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Abstract: In previous studies, the stratigraphy of the Menderes Massif was divided into a Precambrian core and
Mesozoic cover associations, the core consisting of gneissic granites and high-grade schists and the cover of mica
schists and platform-type marbles. It has also been proposed that the two associations are separated by an
unconformity although nowhere is this relation clearly observed.

In this study, the Bafa and Kavaklidere areas in the southern part of the massif have been examined. In the
Bafa area, Mesozoic mica schists with marble lenses occur in the lowermost parts of the sequence and are overlain,
along a gradational boundary, by a Mesozoic carbonate succession. Gneissic granites cut the detrital parts of this
Mesozoic succession and the boundary is clearly intrusive, characterised by enclaves of schist within the granite
body and seams and veins of granite cutting the surrounding mica schists. In the Kavaklidere area, Mesozoic
metaclastics and platform marbles are underlain by the Permo-Carboniferous Goktepe Formation which consists
of black marble, chert and quartz-mica schist intercalations. The gneissic granites in this region also have intrusive
contact relations with surrounding rocks and cut the Géktepe Formation.

The granites were emplaced syntectonically during the main Menderes metamorphism which took place in Late
Cretaceous—Early Cenozoic time and included strongly assimilated mica schist zones and patches. These granites
are geochemically S-type, peraluminous and of syn-collisional character.

The subdivision of the stratigraphy of the massif into core and cover associations based on the position of the
gneissic granites is incorrect. The Lycian Nappes were thrust northward coevally with the main Menderes
metamorphism, and the Menderes platform was recumbently folded. Along the cores of these north-verging folds,
granitic melts were emplaced syntectonically and strongly assimilated, and rejuvenated the lower parts of the
platform sequence. Inversion of the metamorphic grade and vertical repetition of gneisses and mica schists in some
areas are consequences of recumbent flow folding.
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Menderes Masifinde Cekirdek-Ortii Problemi ve Bélgesel
Olcekli Gnaysik Granitlerin Yerlesim Mekanizmasi

Ozet: Menderes Masifi'nin stratigrafisi énceki calismalarda Prekambrien cekirdek ve Mesozoyik 6értii topluluklar
olmak Uzere iki ana bolime ayrilmis, cekirdek bolimunin gnaysik granitler ve yiksek dereceli sistler, orti
serilerinin ise sisler ve platform tird mermerlerden olustugu belirtilmistir. Ayrica, ¢cekirdek ve 6rtu topluluklarinin
birbirlerinden agisal uyumsuz dokanak boyunca ayrildidi ileri sirtlmesine ragmen bu iligki hicbir yerde acik olarak
gozlenememigtir.

Bu calismada Menderes Masifi'nin giiney bélimuinde bulunan Bafa ve Kavaklidere alanlari incelenmistir. Bafa
alaninda mermer mercekleri iceren Mesozoyik yasl mika sistler stratigrafik olarak alt dizeyleri olusturur ve Uste
dogru dereceli bir kusak boyunca Mesozoyik Karbonat istifine ge¢mektedir. Gnaysik granitler alttaki Mesozoyik
kirintili dizeyleri kesmekte, dokanak ise intrisif ¢zelliktedir. Granitler icinde mika sist anklavlari bulunurken,
sistlerden olusan ¢evre kayalarini Kesen granit bant ve damarlari dokanak boyunca yeralmaktadir. Kavaklidere
alaninda Mesozoyik yaslt metakirintili ve mermer istifinin altinda siyah mermerler, ¢ortler ve kuvars mika sistlerden
olusan Permo-Karbonifer yasli Goktepe Formasyonu yeralir. Gnaysik granitler bu alanda da ¢evre kayalara
sokulmus, dogrudan Goktepe Formasyonu'nu kesmektedir.

Granitler sintektonik olarak yerlesmis olup icirisinde ileri derecede yutulmus mika sist zon ve yamalari bulunur.
Jeokimyasal 6zellikleri gliney Menderes Masifi'ndeki gnaysik granitlerin S-tipi, peraluminus ve ¢arpisma sirasinda
yerlesmis granitler olduguna isaret etmektedir. Granitler, Ana Menderes Metamorfizmasi sirasinda Geg
Kretase-Erken Senozoyik déneminde cevre kayalarini olusturan sistlerin icierisine sintektonik olarak
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yerlesmislerdir. Bu nedenle gnaysik granitlerin konumu esas alinarak yapilan cekirdek ve orti siniflamasi yanlhgtir.
Likya naplari, bu sirada kuzeye dogru itilmis, buna bagh olarak Menderes platformu boélgesel dlcekli kivrimlarla
deformasyon gecirmistir. Granitik ergiyikler kuzeye devrik kivrimlarin gekirdekleri boyunca yerlesmis ve ayni
zamanda platformun alt bélimlerini ergime ve yutmalar yoluyla mobilizasyona ugratmustir.

