
Introduction

The origin of the eastern Mediterranean ophiolites is
controversial. Several authors suggested that  the Late
Cretaceous ophiolitic fragments in the eastern
Mediterranean were formed in an arc-related
(suprasubduction zone) tectonic environment (Pearce et
al. 1984; Robertson 1994; Yal›n›z et al. 1996; Parlak et

al. 1996, 2000), whereas others argued  that generation
of the ophiolites occurred along a mid-ocean ridge system
in the eastern Mediterranean (Lytwyn & Casey 1995;
Dilek et al. 1999). Juteau (1980) divided Turkish
ophiolites into three belts based on their geographic-
tectonic positions, the degree of metamorphism produced
either in an oceanic setting or during the obduction
process onto carbonate platforms, and their ophiolite
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Abstract: The Pozant›-Karsant› ophiolite, which is one of a number of the Late Cretaceous oceanic lithospheric
remnants in southern Turkey, is situated in the eastern Tauride belt and consists of three distinct thrust sheets: an
ophiolitic mélange, a metamorphic sole, and an ophiolitic stratigraphic sequence. These units (except the ophiolitic
mélange) are intruded  by isolated microgabbro-diabase dykes at all structural levels. The dykes from the lower
crustal rocks (cumulates) are subalkaline in character and chemically similar to island arc tholeiitic basalts and
basaltic andesites. They are enriched in some LIL elements (Rb, Ba, K and Sr) and depleted in HFS elements (Nb,
Ti, Y) relative to N-MORB. The presence of positive Th and LIL anomalies and a negative Nb anomaly, relative to
the other incompatible elements, are thought to represent a subduction zone component. Tectonomagmatic
discrimination diagrams based on the immobile trace elements suggest a suprasubduction zone environment for
the origin of the mafic dyke swarms. All the evidence indicates that the mafic dykes from the lower crustal rocks
(cumulates) in the Pozant›-Karsant› ophiolite formed in the same geodynamic environment (suprasubduction zone)
as their host rocks did in the north of Tauride-Anatolide block during Late Cretaceous in the Neo-Tethyan ocean.
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Pozant›-Karsant› Ofiyolitlerini Kesen Mafik Dayklar›n Jeokimyas› ve Önemi (Güney
Türkiye)

Özet: Güney Türkiye’deki Geç Kretase yafll› okyanusal litosfer kal›nt›lar›ndan olan Pozant›-Karsant› ofiyoliti do¤u
Toroslarda yüzeylemektedir ve ofiyolitik melanj, metamorfik dilim ve ofiyolitik kayaçlardan oluflan üç farkl›
bindirme diliminden meydana gelmifltir. Ofiyolitik melanj haricindeki di¤er birimler de¤iflik yap›sal seviyelerde izole
mikrogabro-diyabaz dayklar› taraf›ndan kesilmektedirler. Kümülat kayaçlar› kesen dayklar subalkalen karakterde
olup kimyasal olarak ada yay› toleyitik bazalt ve bazaltik andezitlere benzerlik gösterirler. Bu kayaçlar N-tipi
MORB’a göre baz› LIL elementlerce (Rb, Ba, K, Sr) zenginlefltirilmifl buna karfl›n baz› HFS elementlerce (Nb, Ti, Y)
de tüketilmifllerdir. Özellikle Th ve LIL elementlerin pozitif ve Nb’un negatif anomalileri dalma-batma zonu bileflenini
göstermektedir. ‹z element içeriklerine göre haz›rlanan Tektonomagmatik diskriminasyon diyagramlar› dayklar›n
okyanus içi dalma-batma zonu (Suprasubduction) üzerinde olufltu¤unu iflaret ederler. Bütün verilerin ›fl›¤› alt›nda
Pozant›-Karsant› ofiyolitindeki kümülatlar› kesen izole diyabaz dayklar›n›n ofiyolitik kayaçlarla ayn› jeodinamik
ortamda (okyanus içi dalma-batma zonu üzerinde) Geç Kretase s›ras›nda Neotetis okyanusunda Torid-Anatolid
platformunun kuzeyinde olufltu¤u söylenebilir.

