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Abstract: Pan-African basement rocks and the Palaeozoic cover series of the Menderes Massif are exposed around
Derbent (Alaflehir) in the eastern part of the Ödemifl-Kiraz submassif. Garnet-mica schists of the Pan-African
basement are intruded by the protoliths of orthogneisses and Triassic leucocratic orthogneisses. This study focuses
on the geochronology and geochemistry of orthogneisses related to the Pan-African evolution of the Menderes
Massif in latest Proterozoic time. Geochemical data suggest that the orthogneisses were derived from S-type,
peraluminous, syn- to post-collisional granitoids of calc-alkaline affinity. Zircon grains from the orthogneisses,
which are euhedral with typical igneous morphologies, were dated by the Pb-Pb evaporation method. Single zircon
ages of two samples yielded 207Pb/206Pb ages of 561.5±1.8 Ma and 570.5±2.2 Ma. These ages are interpreted as
the time of protolith emplacement of the orthogneisses. This major magmatic episode of the Menderes Massif can
be attributed the Pan-African Orogeny which was related to the closure of the ocean basins and amalgamation of
East and West Gondwana.
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Menderes Masifi, Ödemifl–Kiraz Asmasifi Do¤usunda Derbent (Alaflehir)
Yöresinde Yer Alan Ortognayslar›n Jeokimyas› ve Jeokronolojisi:

Pan-Afrikan Magmatik Aktivite

Özet: Menderes Masifi’nin Pan-Afrikan yafll› temel kayalar› ve Paleozoyik örtü serileri Ödemifl-Kiraz asmasifi’nin
do¤usunda yer alan Derbent (Alaflehir) çevresinde yüzlek vermektedir. Pan-Afrikan temele ait granat-mika flistler,
ortognayslar ve Triyas yafll› lökokratik ortognayslar›n ilksel kayalar› taraf›ndan intrüze olmufllard›r. Bu çal›flma,
Proterozoyik sonunda Menderes Masifi’nin Pan-Afrikan evrimiyle iliflkili olan ortognayslar›n jeokimyas› ve
jeokronolojisi üzerinedir. Jeokimyasal veriler ortognayslar›n S-tipli, peralumino ve kalkalkalen karakterli, sin-/post-
tektonik granitoyidlerden türedi¤ini göstermektedir. Ortognayslardan ayr›lan tipik magmatik ve öz flekilli
zirkonlardan Pb-Pb evaporasyon yöntemiyle yafl tayinleri yap›lm›flt›r. ‹ki örne¤in tek zirkon 207Pb/206Pb yafllar›
ortalama 561.5±1.8 my ve 570.5±2.2 my olarak elde edilmifltir. Bu yafllar ortognayslar›n ilksel kayalar›n›n
sokulum yafl› olarak yorumlanm›flt›r. Menderes Masifi’ndeki bu ana magmatik olay okyanus havzalar›n›n kapanmas›
ve Do¤u ve Bat› Gondvana’n›n çarp›flmas›na ba¤lant›l› Pan-Afrikan orojeneziyle iliflkilendirilebilir.

Anahtar Sözcükler: ortognays, jeokimya, Pb–Pb zirkon yafl tayini, Pan-Afrikan, Menderes Masifi, Türkiye

Introduction

The Menderes Massif, which is elliptical and oriented
NE–SW, has had significant impact on the geological
evolution of western Anatolia. It is tectonically overlain by

nappes of the ‹zmir-Ankara Zone (including the Bornova
Flysch Zone of olistostromal character) in the northwest,
the Afyon Zone (consisting of low-grade metapelite and
metacarbonate rocks) in the north, and the Lycian Nappes
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(comprising low-grade phyllites and carbonates and thick
ophiolite slices in the south) (Figure 1) (fiengör & Y›lmaz
1981; Okay 1986; Dora et al. 1995). The Menderes
Massif has commonly been interpreted as the eastward
continuation of the Attic-Cycladic Massif in the Aegean
Sea (Dürr et al. 1978; Jacobshagen 1986; Oberhänsli et
al. 1998). However, recently it has been suggested that
the two massifs are not in all aspects related (Ring et al.
1999). 