Anahtar SoézcukKler: gnaysik granitler, sintektonik granitler, Menderes Masifi, Bati Anadolu

Introduction

In the western part of Turkey, the Menderes Massif —
with a regionally metamorphosed rock succession of
gneissic granites, mica schists and massive marbles —
forms the structurally lowest tectonic unit, upon which
tectonic slices of mélange rocks of the izmir-Ankara Zone
in the north and the Lycian belt in the south lie as nappes
(Figure 1).

In previous studies, the stratigraphy of the Menderes
Massif has been considered to consist of two major rock
associations; the lower part was named the “core” and
the upper part the “cover” of the massif (Schuiling 1962;
Dirr 1975; Dora et al. 1992). The core is considered
Precambrian in age and the cover Palaeozoic, Mesozoic
and Tertiary. The core comprises various types of
gneisses and high-grade schists (Schuiling 1962) and the
cover Palaeozoic and Mesozoic schists and marbles. The
intrusion age of the orthogneisses of the core succession
has been determined by radiometric methods to range
from 570 to 520 Ma (Hetzel & Reischmann 1996; Loos
& Reischmann 1999; Koralay et al. 2001) and 566 to
541 (Gessner et al. 2004).

Although the metamorphic rocks of the Menderes
Massif crop out extensively in western Turkey, the
boundary of the so-called core and cover associations has
not been observed anywhere nor described unequivocally.
In the Kavaklidere area, the boundary was reported as an
unconformity characterised by conglomerate horizons
with clasts of leucocratic magmatic rocks which were
interpreted to be derived from the underlying
Precambrian granites (Konak et al. 1987). In the Selimiye
region along the southern flank of the massif, the same
boundary was described as a shear zone (Bozkurt 1994,
1996; Bozkurt & Park 1994, 1997a, 1997b, 1999,
2001; Hetzel & Reischmann 1996; Loos & Reischmann
1999; Bozkurt & Satir 2000; Bozkurt & Oberhénsli
2001; Lips et al. 2001; Whitney & Bozkurt 2002), and
as an incipient detachment zone along which a young
granite intruded by Bozkurt & Park (1994, 1997a,
1997b). There also claims that this contact is a south-
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facing thrust fault (Ring et al. 1999, 2001; Gessner et al.
2001a, 2001b, 2001c; Régnier et al. 2003). On the
other hand, more recently it is suggested that the contact
was contractional with top to the N-NNE sense of
shearing, then inverted to extensional with top to the
S—SSW sense of shearing during Eocene-0Oligocene times
(Lips et al. 2001; Whitney & Bozkurt 2002).

Boray et al. (1973), after mapping a large region
between Milas and Tavas along the southern edge of the
massif, pointed out that the contact relationship between
the core and cover series could only be resolved after
deciphering the origin of the core gneisses.

The stratigraphy of the upper parts of the massif,
which is called the cover succession, is relatively better
known (Figure 2). The cover series consists, in its lower
half, of a very thick succession of mica schists, quartz-
mica schists, quartzites, black cherts and lenses of dark
grey marbles. Carboniferous and Permian ages have been
determined from the fossil contents of marbles in the
Kavaklidere area (Onay 1949; Konak et al. 1987; Glingér
& Erdogan 2001). This Palaeozoic succession is
unconformably overlain by a Mesozoic sequence (Konak
et al. 1987) which starts at its base with purple to violet
sandstones, conglomerates and phyllites (Figure 2).
There are thin lenses of dolomitic limestones and mafic
volcanic lenses (Gingér & Erdogan 2001) in the upper
parts of this detrital Triassic succession, which
gradationally passes upward into a thick platform marble
succession.

Around Milas, the detrital Triassic section includes
lenses of quartz conglomerates (Konak et al. 1987) and,
around Selcuk, dark gray thinly bedded cherts
interbedded with phyllites, pelagic marbles and mafic
volcanic intervals are present (Gingor & Erdogan 2001).

The Mesozoic marbles in the southern part of the
massif consist of gray and light grey dolomites and
dolomitic marbles in the lower part and white to dark
gray massive marbles in the upper part of the series
(Boray et al. 1973; Diirr 1975; Konak et al. 1987; Ozer
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Figure 1.  Map showing main tectonic belts of western Anatolia and the location of the study areas.
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1998; Ozer et al. 2001). These upper sections include
emery lenses which are interbedded with massive, Upper
Cretaceous rudist-bearing marbles (Dirr 1975; Ozer
1998). In the uppermost part of the platform-type
marbles, there are bioclastic and intraformational
limestone breccias that pass gradationally upward into
red, green and grey, Campanian—-Maastrichtian pelagic
marbles (Dirr 1975; Konak et al. 1987; Ozer 1998).
The pelagic marbles grade into phyllites and schists with
blocks of carbonate rocks, mafic volcanic rocks and
peridotites (Konak et al. 1987; Gingoér 1998; Gungor &
Erdogan 2001; Ozer et al. 2001).