Anahtar Sözcükler: ‹zole dayk, Jeokimya, Dalma-batma zonu üstü, Pozant›-Karsant› ofiyoliti, Güney Türkiye



pseudostratigraphy. These belts are referred to as the
Northern Ophiolite Belt, Southern Ophiolite Belt and
Tauride Ophiolite Belt. Approximately east-west trending
Tauride belt ophiolites (from west to east: Lycian nappes,
Antalya, Beyflehir-Hoyran nappes, Mersin, Alihoca,
Pozant›-Karsant› and P›narbafl›) in southern Turkey are
located on both sides of the Tauride calcareous axis and
are mainly characterized by sub-ophiolitic metamorphic
rocks, ophiolitic mélange and thick (> 3 km) ultramafic-
mafic cumulate rocks (Figure 1a) (Juteau 1980; Dilek &
Moores 1990; Parlak 1996; Parlak et al. 2000; Dilek et
al. 1999). These ophiolites are extensively intruded at all
structural levels, with the exception of the ophiolitic
mélange and Tauride platform rocks, by numerous mafic
isolated diabase dykes. This indicates that dyke intrusions
postdate the formation of the subophiolitic metamorphics
and ophiolite but predate its final obduction onto the
Tauride platform (Çak›r et al. 1978; Thuizat et al. 1978;
Parlak et al. 1995; Lytwyn & Casey 1995; Parlak &
Delaloye 1996; Dilek et al. 1999).

The structure, petrology and geochronology of the
mafic dyke swarms in some of the Tauride belt ophiolites
(Mersin, Pozant›-Karsant› and Alihoca) have recently been
studied by a number of researchers. Mafic dykes from all
the structural levels of the Mersin ophiolite (Parlak et al.
1995; Parlak & Delaloye 1996; Dilek et al. 1999), mafic
dykes from the mantle peridotite and metamorphic sole
of the Pozant›-Karsant› ophiolite (Lytwyn & Casey 1995;
Dilek et al. 1999) and mafic dykes from the mantle
peridotites and the ultramafic cumulates in the Alihoca
ophiolite (Dilek et al. 1999) show geochemical
characteristics of island arc tholeiites (IAT). 40Ar/39Ar
geochronology of these dykes yielded ages from
89.6±0.7 to 63.8±0.9 (Parlak & Delaloye 1996) and
from 91.3±0.4 to 91.0±0.8 Ma (Dilek et al. 1999) for
the Mersin, from 91.7±0.6 to 90.3±1.0 Ma for the
Pozant›-Karsant› (Dilek et al. 1999), and 90.6±2.1 Ma
for the Alihoca ophiolites. 

This paper deals with the geochemistry of the mafic
dykes cutting the lower crustal rocks (ultramafic-mafic
cumulates) of the Pozant›-Karsant› ophiolite in southern
Turkey to compare with previously published data from
the Tauride belt and hence to explain the geodynamic
environment of dyke generation in the Neotethyan ocean
during Cenomanian-Turonian.

Geology of the Pozant›-Karsant› ophiolite

The Pozant›-Karsant› ophiolite, one of the Late
Cretaceous oceanic lithospheric remnants in southern
Turkey, is located in the western part of the eastern
Tauride belt (Figure 1b) (Juteau 1980; Dilek & Moores
1990; Polat & Casey 1995). The Pozant›-Karsant›
ophiolite, bounded by the left lateral Ecemifl fault to the
west, the Tauride platform carbonates to the north and
east, and unconformably overlain by the Neogene
sediments to the south, covers an area of approximately
1300 km2 (80 km in length and 25 km in width) (Bingöl
1978; Çak›r 1978; Çatakl› 1983; Tekeli et al. 1983;
Polat & Casey 1995) (Figure 1b).

Ophiolite-related rock assemblages are characterized,
structurally from bottom to top, by ophiolitic mélange,
dynamothermal metamorphic sole, and oceanic
lithospheric section (Figure 2). The late Campanian to
Maastrichtian unmetamorphosed ophiolitic mélange is
composed of a variety of igneous, metamorphic and
sedimentary blocks structurally dispersed in a
serpentinitic to pelitic matrix (Tekeli et al. 1983; Polat &
Casey 1995). The Mid to Upper Cretaceous
dynamothermal metamorphic sole displays a typical
inverted metamorphic sequence grading from
amphibolite facies, directly beneath the highly sheared
harzburgitic tectonite, to lower greenschist facies near
the mélange contact (Thuizat et al. 1978; Lytwyn & Casey
1995). The Pozant›-Karsant› ophiolite is composed of
harzburgitic to dunitic tectonites, ultramafic and mafic
cumulates, isotropic gabbro, sheeted dykes and pillow
lavas (Bingöl 1978; Çak›r 1978; Çatakl› 1983).  Swarms
of microgabbro and diabase dykes cut the ophiolitic and
the metamorphic sole units at different structural levels.