In early studies, it was considered that the Menderes
Massif had a simple internal structure, made up of a
Precambrian basement and an Early Palaeozoic to Early
Tertiary cover series (Schuiling 1962). However, recent
studies have shown that the Massif does not have a
simple structure, and is characterised by nappe-stacking

related to Alpine compressional tectonics in the Early
Tertiary (Konak et al. 1994; Dora et al. 1994; Partzsch
et al. 1998; Gessner et al. 2001a, 2001b; Ring et al.
1999). Compressional deformation fabrics have been
overprinted by continental extension tectonics since the
Oligocene–Miocene (Seyito¤lu et al. 1992, 2000, 2002;
Bozkurt & Park 1994, 1997a, 1997b, 1999; Hetzel et
al. 1995a, 1995b; Koçyi¤it et al. 1999; Bozkurt & Sat›r
2000; Bozkurt 2000, 2001a, 2001b, 2002, 2003;
Bozkurt & Oberhänsli 2001; Gessner et al. 2001c; Ifl›k &
Tekeli 2001; Lips et al. 2001; Ring et al. 2001, 2003;
Sözbilir 2001, 2002; Özer & Sözbilir 2003; Ifl›k et al.
2003; Ring & Lawyer 2003; Bozkurt & Sözbilir 2004).
In spite of its complex tectonic structure, the Menderes
Massif can be divided into two main rock associations

Intra Pontid Suture

Va r d a r
S

u
t u

r e

N a x o s

I o s

P a r o s

Cyclades

B l a c k   S e a

Mediterranean   Sea

Aegean Sea

M e s o z o i c  s u t u r e s
w i t h  t h e  f o r m e r  s u b d u c t i o n  p o l a r i t i e s

P
e l a go

n
i a n

Z
o n e ‹z

m
ir

Ankara Suture

-

Afyon Zone

Thracian Basin
‹stanbul Zone

Lycian Nappes

Menderes Massif

Bo
rn

ov
a 

Fl
ys

ch
 Z

on
e

Sakarya Zone

K›rflehir Massif

Beyda¤ Autochthon
V

a rd a r
Z

o
n e

m a j o r  i n t r a c o n t i n e n t a l
t r u s t s

Strandja Zone

Tavflanl› Zone
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al. 1996).



(Dora et al. 1995): (i) Pan-African basement rocks and
(ii) Palaeozoic and Mesozoic–Early Tertiary cover series.
The Pan-African basement is comprised partly of
migmatised Late Proterozoic clastic metasediments
(Koralay et al. 2003), i.e. paragneisses and mica schists,
which are intruded by the protoliths of Precambrian
eclogitic metagabbros and syn- to post-Pan-African
orthogneisses. The basement rocks were subjected to
polyphase metamorphism at granulite-, eclogite-, and
amphibolite-facies conditions related to Pan-African
orogenesis at the Precambrian-Cambrian boundary
(Candan 1995, 1996; Dora et al. 1995; Oberhänsli et al.
1997; Candan & Dora 1998; Candan et al. 2000, 2001).

The cover series of the Menderes Massif can be
subdivided into two units consisting of Palaeozoic and
Mesozoic–Early Tertiary rocks. The Palaeozoic series is
made up predominantly of a sequence of quartzite,
phyllite and marble (Ça¤layan et al. 1980; Konak et al.
1987; Bozkurt 1996; Okay 2001, 2002; Özer et al.
2001; Güngör & Erdo¤an 2002; Whitney & Bozkurt
2002; Régnier et al. 2003; Rimmelé et al. 2003a,
2003b). The Mesozoic–Early Tertiary series comprises a
sequence of metaconglomerate, schist, dolomite, and
platform-type metacarbonate rocks with emery-
metabauxite lenses, pelagic marble and metaolistostrome
(Dürr 1975; Konak et al. 1987; Bozkurt 1994, 1996;
Dora et al. 1995; Bozkurt & Park 1994, 1999; Ring et
al. 1999, 2001, 2003; Okay 2001, 2002; Özer et al.
2001; Güngör & Erdo¤an 2002; Whitney & Bozkurt
2002; Régnier et al. 2003; Rimmelé et al. 2003a,
2003b). 