The regional metamorphism of the Menderes Massif is
of the high temperature-medium pressure Barrovian
type and is dominantly in the greenschist facies, but in
extensive areas it reaches up to amphibolite facies, and is
characterised by almandine-staurolite-sillimanite-kyanite
mineral assemblages (Evirgen & Ataman 1982; Bozkurt
1996; Whitney & Bozkurt 2002; Régnier et al. 2003).
The eclogite and granulite facies are also reported in close
association with gneissic granites and gneisses, and these
high-grade metamorphic events have been considered to
be Precambrian (Candan 1994a, 1994b, 1995, 1996;
Candan et al. 1998, 2001). It was previously suggested
that the main metamorphism of the massif was related to
collision in the Early Cenozoic which resulted in the burial
of the Menderes platform beneath the load of the Lycian
Nappes and the maximum depth of the burial was
considered to be up to 15 km (Sengér & Yiimaz 1981).
The massif was then later exhumed by detachment faults
during Miocene time (Bozkurt & Park 1994, 1997a,
1997b, 1999; Emre & Sozbilir 1995; Hetzel et al
1995a, 1995b, 1998; Kogyidit et al. 1999; Bozkurt
2000, 2001a, 2001b, 2002, 2003; Seyitoglu et al.
2000, 2002; Isik & Tekeli 2001; Gessner et al. 2001b;
Isik et al. 2003; Ozer & Sozbilir 2003; Rimmelé et al.
2003a, 2003b; Ring et al. 2003; Bozkurt & Sozbilir
2004). The E-W-trending graben systems of western
Anatolia are thought to have been initiated in the Early
Miocene and are still active (Seyitoglu et al. 1992). But,
recent works suggest that the grabens commenced to
existance during the Pliocene and the extension in
western Anatolia is expressed by two-stage episodic event
(see Kogyigit et al. 1999; Bozkurt 2000, 2001a, 2001b;
Bozkurt & Sozbilir 2004 for further information).

In the present study, the stratigraphy of the core and
cover series of the Menderes Massif was studied in the

Bafa and Kavaklidere areas (Figure 1), and the contact
relations of these two successions were examined. In
these two different areas, 1/25,000 scale geological
mapping has been done. The so-called core rocks are
typically gneissic granites in the Bafa area, forming the
pronounced granitic topography of the Begparmak
Mountains. The contact of the gneissic granites is clearly
observed and is traceable laterally for long distances. The
map pattern and detailed characteristics of this boundary
provide evidence that bears on the genesis and
emplacement mechanism for granites in the massif. The
Bafa area is also of particular interest because the gneissic
granites and the stratigraphically well-known Mesozoic
carbonate succession occur in close proximity to one
another, and well-defined stromatolitic dolomites of the
lower Triassic, and rudist-bearing middle and bioclastic
and pelagic facies of the uppermost part of the carbonate
succession are recognized in spite of metamorphism.

In the Kavaklidere area, our mapping began in the
vicinity of Goktepe (Figure 1), where the cover series has
been dated palaeontologically in some detail (Onay 1949;
Konak et al. 1987). In the present study, the rock units
cropping out near Goktepe were traced toward the
granite contact. Although the metamorphic grade
increases and fossils are not preserved near the granite
body, the units are still recognisable on the basis of
lithological and facies characteristics.

In this study, we also collected 18 relatively
homogeneous samples from the gneissic granites in the
Bafa area and analysed them geochemically to elucidate
their tectonic settings.

Bafa Area

The Bafa area is located in the southwestern part of the
Menderes Massif (Figures 1 & 2). The northern part of
the study area is underlain by gneissic granites and, in the
southern and western parts of the area, a thick succession
of mica schists and marbles crops out (Figures 3 & 4).

Metasedimentary Succession

Along the Zobran Peninsula (Figure 3), a nearly complete
Mesozoic carbonate succession is present. The lower
parts of this succession consist of yellowish-grey
dolomite, green calc-schist and grey mica schist, and this
intercalation passes gradationally downward into mica
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20



B. ERDOGAN & T. GUNGOR

Figure 4.

Photographs of the (a) primary structures in the carbonate section of the Menderes Massif and (b) megalodon fossils (M) (Zobran

Peninsula). Hammer in (a) is 33-cm long; pencil in (b) is 13-cm long.

schist and quartz-mica schist with scarce lenses of yellow
marble (section X—X" in Figure 3). There the lowermost
mica schists of the platform sequence are cut by the
gneissic granites. This crosscutting relationship will be
described below. Overlying this lower metaclastic
succession are light grey dolomites and Ilaminated
dolomitic marbles. Primary stromatolitic laminations are
still recognisable in the dolomitic horizon (Figure 4a). The
stromatolitic dolomite horizon contains massive light-
grey marble beds. From one of these massive marble
beds we have collected thick-shelled bivalve fossils,
probably Megalodon sp. (Figure 4b), which may indicate
a Late Triassic—Jurassic age. The upper parts of the
succession consist of grey and dark-grey massive marbles
with poorly preserved rudist remains (section X-X' in
Figure 3). Interbedded with massive marbles is a 20-m-
thick emery lens that extends laterally for 300 m. This
part of the carbonates resembles the Upper Cretaceous
zone of the Mesozoic Menderes platform (Figure 2). The
uppermost part of the Mesozoic carbonates is shown in
Figure 5, in which massive grey marbles host an emery
lens and contain poorly preserved rudists. These marbles
are overlain by intraformational limestone conglomerates
which pass gradationally upward into pink pelagic
marbles. This uppermost section of the Mesozoic
carbonate platform is typical in the Menderes Massif, and
the red limestones yield Maastrichtian foraminifers and
nannoplankton (Ozer et al. 2001). In the map area, the
red and pink pelagic limestones are overlain by green
mica schists with quartz conglomerate lenses which
resemble the Selcuk Formation of Late Cretaceous-

