1H NMR and 13C NMR spectrum of 2b (in CDCl3, 25 °C, TMS, 400 MHz).
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N-(4-methoxybenzyl)aniline (2c)
1H NMR (400 MHz, CDCl3) δ 7.33 (d, J = 8.6 Hz, 2H), 7.26–7.17 (m, 2H), 6.93 (dd, J = 9.2, 2.4 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 6.67 
(d, J = 7.7 Hz, 2H), 4.28 (s, 2H), 3.98 (s, 1H), 3.83 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 158.9, 148.3, 131.5, 129.3, 128.8, 117.5, 114.1, 
112.9, 55.3, 47.8.

Figure S24. 1H NMR and 13C NMR spectrum of 2c (in CDCl3, 25 °C, TMS, 400 MHz).
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N-(4-bromobenzyl)aniline (2d)
1H NMR (400 MHz, CDCl3) δ 7.43 (dd, J = 6.8, 1.5 Hz, 2H), 7.21 (d, J = 7.3 Hz, 2H), 7.15 (tt, J = 7.2, 1.7 Hz, 2H), 6.74–6.68 (m, 1H), 
6.62–6.53 (m, 2H), 4.25 (s, 2H), 3.92 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 145.9, 136.0, 130.9, 127.3, 126.7, 115.8, 110.9, 45.6.

Figure S25. 1H NMR and 13C NMR spectrum of 2d (in CDCl3, 25 °C, TMS, 400 MHz).
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N-(2-methylbenzyl)aniline (2e)
1H NMR (400 MHz, CDCl3) δ 7.25 (dt, J = 14.9, 7.9 Hz, 5H), 7.13 (d, J = 7.3 Hz, 1H), 6.76 (t, J = 7.3 Hz, 1H), 6.68 (d, J = 7.8 Hz, 2H), 
4.32 (s, 2H), 4.02 (s, 1H), 2.39 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 148.3, 139.4, 138.3, 129.3, 128.6, 128.3, 128.0, 124.6, 117.5, 112.9, 
48.4, 21.5.

Figure S26. 1H NMR and 13C NMR spectrum of 2e (in CDCl3, 25 °C, TMS, 400 MHz).
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N-(2-methoxybenzyl)aniline (2f)
1H NMR (400 MHz, CDCl3) δ 7.26 (ddd, J = 14.8, 11.4, 4.3 Hz, 3H), 7.00 (d, J = 13.3 Hz, 2H), 6.87 (d, J = 8.1 Hz, 1H), 6.77 (dd, J = 10.4, 
4.2 Hz, 1H), 6.68 (d, J = 7.5 Hz, 2H), 4.34 (s, 2H), 3.98 (s, 1H), 3.83 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 160.0, 148.2, 141.3, 129.7, 
129.3, 119.8, 117.6, 113.0, 112.7, 55.2, 48.3.

Figure S27. 1H NMR and 13C NMR spectrum of 2f (in CDCl3, 25 °C, TMS, 400 MHz).
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N-(furan-2-ylmethyl)aniline (2g)
1H NMR (400 MHz, CDCl3) δ 7.40–7.33 (m, 1H), 7.22–7.15 (m, 2H), 6.77–6.72 (m, 1H), 6.68 (ddd, J = 4.6, 2.1, 1.1 Hz, 2H), 6.36–6.29 
(m, 1H), 6.23 (dd, J = 3.2, 0.8 Hz, 1H), 4.32 (s, 2H), 3.95 (s, 1H). 13C NMR (101 MHz, CDC3) δ 152.7, 147.6, 141.9, 129.2, 118.0, 113.1, 
110.3, 106.9, 41.4.

Figure S28. 1H NMR and 13C NMR spectrum of 2g (in CDCl3, 25 °C, TMS, 400 MHz).
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N-(3,5-bis(trifluoromethyl)benzyl)aniline (2h)
1H NMR (400 MHz, CDCl3) δ 7.84 (s, 2H), 7.79 (s, 1H), 7.18 (td, J = 7.8, 0.7 Hz, 2H), 6.77 (td, J = 7.4, 0.8 Hz, 1H), 6.60 (dd, J = 7.7, 0.8 
Hz, 2H), 4.47 (s, 2H), 4.18 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 147.2, 142.5, 129.4, 118.5, 113.0, 47.7.