Geologic and geochronological evidence suggests that
there have been three distinct phases of magmatic activity
in the Menderes Massif: (i) Pan-African (Precambrian/
Cambrian), (ii) Triassic and (iii) Tertiary. The major phase
of magmatic activity, represented by the protoliths of the
orthogneisses, took place at the Late Precambrian/Early
Cambrian boundary (Hetzel & Reischmann 1996; Loos &
Reischmann 1999; Dannat 1997; Hetzel et al. 1998;
Gessner et al. 2001b, 2004). Granitic protoliths of the
leucocratic orthogneisses, dated at about 235–246 Ma
(Triassic), represent the second pulse of magmatic
activity in the Menderes Massif (Dannat 1997; Koralay
2001; Koralay et al. 2001). The third phase of magmatic
activity, represented by non-metamorphic granites and
kersantites, has yielded ages of 25 to 12 Ma (United
Nations 1974; Hetzel et al. 1995a).

Although a striking increase in the number of
geochronological studies of the orthogneisses have been
carried out during the last ten years (Hetzel &
Reischmann 1996; Dannat 1997; Dannat & Reischmann
1998; Hetzel et al. 1998; Loos & Reischmann 1999;
Gessner et al. 2001b, 2001c, 2004), only a limited
number of detailed geochemical studies has been done on
the orthogneisses, especially at the southern part of Çine
submassif (Kun 1983; Kun & Candan 1987; Bozkurt
1994; Bozkurt et al. 1992, 1993, 1995; Dannat 1997). 

In this study, the orthogneisses exposed around
Derbent in the eastern part of the Ödemifl-Kiraz
submassif were sampled and analysed in terms of
geochemical and geochronological features. The aims of
this paper are to: (a) present age determinations for
intrusion of the orthogneisses obtained using the
207Pb/206Pb single-zircon evaporation method; (b) discuss
the possible relationship of this magmatic event to the
Pan-African metamorphic history of the Menderes Massif
and; (c) show the geochemical characteristics of the
orthogneiss and thereby discuss the possible source and
tectonic environment of magma generation.

Geology

The study area is located in the eastern part of the
Ödemifl-Kiraz submassif (Figure 2). In the vicinity of
Derbent, the rock succession of the metamorphic series is
made up of four nappe units (Figures 3 & 4). In ascending
order, the first three nappe units formed by internal
imbrications of the Pan-African basement series, whereas
the uppermost nappe unit belongs to the Late
Palaeozoic–Mesozoic cover series. The lowermost nappe
unit of the Pan-African basement is made up entirely of
garnet-mica schist. The middle nappe unit comprises
predominantly garnet-mica schist that contains thin
carbonate horizons. These schists are intruded by
orthogneisses with well-preserved intrusive contact
relationships (Figure 5). Furthermore, in the same nappe
unit, the garnet-mica schist are also intruded by
protoliths of Triassic leucocratic orthogneisses, dated at
235–246 Ma using the single zircon evaporation method
(Koralay et al. 2001). The upper nappe slice of the Pan-
African basement consists predominantly of
orthogneisses. Only locally, the orthogneisses display
intrusive contact relationships with partially migmatised
paragneisses. The Pan-African nappe units are overlain by
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the cover series, the uppermost nappe unit, with a
tectonic contact (Figure 3). The cover series can be
divided into two units: (i) Palaeozoic
(Permo–Carboniferous) unit which is made up of phyllite-
quartzite-marble intercalation and (ii) Mesozoic
(Cretaceous) sequence consisting of platform-type
metacarbonate. The metamorphic rocks of the Menderes
Massif are tectonically overlain by non-metamorphic and
ophiolitic rocks of the ‹zmir-Ankara Zone.  It is suggested
that the structure of this nappe pile is related to crustal
thickening in the Menderes Massif, which resulted from
Alpine compressional tectonics (Dora et al. 1995;
Partzsch et al. 1998).