?Palaeocene age (ErdoJan & Gungoér 1992; Gungor
1998). Above these Upper Cretaceous mica schists is a
carbonate nappe, in the lateral continuation of which
many emery lenses have been excavated. This is a good
example of imbrication within the carbonate section of
the Menderes platform along its southern border.

Within the lower parts of the Mesozoic carbonates,
there is a mafic volcanic lens (Figure 5), and this horizon
was reported to be Late Triassic in age in the Kavaklidere
area by GlUngér & Erdogan (2001). The Mesozoic
carbonates vary in thickness laterally and interfinger with
mica schists along strike as shown in Figures 3 & 5.

Gneissic Granites

Gneissic granites crop out to the north and northeast of
Lake Bafa (Figure 2). The granites are homogeneous and
spheroidally weathered; ~N-S-trending vertical cross
joints are recognisable at long distances and form the
most diagnostic structure of the gneissic granites. Planar
and linear fabrics are present in every outcrop and the
same penetrative foliation and lineation are observed in
all road cuts within the Besparmak Mountains. The
intensity of deformation is uniform throughout the
gneissic gneisses, from the border zone to areas many
kilometres within the granite body. Deformation of the
granites was described by Bozkurt & Park (1997b) and
Gessner et al. (2001a).

The granites preserve holocrystalline texture with
large K-feldspar porphyroclasts and slightly deformed

21



GRANITIC GNEISSES OF THE MENDERES MASSIF, W TURKEY

megacrysts (up to 5 cm in length) (Figure 6a, b). These
rocks are two-mica granites and are generally leucocratic.
In places, biotite content increases and, thus, the granitic
rocks become melanocratic. The compositional changes
are diffuse and are not related to different phases of
magma emplacement. In the contact zone and within the
granite body, widespread engulfment and resorption of
the mica schists (country rocks) are observed. The mica
schists are strongly melted and digested by the granites,

and constitute more than 50 volume percent of the
outcrops of the granitic mass in the Cine region. Along
the contact zone of the granites in the Zobran Peninsula,
resorbed mica-schist enclaves are characteristic (Figure
7a, b). Near the resorbed zone, the granite is
melanocratic because of high biotite content, and
becomes leucocratic away from the resorption zones,
indicating strong digestion of the country rocks by the
granitic melts.
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Figure 5.

Geologic map of the eastern margin of the Lake Bafa area. See
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Figure 6.
leucogranites. Hammer is 33-cm long.

Photographs of mica-schist enclaves (ms) within coarse-grained leucocratic granite (lg). Note the large feldspar porphyroclasts in the

Figure 7.

Although the contact zone of the granite is ill-
preserved, there are areas where intrusive and
crosscutting relations are clearly observed (locations
marked with stars on Figures 3 & 5). The granites
intrude and cut the surrounding mica schists; they also
include schist enclaves of variable sizes (Figure 8a). Some
enclaves have sharp boundaries (Figure 8b) where most
are consumed by the granites (Figure 8c). As seen in
Figure 8d, enclaves of mica schist are also cut by thin
granitic veins.

Within the country-rock mica schists, there are fine-
grained, leucocratic granitic seams, and toward the

Photographs of partly digested mica-schist enclaves (ms) within melanocratic granite (mg). The scale bar is 15-cm long.

granite contact the frequency of these seams increases, as
is seen to the NW of Bucak village (Figure 5).

The contact along the Zobran Peninsula is intrusive
and is characterised by abundant enclaves of schist. At
this location, a yellow dolomitic marble lens is cut and
engulfed by the granite at the contact (Figure 4a). These
mica schists and yellow marble lenses pass gradationally
upward into Mesozoic platform-type marbles suggesting
a Triassic or Jurassic age for this metaclastic succession.
The granites cut these metaclastic rocks and were
emplaced syntectonically during metamorphism and
deformation. The fold vergence of granitic seams
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Figure 8.