Figure S29. 1H NMR and 13C NMR spectrum of 2h (in CDCl3, 25 °C, TMS, 400 MHz).
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Characterizing data of the tested (3a–h) substituted aniline with benzyl alcohol by the complex 1e. 
N-benzyl-4-chloroaniline (3a)
1H NMR (400 MHz, CDCl3) δ 7.34–7.30 (m, 4H), 7.26 (dd, J = 8.8, 4.6 Hz, 1H), 7.10–7.03 (m, 2H), 4.26 (d, J = 5.5 Hz, 2H), 4.02 (s, 1H). 
13C NMR (101 MHz, CDCl3) δ 147.9, 138.0, 132.9, 129.3, 128.7, 117.8, 112.9, 47.6.
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Figure S30. 1H NMR and 13C NMR spectrum of 3a (in CDCl3, 25 oC, TMS, 400 MHz). 
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Figure S30. 1H NMR and 13C NMR spectrum of 3a (in CDCl3, 25 °C, TMS, 400 MHz).
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N-benzyl-4-methylaniline (3b)
1H NMR (400 MHz, CDCl3) δ 7.41–7.19 (m, 5H), 6.96 (d, J = 8.3 Hz, 2H), 6.53 (d, J = 8.4 Hz, 2H), 4.27 (s, 2H), 3.86 (s, 1H), 2.22 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ 146.0, 139.7, 129.8, 128.6, 127.5, 127.2, 113.0, 48.7, 20.4.
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Figure S31. 1H NMR and 13C NMR spectrum of 3b (in CDCl3, 25 oC, TMS, 400 MHz). 
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Figure S31. 1H NMR and 13C NMR spectrum of 3b (in CDCl3, 25 °C, TMS, 400 MHz).
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N-benzyl-4-methoxyaniline (3c)
1H NMR (400 MHz, CDCl3) δ 7.37 (dt, J = 20.8, 10.2 Hz, 4H), 7.31–7.24 (m, 1H), 6.81 (d, J = 8.8 Hz, 2H), 6.63 (d, J = 8.8 Hz, 2H), 4.30 
(s, 2H), 3.76 (s, 4H). 13C NMR (101 MHz, CDCl3) δ 152.2, 142.4, 139.7, 128.6, 127.6, 114.9, 114.2, 55.8, 49.3.
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Figure S32. 1H NMR and 13C NMR spectrum of 3c (in CDCl3, 25 oC, TMS, 400 MHz). 
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Figure S32. 1H NMR and 13C NMR spectrum of 3c (in CDCl3, 25 °C, TMS, 400 MHz).
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N-benzylpyridin-2-amine (3d)
1H NMR (400 MHz, CDCl3) δ 8.10–8.00 (m, 1H), 7.46–7.28 (m, 5H), 7.27–7.21 (m, 1H), 6.55 (ddd, J = 7.1, 5.0, 0.9 Hz, 1H), 6.33 (d, J 
= 8.4 Hz, 1H), 5.16 (s, 1H), 4.47 (d, J = 5.8 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 158.7, 148.2, 139.2, 128.6, 127.3, 113.1, 106.7, 46.3.
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Figure S33. 1H NMR and 13C NMR spectrum of 3d (in CDCl3, 25 oC, TMS, 400 MHz). 
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Figure S33. 1H NMR and 13C NMR spectrum of 3d (in CDCl3, 25 °C, TMS, 400 MHz).
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N-benzylpyridin-3-amine (3e)
1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 2.9 Hz, 1H), 7.94 (dd, J = 4.7, 1.2 Hz, 1H), 7.34 (d, J = 4.4 Hz, 4H), 7.30–7.24 (m, 1H), 7.04 
(dd, J = 8.3, 4.7 Hz, 1H), 6.85 (ddd, J = 8.3, 2.8, 1.2 Hz, 1H), 4.32 (s, 2H), 4.25 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 144.0, 138.8, 138.5, 
136.1, 128.7, 127.4, 123.7, 118.5, 47.8.
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Figure S34. 1H NMR and 13C NMR spectrum of 3e (in CDCl3, 25 oC, TMS, 400 MHz). 
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Figure S34. 1H NMR and 13C NMR spectrum of 3e (in CDCl3, 25 °C, TMS, 400 MHz).
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N-benzylpyrimidin-2-amine (3f)
1H NMR (400 MHz, CDCl3) δ 8.19 (d, J = 3.3 Hz, 2H), 7.33 (q, J = 7.9 Hz, 4H), 7.28–7.23 (m, 1H), 6.50 (t, J = 4.8 Hz, 1H), 5.96 (s, 1H), 
4.62 (d, J = 5.9 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 158.0, 139.1, 128.6, 127.5, 127.2, 110.7, 45.4.

 
S57 

 

 

15. N-benzylbenzo[1,3]dioxol-5-amine (3g) 

1H NMR (400 MHz, CDCl3) δ 7.40 – 7.33 (m, 4H), 7.30 – 7.25 (m, 1H), 6.66 (d, J = 8.2 
Hz, 1H), 6.27 (d, J = 2.3 Hz, 1H), 6.07 (dd, J = 8.3, 2.3 Hz, 1H), 5.84 (d, J = 0.5 Hz, 2H), 
4.26 (s, 2H), 3.67 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 148.3, 143.9, 139.7, 139.4, 128.6, 
127.5, 127.2, 108.6, 104.4, 100.6, 96.0, 49.2. 