Petrographic Summary

The primary mineral assemblages of the dykes have been
modified by hydrothermal alteration processes
characterized by hornblende (generally observed rimming
relict clinopyroxenes) with albite, chlorite, sericite and
epidote. The dykes generally exhibit intergranular to
ophitic textures and consist mainly of plagioclase (60-
65%), clinopyroxene (30-35%), amphibole (3-5%) and
Fe-Ti oxides (≈1%). The dominantly holocrystalline
texture and presence of very weak chilled margin features
of these diabase dykes suggest that when dyke injection
occurred the main ophiolite body was still hot. This
observation is supported by the limited time interval (2-3
my) between the formation of the metamorphic soles and
beginning of dyke emplacement in the Mersin and
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Pozant›-Karsant› ophiolites (Parlak & Delaloye 1996;
Dilek et al. 1999).

Analytical Method

A total of 11 samples from the isolated dykes were
analysed for major and trace element contents. Major and
trace element analyses were carried out at the University
of Geneva. Major elements were determined by XRF
spectrometer on glass beads fused from ignited powders

to which Li2B4O7 was added (1:5), in a gold-platinum
crucible at 1150°C. Trace elements were analysed on
powder pressed-pellets by the same method.

Geochemistry

The results of major and trace element analyses for the
isolated diabase dykes of the Pozant›-Karsant› ophiolite
are given in the Table 1. They are represented by high
SiO2 (44-53 wt %), MgO (5-11 wt %) and low TiO2 (0.4-
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Figure 1. (a) Distribution of ophiolitic fragments in southern Turkey (Modified from Dilek & Moores 1990). (b) Geological map of the Pozant›-Karsant›
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1 wt %), MnO (0.12-0.19 wt %) and P2O5 (0.03-0.1wt
%). Trace element contents of the dykes vary in Zr (18-
69 ppm), Nb (1-4 ppm), Y (13-30 ppm), V (255-375
ppm), and Hf (1-8 ppm). Some of the incompatible trace
element ratios are as follows: Nb/Y= 0.04-0.25
[characteristic of subalkaline/tholeiitic basalts, Winchester
& Floyd (1977)], Zr/Nb= 5-69,  Zr/Y= 1.1-3.1, Ti/V= 7-
20 (Table 1). The diabase dykes from the Pozant›-
Karsant› ophiolite plot within the subalkaline/tholeiite
field of Irvine & Baragar (1971), and are represented by

subalkaline basaltic and basaltic-andesitic composition
based on the SiO2 versus incompatible trace element ratio
Zr/TiO2 diagram (Figures 3a & b) (Winchester & Floyd
1977). They exhibit variable degrees of low-grade
secondary alteration effects that especially caused
mobility in the large-ion-lithophile (LIL) elements (cf. Hart
1970; Humphris & Thompson 1978). The secondary
alteration and element mobility are further confirmed by
the wide variation in loss-on-ignition (LOI) values (Table
1), reflecting the contribution by secondary hydrated and
carbonate phases. Selected incompatible elements such as
Zr, Nb, Y, V and Ti have been considered relatively
immobile during alteration processes and are thought to
be reliable candidates to characterize petrological
affinities and the past tectonic environment of volcanic
suites (Pearce & Cann 1973; Floyd & Winchester 1975;
Pearce & Norry 1979; Meschede 1986).

The Y and Zr contents of the isolated dykes from the
Pozant›-Karsant› ophiolite crustal section are plotted
against TiO2 in Figures 4a and b together with the dykes
from the Mersin ophiolite (Parlak & Delaloye 1996) and
Pozant›-Karsant› ophiolite (Lytwyn & Casey 1995). The
diabase dykes reported by Lytwyn & Casey (1995) are
from the metamorphic sole and mantle tectonites. 