Close-up views from the gneissic granite and mica schist contact in the Lake Bafa area. (a) Igneous contact between gneissic leucocratic

granites (gg) and the country-rock mica schists. The granites crosscut the main foliation in the schists; (b) leucocratic metagranites (gg)
also occur as vein-like bodies intrusive into mica-schist enclave (ms); (c) a close-up view of the intrusive relationship between coarse-
grained leucocratic granite and mica schist. Note local occurrence of thin granite seams (S, arrowed) crosscutting the main foliation in
the schists; (d) a sill-like leucocratic granite seam oriented parallel to the foliation in the schist. The field relations are consistent with
syntectonic emplacement. The folded structure is obvious; it is asymmetric with northern limbs thinned, indicating northward tectonic
movement. Man in (a) is 1.70-m tall and hammer in (b-d) is 33-cm long.

indicates northward tectonic transport, and the northern
limbs of mesoscopic folds are strongly attenuated (Figure
8d).

The contact between the granite and the structurally
overlying mica schists dips 40°-50° southward near
Bucak (Figure 5), whereas it dips eastward or is nearly
vertical in the Zobran Peninsula; farther north the same
boundary is vertical or overturned (Figure 3). Along the
overturned boundary, the granite is intrusive into the
mica schists and leucocratic aplitic veinlets occur
characteristically in the mica schists. Similar relationships
have also been documented by Mittwede et al. (1995a,
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1995b, 1997). Also, about 5 km away from the granite
contact, a leucocratic granite apophysis is intrusive into
the schists containing a lense-shaped marble (Figure 2).
The marble-bearing schists, at this location, are similar to
marble-schist intercalations of the Mesozoic association.

Toward the contact of the granitic body in the Bafa
area the grade of metamorphism increases most notably
in the mica schists (Basarir 1970). The schists are
typically rich in pink almandine and contain coarse mica
minerals (biotite and muscovite) within a 300 m-wide
zone along the granite contact. The index of crystallinity
in the mica schists is markedly high. Close to the granite
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contact there are garnet felses (Figure 9), which are mica
schists with red almandine crystals up to 8 mm in
diameter; garnets make up 40-60% of the rock. The
garnet felses are exposed along the entire boundary of
the gneissic granites along the southern flank of the
Menderes Massif; they are formed in association with the
intrusive body. Both biotite-rich mica schists with
abundant granite veinlets/lenses, and red almandine-
bearing garnet-mica schists typically occur near the
granite contact. Granite lenses (10-20 ¢m in diameter)
first appear in the mica schists within a 300-m-wide zone
along the granite contact and become abundant towards
the granite.

Figure 9.

Close-up view of garnet-fels along the contact between
gneissic granite and mica schist to the north of Irmadan
village (Figure 10). Diameter of lens cap is 5 cm.

Another characteristic feature of the contact zone is
that the boundary is nowhere sharp, but rather irregular
with mica-schist patches/zones interfingering with
granites at all scales. Within such zones, aplitic veins,
granitic veinlets concordant with foliation in the schists
and crosscutting granitic veins are common all along the
gneissic granite—mica schist contact with no exception.

Both the granites and surrounding mica schists are
foliated, but the boundary zone preserves its primary
intrusive nature, and no sheared zones are present as
suggested by Bozkurt & Park (1994), who proposed that
this zone corresponds to a south-facing extensional shear
zone and that the southern Menderes Massif is an
incipient core complex. In the area between Lake Bafa and
Bagarasi, the boundary between the schists and the
gneissic granite is not only diffuse and gradational, but
also trends NNE and become vertical and is overturned

locally (Figure 3); this observation is not consistent with
the geometry of a proposed south-dipping detachment.

Kavakiidere Area

In the Kavaklidere area (Figure 1), a geological map of
the Goktepe area (about 25 km east of Kavaklidere
outside of the map area shown in Figure 10) and its close
vicinity was prepared. In the Goktepe area, Menderes
Massif comprises low-grade metamorphic (lower
greenschist facies) rocks; the metamorphic grade is so
low that fossils are preserved and can be observed easily
on weathered surfaces. The metamorphic sequence
commences with black limestones, phyllites, cherts and
pink-grey quartzites that make up the fusulinid-bearing
Permo-Carboniferous Goéktepe Formation (Figure 2).
Black limestones that form the uppermost part of the
Goktepe Formation, just below the overlying Mesozoic
succession, yielded Epimastopora sp., Gymnocodium
bellerophontis, Gymnocodium sp., Globivalvulina sp.,
Mizzia velebitana, Protonodosaria sp., Pacyphloia ovata,
Stafella sp., Nankonella sp., Baisalina sp., Hemigordius
sp., Agathammina parilla, Dagmarita chanakchiensis,
Dackeralla sp. Frondina permica fossils which are
consistent with a latest Permian age. The crystalline
limestones, however, contain coral, fusulinid and crinoid
remains of possibly Carbonifereous—Permian age (Onay
1949; Konak et al. 1987). The black cherts are thinly
bedded, and are interbedded with phyllites and
limestones. The unit is overlain by Upper Triassic violet
sandstones, quartz conglomerates and phyllites that
grade upward into a thick platform-type dolomitic
limestone succession. In the lowermost part of the
dolomitic limestones, there is a mafic volcanic horizon
where volcanic rocks are intercalated with thinly bedded
yellow limestones (Gingér & Erdodan 2001). The
limestone intercalations yielded Lamelliconus multispirus,
Lamelliconus sp., and Aulotortus sp. fossils that suggest a
Late Triassic age. The platform carbonates host emery
lenses, and are interbedded with rudist-bearing Upper
Cretaceous limestones (Ozer et al. 2001). Atop the
carbonate succession, there are thinly bedded pelagic
marbles and mica schists with mafic volcanic and
metaserpentinite blocks (Konak et al. 1987). This unit
comprises the uppermost part of the Menderes platform
and is of Late Cretaceous age (Konak et al. 1987,
Erdogan & Giingér 1992; Ozer 1998). The fossiliferous
Palaeozoic units in the Goktepe region continue laterally
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toward the granite contact (Figure 10). Near the gneissic
granite, the metamorphic grade increases dramatically
and there are no reported fossils; nevertheless, their
facies and stratigraphic order are easily recognised.