 

 

 
 

Figure S35. 1H NMR and 13C NMR spectrum of 3f (in CDCl3, 25 °C, TMS, 400 MHz).
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N-benzylbenzo[1,3]dioxol-5-amine (3g)
1H NMR (400 MHz, CDCl3) δ 7.40–7.33 (m, 4H), 7.30–7.25 (m, 1H), 6.66 (d, J = 8.2 Hz, 1H), 6.27 (d, J = 2.3 Hz, 1H), 6.07 (dd, J = 8.3, 
2.3 Hz, 1H), 5.84 (d, J = 0.5 Hz, 2H), 4.26 (s, 2H), 3.67 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 148.3, 143.9, 139.7, 139.4, 128.6, 127.5, 
127.2, 108.6, 104.4, 100.6, 96.0, 49.2.
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Figure S36. 1H NMR and 13C NMR spectrum of 3g (in CDCl3, 25 oC, TMS, 400 MHz). 
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Figure S36. 1H NMR and 13C NMR spectrum of 3g (in CDCl3, 25 °C, TMS, 400 MHz).
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N-benzyl-3,5-bis(trifluoromethyl)aniline (3h)
1H NMR (400 MHz, CDCl3) δ 7.43–7.31 (m, 5H), 7.17 (s, 1H), 6.97 (s, 2H), 4.45 (s, 1H), 4.36 (d, J = 5.4 Hz, 2H). 13C NMR (101 MHz, 
CDCl3) δ 148.6, 137.6, 128.9, 127.8, 127.5, 111.9, 111.0, 48.0.
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Figure S37. 1H NMR and 13C NMR spectrum of 3h (in CDCl3, 25 oC, TMS, 400 MHz). 
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Figure S37. 1H NMR and 13C NMR spectrum of 3h (in CDCl3, 25 °C, TMS, 400 MHz).



NAWAZ et al. / Turk J Chem

32

Characterizing data of the tested (4a–e) substituted aniline with methanol by the complex 1e. 
N-methylaniline (4a)
1H NMR (400 MHz, CDCl3) δ 6.72 (t, J = 7.8 Hz, 2H), 6.24 (t, J = 7.3 Hz, 1H), 6.15 (d, J = 7.8 Hz, 2H), 3.21 (s, 1H), 2.36 (s, 3H).
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Figure S38. 1H NMR and 13C NMR spectrum of 4a (in CDCl3, 25 oC, TMS, 400 MHz). 
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Figure S38. 1H NMR and 13C NMR spectrum of 4a (in CDCl3, 25 °C, TMS, 400 MHz).

N,4-dimethylaniline (4b)
1H NMR (400 MHz, CDCl3) δ 7.02 (d, J = 8.5 Hz, 2H), 6.56 (d, J = 8.3 Hz, 2H), 3.44 (s, 1H), 2.82 (s, 3H), 2.26 (s, 3H).

 
S64 

 

 

 

 

 
Figure S39. 1H NMR spectrum of 4b (in CDCl3, 25 oC, TMS, 400 MHz). 
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Figure S39. 1H NMR spectrum of 4b (in CDCl3, 25 °C, TMS, 400 MHz).
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4-Methoxy-N-methylaniline (4c)
1H NMR (400 MHz, CDCl3) δ 6.82–6.74 (m, 2H), 6.63–6.55 (m, 2H), 3.74 (s, 3H), 2.79 (s, 3H), 0.82 (s, 1H).

Figure S40. 1H NMR spectrum of 4c (in CDCl3, 25 °C, TMS, 400 MHz).
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Chloro-N-methylaniline (4d)
1H NMR (400 MHz, CDCl3) δ 6.11 (dd, J = 4.5, 3.8 Hz, 2H), 5.50 (d, J = 8.1 Hz, 2H), 2.62 (s, 1H), 1.78 (s, 3H).

Figure S41. 1H NMR spectrum of 4d (in CDCl3, 25 °C, TMS, 400 MHz).
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N-methylpyridin-2-amine (4e)
1H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 2.8 Hz, 1H), 7.91 (dd, J = 4.7, 1.1 Hz, 1H), 7.05 (dd, J = 8.3, 4.7 Hz, 1H), 6.82 (ddd, J = 8.3, 2.8, 
1.3 Hz, 1H), 3.80 (dd, J = 14.9, 10.1 Hz, 1H), 2.80 (s, 3H).

Figure S42. 1H NMR spectrum of 4e (in CDCl3, 25 °C, TMS, 400 MHz).
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N-methyl-3,5-bis(trifluoromethyl)aniline (4f)
1H NMR (400 MHz, CDCl3) δ 7.13 (s, 1H), 6.91 (s, 2H), 4.16 (s, 1H), 2.89 (d, J = 5.0 Hz, 3H).

Figure S43. 1H NMR spectrum of 4f (in CDCl3, 25 °C, TMS, 400 MHz).