Geochemistry

Fourteen representative samples of the orthogneisses
(Figure 3) were analysed for 10 major- element oxides
and 12 trace elements (Table 1). Major and trace
elements were analysed from fused discs and on pressed
powder pellets using Phillips PW 1130 X-ray fluorescence
spectrometers calibrated against both international and
in-house standards of appropriate compositions at the
University of Tübingen, Germany. 

Since the rocks have undergone amphibolite-facies
metamorphism (Koralay et al. 1998; Candan et al. 2000)
and experienced other secondary alteration processes, it
is likely that most of the elements may have been
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mobilised. Major and selected trace elements were
plotted against SiO2 (wt%) values to establish their
relative mobility (Figure 6). The orthogneisses are
characterised by moderate to high silica contents (67–76
wt% SiO2) and moderate alumina values (13–16 wt%
Al2O3). Harker diagrams (Figure 6) show clear trends for
most major and trace elements. On the SiO2 variation

diagrams, TiO2, Al2O3, Fe2O3 and MgO show strong
negative correlation. Na2O shows a small data spread and
negative correlation, whereas K2O exhibits limited data
scatter and positive correlation. Na and K are often highly
mobile elements during metamorphism and weathering
(e.g., Pearce 1976) but Na2O–SiO2 and K2O–SiO2

diagrams show limited data scatter and good correlation.
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Also, Rb–K2O diagram exhibits low small data scatter and
positive correlation. As for the trace elements, Ba and Zr
show clear negative correlation with SiO2, and Nb shows
limited data spread and negative correlation, whereas Rb
exhibits little spread and more-or-less constant values
(Figure 6). This indicates that all these major and trace
elements probably behaved in a less mobile way during
metamorphism. On the other hand, Sr data separated
into two groups on the diagram and lower values of Sr
data show minor spread and more-or-less constant
values, whereas Y exhibits broad data scatter indicative of
substantial mobility.

On a Na2O/Al2O3 versus K2O/Al2O3 diagram (Figure 7a)
the orthogneiss samples plot dominantly in the igneous
field of Garrels & McKenzie (1971), with a few samples
in the sedimentary field. An Al2O3 versus MgO diagram
(Figure 7b), after Marc (1992), shows that the samples
fall in the orthogneiss field. The chemical classification
and nomenclature of volcanic rocks using the total alkali
(Na2O+K2O) versus SiO2 (TAS) diagram of Cox et al.
(1979), adapted by Wilson (1989) for plutonic rocks, is
used for the chemical classification and nomenclature of
orthogneisses. The curved solid line divides the alkaline
and sub-alkaline rocks. On this diagram, the
orthogneisses lie within the granite field and show sub-
alkaline affinity (Figure 8a). On the normative An–Ab–Or

ternary diagram of Barker (1979), the rocks plot in the
granite field (Figure 8b). Ti, Zr, Y and Nb are generally
considered to be immobile during metamorphism
(Winchester & Floyd 1977). On the SiO2 versus Nb/Y and
SiO2 versus Zr/TiO2 diagrams of Winchester & Floyd
(1977), the samples fall predominantly into the
granodiorite field (Figure 7c, d), with three samples that
have relatively high SiO2 content plotting in the granite
field. In the Rb–Ba–Sr ternary diagram of El Bouseily &
El Sokkary (1975), the samples plot on the boundary
between the anomalous granite and normal granite fields
(Figure 8e). 