In the map area (Figure 10), ismail Dag is underlain
by Mesozoic marbles, the upper parts of which contain
emery zones. Atop these carbonates, pink pelagic marbles
and metaserpentinite-bearing Late Cretaceous mica
schists are present. West of Kaplancik village (Figure 10)
below the Mesozoic carbonates, there are mafic volcanic
lenses within the metaclastic rocks, which resemble the
Upper Triassic detrital unit of the Goktepe area (Glngér
& Erdogan 2001). Below the metaclastic rocks lie black
limestones, black cherts, dark-grey mica schists and
quartzite intercalations — typical facies of the Permo-
Carboniferous GoOktepe Formation. In this area,
limestones are recrystallised.

At the base of the Goktepe Formation, there are
conglomerate horizons around Mesken and Yukarikdy
villages (Figure 10), which were interpreted, by Konak et
al. (1987), as basal conglomerates of the cover series.
However, these conglomerate horizons are laterally
discontinuous and lensoidal in shape, pinching out in the
quartz-mica schists of the study area. The discontinuous
conglomerate lenses are repeated both vertically and
laterally and they are not confined to a distinct horizon.
They appear to be formed as channel-fills in the quartz-
mica schist matrix and do not resemble a basal

conglomerate. These metaconglomerates include light-
grey, elongate and deformed blocks and clasts (Figure
11a). Original textures are still preserved in the deformed
particles (Fig 11b) and thin-section study shows that they
are porphyritic-volcanic rock fragments. Phenocrysts of
easily recognisable euhedral feldspar and quartz grains
are set in a light-grey matrix. The pebbles display typical
volcanic texture (Figure 11b), and the rocks are identified
as porphyritic rhyolites. We speculate that these pebbles
are similar to rhyolitic volcanic rocks of the Lower
Cambrian succession known as the Sandikli porphyroids
(Erdogan et al. 1997, 2000, 2001) in the Sandikli area
of the Afyon province which lies in Taurus Mountain
Range (Gutnic et al. 1979). The conglomerates are
polygenic and comprise dark grey chert and quartzite
clasts in addition to the leucocratic rhyolites. (there are
also quartz-tourmaline [probably tourmalinite] pebbles!)

The quartz-mica schists continue stratigraphically
downward until the gneissic granites, where the granites
are intrusive. Along the contact, the granites contain
abundant enclaves of metaclastic rocks. To the west, the
granite cuts the conglomerate horizons and intrudes the
Permo-Carboniferous Goktepe Formation. For example,
along the old Cine-Yatagan road, the granite intrudes the
black chert, phyllite and limestone intercalations of the
Permo-Carboniferous Goktepe Formation.

The contact zone of the gneissic granites is best
observed along a section shown in Figure 10. Thick

Figure 11. (a) A close-up view of metaconglomerates in the metasedimentary sequence of the Menderes Massif in the Kavaklidere
area (hammer is 33-cm long); and (b) photomicrograph showing porphyritic texture of the felsic metavolcanic pebbles in
the metaconglomerates. Please note that quartz (Q) and feldspar phenocrysts (F) are surrounded by a microcrystalline
matrix (Mx), and a large quartz phenocryst in the central part of the photograph is resorbed (arrowed). Original
undeformed matrix of the volcanic rock is preserved in this embayed area (see arrow). Width of photo is 2 mm.
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quartz-mica schists below the Goktepe Formation are
exposed at this location. Toward the contact zone, seams
of leucocratic gneissic granite appear in the schists and
their frequency increases toward the granite; finally, at
the contact, large enclaves of mica schist occur in the
granite. Crosscutting relationships are clearly seen along
the contact where granitic veins are common and intrude
both the enclaves and the country rocks. As in the Bafa
area, garnet felses are present in the contact zone.
Foliation is characteristic both in the contact zone and
within the granite body. The granites are of the two-mica
type and the relative amounts of white and black micas
varies over short distances so that the colour of the
granite changes from light grey to dark grey. These
changes are seen even around engulfed enclaves with
diffuse boundaries.