To compare all these data with present-day analogous
data, the data from the Vanuatu island arc basalts (IAB)
and North Fiji back-arc-basin basalts (BABB) are also
plotted (Figure 4). These diagrams clearly show that the
dykes from the Pozant›-Karsant› and the Mersin
ophiolites are well correlated with arc compositions
rather than back-arc representatives. On the Ti/Zr versus
Zr diagram (Figure 4c) similar patterns are exhibited for
the geochemical characteristics for both Mersin and
Pozant›-Karsant› ophiolites. A normal-MORB normalized
spider diagram of the dykes is presented in Figure 5. It
shows an enrichment of LIL (e.g. Th, Rb, Ba, K) elements
compared to HFS elements, confirming the subduction-
related character of the isolated dykes of the Pozant›-
Karsant› ophiolite. One of the most conspicuous features
of this diagram is the positive anomaly for Th and
negative anomaly of Nb (Figure 5). Note that Th
enrichment and Nb depletion relative to other
incompatible elements are considered to represent a
subduction zone component (Wood 1980; Pearce 1983).
Chemical discrimination for the tectonomagmatic
environment of dyke rocks from the Pozant›-Karsant› and
Mersin ophiolites, using selected geochemical
discrimination diagrams based on immobile elements, are
presented in Figure 6. All these diagrams are consistent
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with an island arc geodynamic setting, suggesting a
suprasubduction zone origin during the melt injection into
the already formed oceanic lithosphere.

Discussion and Implications

Lavas that erupted at destructive plate boundaries are
commonly considered to be derived from mantle sources
previously more depleted than the sources of mid-ocean
ridge basalts (MORB), and are subsequently enriched by a
subduction component in island arcs (Knittel & Oles
1995). The assumption of previously depleted sources is
supported by the presence of harzburgites at the inner

trench walls of several island arcs (Bonatti & Michael
1989) and the eruption of boninites, which undoubtly are
derived from very depleted sources (Crawford et al.
1989). Magnesian olivine (Fo92-94), Cr-rich chromite (Cr#
>0.65) in primitive IAB and the low abundances of HFS
elements confirm the initially depleted sources
(Woodhead et al. 1993). 

Lytwyn & Casey (1995) and Dilek et al. (1999)
suggested two distinct tectonic environments such as the
mid-ocean ridge system for the main ophiolite body and
the island arc environment for the dyke emplacement
during the evolution of the Pozant›-Karsant› ophiolite.
However, Parlak & Höck (1998) and Parlak et al. (2000)
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Table 1. Major and trace element analyses of the dyke swarms cutting the lower crustal rocks (ultramafic-mafic cumulates) of the Pozant›-Karsant›
ophiolite (Southern Turkey).

Sample Y-5 H-5 H-9 H-11 H-15 H-17a H-17b H-21 H-23 H-27 H-28
Wt %

SiO2 52.38 50.45 45.41 44.22 51.25 50.91 50.04 44.44 53.36 51.60 52.27
TiO2 0.37 0.86 0.88 1.06 0.87 0.89 0.88 0.64 0.74 0.92 0.95
Al2O3 11.37 16.17 14.63 15.25 15.67 15.64 15.71 17.17 15.82 15.80 15.96
FeO* 10.43 9.34 9.50 10.20 9.92 9.77 9.92 7.32 9.64 10.75 10.31
MnO 0.19 0.16 0.15 0.17 0.17 0.17 0.17 0.12 0.17 0.18 0.17
MgO 11.29 7.34 6.87 5.92 6.92 6.95 7.05 4.96 5.40 6.16 6.25
CaO 11.00 10.40 19.08 18.90 10.14 10.00 10.29 21.16 7.28 8.84 10.44
Na2O 0.83 3.05 0.15 0.33 3.35 3.36 3.03 0.13 5.00 3.63 2.54
K2O 0.10 0.47 0.03 0.03 0.35 0.24 0.25 0.01 0.50 0.36 0.25
P2O2 0.03 0.09 0.09 0.10 0.08 0.08 0.08 0.05 0.11 0.08 0.09
LOI 2.33 2.14 3.61 3.50 1.53 2.35 2.22 4.21 2.23 1.92 1.05
Total 100.31 100.47 100.40 99.68 100.24 100.35 99.64 100.22 100.24 100.24 100.28

