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Some structural relationships between acenes and cyclacenes both Hückel- and Mobius-type and

within the same class of compounds were demonstrated by the recursive analysis of their Eπ and Iπ

values or the first differences thereof. It was found that the first differences of Eπ and Iπ tend to have

certain limit values as the number of benzenoid rings increases in each class of compounds studied.

Introduction

The question of the dependence of the total π -electron energy (Eπ ) of conjugated molecules goes back to
1940 and C.A. Coulson, who was the first to address it1 . Thenafter, many attempts have been made2−9

to investigate the structural factors that contribute to the gross part of Eπ . For some macromolecules Eπ
is known in analytical form, e.g., polyacenes10,11 and polymethines12 . It has been established that Eπ of
benzenoid hydrocarbons is a linear function of the number of Kekule structures6,13 . In recent literature,
some work on cyclacenes (which may be considered continuous ring systems) have appeared, indicating the
possibility of the cryptoannulenic behaviour and superaromatically of Hückel-type cyclacenes14,15 . In spite of
the fact that Hückel-type cyclacenes are even alternant hydrocarbons, Möbius cyclacenes are nonalternant.
Topologically, a cyclacene of the Möbius type is obtained from the corresponding acene by twisting the
acene belt through 180 an odd number of times before union at the respective sites (double union). The
present study is concerned with the Eπ and Iπ of cyclacenes of Hückel and Möbius types (Fig. 1) having
3-15 benzenoid rings, in order to unveil certain interrelations existing within the same homologous set of
cyclacenes and between different classes of cyclacenes.

Figure 1. Structures of Hückel- and Möbius-type cyclacene molecules
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Theory

The eigenvalues of the Hückel molecular orbitals of the acenes with R-condensed rings are available in
analytical form16 . The energies of bonding molecular orbitals can be expressed as

εj = α+ xjβ (1)

where x0 = 1, xj = (rj + 1)/2 and xj = (rj − 1)/2, and α and β are Coulomb and resonance integrals,
respectively. The eigenvalue corresponding to the j th molecular orbital is denoted by xj , whereas rj is
given by16

rj = (9 + 8 cos(nj/(R+ 1)))1/2 (2)

where j = 1, 2, . . . , R .

On the other hand, the total π -electron energy, Eπ , is expressed as

Eπ = 2
N∑
j=1

xj (3)

which becomes

Eπ = 2 + 2
R∑
j=1

(9 + 8 cos(πj/(R + 1)))1/2 (4)

for acenes by inserting Eqs. 1 and 2 into 3. Note that N is the number of occupied molecular orbitals, and
in the case of acenes it is expressed by Eq. 5

N = 2R+ 1. (5)

For cyclacenes of Hückel and Möbius types, there still exists no analytical expression to yield molecular
orbital energies; thus, for their Eπ values, one has to solve the corresponding secular determinant and the
characteristic polynomial. Table 1 tabulates the Eπ values of acenes and cyclacenes of Hückel and Möbius
types for R = 3 − 15. For the evaluation of the total π -electron energies within the framework of Hückel
molecular orbital (HMO) theory, a computer program written by Lowe17 has been employed.

Table 1. Total π -electron energies of various acenes and cyclacenes

Cyclacenes
R Acenes Hückel type Möbius type
3 19.3118 17.1905 16.8063
4 24.9308 22.2462 22.4368
5 30.5440 28.1541 28.0539
6 36.1560 33.6127 33.6671
7 41.7675 39.3093 39.2791
8 47.3789 44.8736 44.8906
9 52.9903 50.5117 50.5020
10 58.6017 56.1079 56.1134
11 64.2130 61.7280 61.7248
12 69.8243 67.3342 67.3361
13 75.4357 72.9485 72.9474
14 81.0470 78.5582 78.5588
15 86.6584 84.1705 84.1701

Eπ values are in β units.
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Calculations of the first differences18 of Eπ , d(aR), expressed as

d(aR) = aR − aR−1 (6)

where aR and aR−1 stand for Eπ values of cyclacenes having R and R−1 benzenoid rings, respectively, for
each class of compounds mentioned above reveal that the Eπ values of acenes and Möbius-type cyclacenes,
particularly for large systems, fit the recurrence relation19,20 of

aR − aR−1 − d = 0 (7)

where d = 5.611. The first differences of Eπ for Hückel-type cyclacenes oscillate according to the number
of benzenoid rings, getting a limit value of 5.61.

On the other hand, for all types of compounds studied (R = 3 − 15), it has been found that the
recursion formula (8) generally holds for Eπ .

aR − 2aR−1 + aR−2 = 0 (8)

where aR, aR−1 and aR−2 stand for the Eπ of cyclacenes having R − i (i = 0, 1, 2) benzenoid rings,
respectively. Equation 8, when applied for Eπ enables one to evaluate the Eπ of any cyclacene molecule in
terms of the corresponding values of the lower members of the family having R − 1 and R − 2 benzenoid
rings, respectively.