Geochemistry of the Gneissic Granites

Eighteen samples of granitic rocks from the Bafa area
were analysed (Table 1). Homogeneous granitic outcrops
away from assimilated mica-schist zones were chosen for
sampling. Three samples were collected from the aplitic
phases of the granites that occur in the contact zone and
within the country-rock mica schists. Two samples were
taken from the typical augen gneisses, 2 km away from
the contact zone within the granite body. Five samples of
grey and four samples of leucocratic granite were
collected along a traverse that began at the contact zone
and continued 10 km into the granitic body. An additional
three samples from tourmaline-bearing, muscovite-rich
and biotite-rich granites were collected.

The major-oxide analyses were made by atomic
absorption spectrophotometry, and the trace elements
were analysed by X-ray fluorescence in the geochemistry
laboratory of the Geological Engineering Department of
Dokuz Eylil University.

In the nomenclatural diagram of Debon & Le Fort
(1983) that uses normative values of Si, Ca and alkali
components, two aplite samples are defined as tonalite,
and the rest (including the third aplite) cluster within the
granite field (Figure 12a). In the diagram of Maniar &
Piccoli (1984) which uses major-oxide contents, all of the
samples plot as peraluminous granites (Figure 12b).

The tectonic setting of the samples appears to be syn-
collisional based on their major-and trace-element
contents (Figure 12c, d). The major-oxide compositions
of the samples support an S-type classification of the
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granites (Figure 12e) on the diagram of Chappell & White
(1974) in agreement with the results of Bozkurt et al.
(1992, 1993, 1995).

In both the nomenclature and tectonic-discrimination
diagrams, the granite samples cluster together and do not
show pronounced scatter, indicating close geochemical
affinity and genetic relationships, as indicated also by field
studies.

Discussion and Conclusions

In the Kavaklidere area, the lowermost part of the
Menderes metamorphic rocks consists of a very thick
quartzite and mica schist intercalation. There are
lensoidal channel-fill conglomerate horizons in the upper
part of this detrital succession. The conglomerates include
abundant rhyolite pebbles which were probably derived
from Lower Cambrian units of the Taurus Range
(Erdogan et al. 1997, 2000, 2001). Although the
rhyolite clasts are deformed, they still display preserved
primary textures and there is no indication of an earlier
high-grade metamorphism as envisaged for the so-called
core association (Konak et al. 1987; Candan 1994a,
1994b, 1995, 1996). Overlying the metaclastic sequence
is an alternation of quartzites, mica schists, black marbles
and black cherts belonging to the Late Palaeozoic Goktepe
Formation. The Mesozoic succession  overlies
unconformably the Goktepe Formation and is
represented by a sequence of detrital sediments and
platform-type marbles. In the Bafa area, only the detrital
and overlying carbonate rocks of the Mesozoic succession
are present.

The gneissic granites syn-tectonically intruded the
lower parts of the Triassic detrital sequence in the Bafa
area and the Upper Palaeozoic sections of the Kavaklidere
area during the main Menderes metamorphism, which
occurred in Late Cretaceous—Early Cenozoic time. The
granites strongly assimilated the country-rock mica
schists, and kilometers-long, strongly resorbed schist
patches are abundant in the granite body. In most
outcrops, it is quite difficult to estimate how much initial
melt and how much country rock were involved in the
production of the final granite bodies. The geochemical
studies we have done, as well as earlier work (Bozkurt et
al. 1993, 1995), indicate a peraluminous, S-type
classification of the granites, suggesting an origin from a
sedimentary source.
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Figure 12. Geochemical discrimination diagrams for Menderes granites based on major- and trace-element contents. (a) Q vs P
discrimination diagram after Debon & Le Fort (1983); (b) Maniar & Piccoli (1989); (c) Rb vs SiO, diagram after Pearce
et al. (1984); (d) tectonic discrimination diagram after Batchelor & Bowden (1985); (e) total alkali diagram after Chappell
& White (1974).
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The southern flank of the Menderes Massif in the
Mugla region is characterised by large-scale, north-
vergent overturned folds in the Mesozoic succession
(Boray et al. 1973; Konak et al. 1987; Bozkurt & Park
1997a, 1997b, 1999; Rimmelé et al. 2003b). Within the
granitic body, the same kind of overturned flow folding
has been deduced from our large-scale mapping,
indicating that the mica schists and gneissic granites are
intercalated at map scale. Okay (2001) also noted
stratigraphic and metamorphic inversions in the central
part of the massif around Aydin and interpreted the
dominant structure as a regional overturned recumbent
fold. To the north, in the vicinity of Demikdprd Dam near
Dibekdag (Figure 1), low-grade mica schists underlie the
gneissic granites and their boundary is quite diffuse,
characterised by abundant granitic seams in the country
rock. The gradational boundary zone is 4-5 km in width.
The same overturned relations are observed along
Bozdag Mountain north of Odemis (Figure 1); there the
gneissic granites overlie the mica schists and the
gradational boundary is 4-5 km wide. This last area,
where gneisses are interlayered with mica schists, has
been interpreted as thrust packages (Candan 1995;
Koralay et al. 2001), although their boundaries always
occur as wide diffuse zone. In all of these areas, however,
the dominant structures are overturned flow folds. The
granitic melts syn-tectonically intruded along the cores of
antiforms (Figure 13). The emplacement of granitic
magma, which was accompanied by crustal-scale
penetrative deformation and medium- to high-grade
regional metamorphism, was aided by zone-melting along
flow folds and shear zones. Syn-tectonic intrusion,
crustal-scale shearing and folding produced strong
assimilation of the detrital country rocks.