ppm
Nb 4 1 2 2 1 1 2 1 1 1 2
Zr 18 53 53 65 51 52 53 32 69 52 57
Y 16 23 20 21 25 26 24 13 30 23 26
Sr 78 196 15 14 163 216 187 9 402 199 127
U 2 2 3 5 2 2 2 4 2 2 2
Rb 3 9 2 1 7 3 4 2 9 7 5
Th 2 2 2 2 2 2 2 2 2 2 2
Pb 22 10 18 16 10 7 12 15 8 12 13
Ga 13 16 14 15 18 17 18 21 16 18 18
Ni 144 81 60 44 47 41 45 37 35 40 39
Co 55 42 47 45 38 39 43 39 36 46 36
Cr 619 562 171 600 126 99 136 224 59 29 100
V 308 288 286 312 309 325 325 255 296 375 321
La 4 4 4 4 4 4 4 6 4 4 4
Ce 3 6 3 9 6 15 10 3 6 8 15
Nd 4 6 5 12 6 13 9 8 5 7 13
Ba 58 51 29 20 29 70 49 23 49 9 56
Hf 8 7 5 3 6 6 7 1 7 7 6
Sc 83 45 61 55 48 61 49 51 36 30 46
Nb/Y 0.3 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1
Ti/V 7.2 17.9 18.4 20.4 16.8 16.4 16.2 15.1 15.1 14.7 17.7
Zr/Nb 4.5 53.0 26.5 32.5 51.0 52.0 26.5 32.0 69.0 52.0 28.5
Zr/Y 1.1 2.3 2.7 3.1 2.0 2.0 2.2 2.5 2.3 2.3 2.2

Total Fe is expressed as FeO*
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suggested an arc-like environment (suprasubduction) for
the origin of the Pozant›-Karsant› ophiolite using data
from the ultramafic and mafic cumulate rocks. Moreover,
a suprasubduction zone origin for the eastern
Mediterranean ophiolites has been suggested in other
studies (Pearce et al. 1984; Robertson 1994; Parlak
1996). Thus, the mid-ocean ridge geodynamic
environment of origin for the Pozant›-Karsant› ophiolite
is not reliable in the light of both the eastern

Mediterranean tectonic frame and the geochemistry of
ophiolites in general.

Fine-grained doleritic to gabbroic dykes cutting the
basal metamorphic sole and the mantle tectonites in the
Pozant›-Karsant› ophiolites are geochemically similar to
the tholeiites and basaltic andesites of island arc affinities
(Lytwyn & Casey 1995). In this study, the dykes intruding
the lower crustal section (both ultramafic and mafic
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cumulates) of the Pozant›-Karsant› ophiolite exhibit
similar geochemical character to the Pozant›-Karsant› and
the Mersin ophiolites (Figures 4, 5 & 6). All the lines of
evidence in this and previous studies show that in the
north of the Anatolide-Tauride platform the Pozant›-
Karsant› ophiolite originated at the beginning of the Late
Cretaceous in a suprasubduction zone tectonic setting
related to the north-dipping subduction of the northern
branch of the Neo-Tethyan ocean. This intra-oceanic
subduction led to the formation of a metamorphic sole
followed by dykes intruding both the metamorphic sole
and the oceanic crust. The Pozant›-Karsant› ophiolite
continued to accrete mélange after the dyke
emplacement and was finally obducted over the Tauride
platform during Late Cretaceous or Early Paleocene time
(Lytwyn & Casey 1995; Polat & Casey 1995). The
geochemistry of the dyke rocks suggests that the primary
magma intruding the Pozant›-Karsant› ophiolite is
compositionally similar to those observed in modern
island arc tholeiitic sequences. 
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Figure 4. (a) Y and (b) Zr versus TiO2 (c) Ti/Zr versus Zr plots of the
mafic dyke swarms in the Pozant›-Karsant› ophiolite. Data for IAB and
BABB are from Knittel & Oles (1995). Data from the Pozant›-Karsant›
and the Mersin ophiolite are from Lytwyn & Casey (1995) and Parlak &
Delaloye (1996), respectively.
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