Recurrence relations (7) and (8) are linear relations with constant coefficients, and Eq. 8 is a second-
order homogeneous recurrence relation. Its solution is readily available by considering its characteristic
equation19,21 ,

x2 − 2x+ 1 = 0 (9)

which possesses multiple roots and yields a basic solution19 with respect to x = 1.

aR = A+ BR (10)

where A and B are certain constants.
It is known that for alternant hydrocarbons2 , Eq. 11 holds,

Eπ ≤ 2(en)1/2 = Emax (11)

where n and e stand for half the number of carbon atoms and the number of carbon-carbon bonds,
respectively.

Now, let
Iπ = Emax − Eπ = 2(ne)1/2 − Eπ (12)

Table 2 shows the first difference, bR , of Iπ values of various acenes and cyclacenes.

Furthermore, it is easily shown that the first differences of Iπ values (bR, bR−1 and bR−2 ) for a set
of cyclacenes (having members consisting of R,R− 1 and R− 2 benzenoid rings, respectively) conform to
Eq. 13

bR − 2bR−1 + bR−2 = 0. (13)

However, in practice (within the constraints of HMO theory and the range of compounds studied) they also
fit generally the recursion formula

2bR − bR−1 − bR−2 = 0 (14)

because the first differences for these compounds possess the property that bR = bR−1 .
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Table 2. The first difference, bR , of Iπ values of various acenes and cyclacenes

Cyclacenes
R Acenes Hückel type Möbius type
4 .7104 1.2688 .6940
5 .7144 .4166 .7074
6 .7146 .8659 .7113
7 .7145 .6279 .7125
8 .7143 .7602 .7131
9 .7140 .6864 .7131
10 .7138 .7283 .7131
11 .7138 .7044 .7131
12 .7137 .7183 .7132
13 .7135 .7102 .7132
14 .7136 .7148 .7131
15 .7134 .7122 .7132

Difference are in β units.

Results and Discussion

Inspection of Table 1 reveals that Eπ values of acenes are always greater than the corresponding values of
Hückel- and Möbius-type cyclacenes, whereas the latter possess comparable Eπ values. The first differences
of Hückel-type cyclacenes are affected by the number of benzenoid rings. Whenever R is odd, d(aR) >
d(aR−1). It is obvious then that d2(aR) is an oscillatory and damped in behavior18 . A similar characteristic
was observed in the Iπ values of Hückel-type cyclacenes (Table 2). For acenes and Möbius-type cyclacenes,
some fluctuations in the first differences of Eπ and Iπ occur but not in a regular fashion. However, in every
case the first differences of Eπ and Iπ tend to approach a limit value of 5.61 and 0.71, respectively. Hence,
they appear as certain characteristic constants for the above-mentioned compounds. On the other hand,
inspection of Table 2 reveals that Möbius-type cyclacenes mimic acenes closely, whereas only large members
of Hückel cyclacenes are comparable to acenes in terms of the property under consideration in the present
study.

On the other hand, the recursion formula (10) can be used to estimate the Eπ and Iπ values of
the above-mentioned compounds by setting the initial conditions or by means of regression analysis. For
example, the regression analyses of Eπ of the Hückel and Möbius types were determined to be, respectively,

Eπ = 0.0865402+ 5.60359R (15)

Eπ = −0.014183 + 5.61257R (16)

The regression statistics22,23 of Eqs. 15 and 16 are tabulated in Table 3. As seen in the table, the
regressed equations are statistically significant. As the coefficients in Eqs. 15 and 16 were obtained by
regression analysis, they must maintain five decimal places for ideal conformity; however, the resultant Eπ
values should be rounded to four decimal points.
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Table 3. The regression statistics for Eπ values of Hückel- (Eq. 15) and Möbius- (Eq. 16) type cyclacenes.∗

Hückel type Möbius type
The coefficient of
determination 1 1

Correlation coefficient .999986 1

Unexplained standard
deviation .122805 5.57367 10−3

Unbiased estimate of
the variance of the
regression coefficient 9.10293 10−3 4.13148 10−4

F-test 3.78941 105 1.84599 108

t-test 6.15582 102 1.35849 104

∗ For compounds having 3-15 benzenoid rings. The tabular value23 of F at the 1% level of significance with degree

of freedom 1 and 11 is 9.65.

The tabular value23 of t at the 1% level of significance with degree of freedom 11 ≡ 2.718.

Conclusion

The treatise presented above unveils some hidden structural behavior or relationships between acenes and
cyclacenes or within the same set of compounds. Topologically, it is interesting that the double union of
an acene molecule with itself to yield the corresponding Hückel-type cyclacene introduces a characteristic
property to the latter class of compounds that is the alternating behavior of the first differences of Eπ and
Iπ values with the increasing number of benzenoid rings. This property is lost by the presence of a single
phase dislocation; hence, Möbius cyclacenes resemble the corresponding acenes. Therefore, this subject is
open to further investigation.
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