In regions of magma emplacement, the grade of the
regional metamorphism becomes higher, passing into a
magmatic stage within the granitic bodies. Within the
granitic bodies strongly assimilated mica-schist patches,
engulfed diabase and spheroidal mafic bodies and scarce
marble lenses that escaped digestion are preserved. From
these partly resorbed mafic bodies, granulitic and
eclogitic metamorphic facies have been described mostly
as relict parageneses and have been attributed to
Precambrian events (Candan et al. 2001). Any
metamorphic facies or events described from the granitic-
magma emplacement zones would be ill-advised, and the
high-grade metamorphic events defined for the Menderes
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Massif inside the greissic granites would need careful
reexamination.

In only a few areas, such as Lake Bafa and
Kavaklidere, the boundary between the granites and mica
schists is as narrow as 300-500 m and crosscutting
relationships are clearly observed. In other areas, this
boundary is as wide as 5 km and is characterised by
gradational zones with centimeters- to tens-of-meters
thick granites seams which show increasing abundance
toward nearby granitic bodies. In the Cine region,
sillimanite-bearing brown rocks with pronounced
polygonal texture (previously termed “leptites”; Dora et
al. 1988) are abundant. In fact, they are migmatites that
were nearly melted and crystallised with a polygonal
texture. Zircons from these migmatites and from granites
that clearly cut the same rocks yield nearly the same ages
(~540 Ma), as reported by Hetzel & Reischmann (1996)
and Reischmann et al. (2000); this situation is due to
resorption and rejuvenation of the earlier detrital rocks
by granite melt. The same age discrepancies are noted
along the southern flank of the massif between the
quartzites and the gneissic granites. They have yielded
nearly the same ages, and Reischmann et al. (2001) have
tended to interpret these discrepancies as an indication of
an unconformity, meaning that the 540 Ma granites were
eroded and the quartzites deposited unconformably
above them. However neither in that area nor anywhere
else in the Menderes Massif are any metaclastic rocks
found overlying the gneissic granites along a stratigraphic
boundary; rather, the boundaries are intrusive and
granites always cut the surrounding schists. The close
zircon ages between the granites and the adjacent quartz-
mica schists are most probably due to assimilation of the
detrital succession by granitic melt and rejuvenation of
the country rocks. The strong assimilation of country
rocks is clearly noted in the results of zircon-age studies
(Koralay et al. 2001). In every sample of granite collected
from contact zones or from far inside the granitic bodies,
zircon ages always show pronounced scatter.

The oldest parts of the Menderes metamorphics
should be studied in areas away from gneissic granite
intrusions. One of the best areas is the Mahmut Dagi
region (Erdogan & Gungér 1992) where Mesozoic
marbles form a huge E-W-trending anticline, in the core
of which there is a detrital succession consisting of
quartzites, mica schists, cherts, scarce grey marble lenses
and mafic metavolcanics, together attaining a thickness of
3-4 km.
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During the main Menderes metamorphism, tectonic
transport along the southern flank of the massif was
northward as the geometry of large-scale folds and
kinematic studies of the sole of the Lycian Nappes indicate
(Boray et al. 1973; Konak et al. 1987; Bozkurt & Park
1997a, 1999; Arslan 2001; Rimmelé et al. 2003b).
During this folding, granitic melts intruded the cores of
antiforms at deeper crustal levels where remobilisation of
crustal rocks was taking place (Figure 13). Emplacement
of granitic melts produced additional thermal fronts in
the core zones of antiforms in addition to the overall
regional metamorphism. Tectonic transport accompanied
by magma injection produced intensive penetrative
deformation and stretching lineations throughout the
massif.

The gneissic granites underlie a vast area of the
Menderes Massif, and we believe that production of such
a large volume of granitic melt requires, besides
rejuvenation, some kind of subduction below the
Menderes platform. In the northern part of the Menderes
Massif near Demirci and Akhisar, non-metamorphic
ophiolitic mélanges lie directly on regionally
metamorphosed rocks as Klippen (Basarir & Konuk 1981;
Kaya 1981; Candan 1988; Erdogan & Glngér 1992).
There probably was a south-dipping subduction zone
along the northern border of the Menderes platform
within Neotethys. As the Sakarya and Menderes
platforms (lying on either side of this ocean) collided by
subduction (probably both northward below the Sakarya
Continent and southward below the Menderes platform),
mélange prisms formed along the subduction zone and
were thrust southward atop the relatively early-formed
Menderes metamorphic rocks. Subduction along the
northern border, accompanied by northward thrusting of
the Lycian Nappes along the southern border, generated
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