On the AFM ternary diagram with the dividing lines of
Kuno (1968) and Irvine & Baragar (1971) to discriminate
between tholeitic and calc-alkaline suites, the rocks follow
a calc-alkaline trend (Figure 9a). The Al2O3/(Na2O+K2O)
versus Al2O3/(CaO+Na2O+K2O) binary diagram has been
used to discriminate peraluminous, metaluminous and
peralkaline magma series (Shand 1943). This diagram
reveals that the orthogneisses are peraluminous (Figure
9b), since the A/CNK ratio and normative corundum for
the majority of the samples are greater than 1.5 and 1.0
wt% (Table 1), respectively.

The tectonic-setting discrimination diagrams based on
trace elements, Nb versus SiO2 (Figure 10a) and Rb
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Figure 5. The contact relationship between orthogneiss and garnet-mica schist 2.5 km
NE of Derbent. The boundary of orthogneiss cut across the main schistosity
indicating the intrusive contact relationship. (Uflak L21-d1, 35500:29500).
Hammer is 33-cm long.
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versus Y+Nb (Figure 10b) (Pearce et al. 1984), show
that our samples plot in the fields of VAG+COLG+ORG
and Post-COLG, respectively. Batchelor & Bowden (1985)
distinguished between the orogenic and non-orogenic
plutons using R1 versus R2 parameters of the De la
Roche et al. (1980). Most of the data points form a
continuous trend from syn-collision to late orogenic field,
very close to the post-orogenic field (Figure 10c). On the
K2O versus SiO2 diagram of Coleman & Peterman (1975),
all the samples plot in the granophyre field (Figure 10d),
indicating that some crustal material was probably
involved in their magma generation (Salem et al. 2001).
Chappell & White (1974) used the Al2O3/CaO+Na2O+K2O
molecular ratio against normative corundum variation
diagram to distinguish between I- (igneous) type
(subduction related) and S-(sedimentary) type (collision
related) granitic rocks. All of our points fall in the S-type
granites field (Figure 10e).

Geochronology

Methods of the Single-Zircon 207Pb/206Pb Evaporation
Technique

The selected representative zircons were separated at the
Institute für Mineralogie, Petrologie und Geochemie,
Eberhard-Karls Universität, Tübingen/Germany, using
standard procedures. Only zircons without visible
inclusions and with well-preserved crystal faces were
selected, and only non-magnetic zircons were evaporated
as these are usually less discordant than the others

(Krogh 1982) and, therefore yield more accurate ages.
The selected zircons typically were about 150 µm in
width and 400 µm in length. Isotope measurements were
carried out on a Finnigan MAT 262 mass spectrometer at
the University of Tübingen. The zircons were dated using
the single-zircon evaporation technique that measures the
207Pb/206Pb of evaporated crystals using a double Re-
filament configuration. The principles of this method are
described in Kober (1986, 1987), Kröner & Todt (1988)
and Cocherie et al. (1992). Before use, all the Re-
filaments were outgassed in a bake-out device for 30
minutes, using 5-A (0.7 mm-wide Re-filaments) and 6-A
(1 mm filaments) currents. The outgassing was
performed at a pressure close to 10-10 bar. One or more
chemically untreated zircon grains were embedded in a
0.7 mm-wide canoe-shaped Re-filament, evaporation
filament (Kober 1986), and first heated to evaporate Pb
components with low activation energies. The
evaporation filament was placed as close as possible to a
second 1 mm-wide Re ionization filament. Data collection
started at 1430 °C, and the temperature was increased
stepwise by ca. 20 to 30 ºC after each evaporation and
deposition cycle. The measurement of the isotopic
abundance was performed in a dynamic mode with a
mass sequence 206–207–204–206–207 or 206–207–
207–206–204 using an ion-counter. The ages were
calculated from the 207Pb/206Pb ratios obtained on a stable
ion beam, and only ratios with 206Pb/204Pb ratios > 5000
were used for further processing. A correction for
common Pb was performed according to Cocherie et al.
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(1992) using a Pb composition with a two-stage
evolution (Stacey & Kramers 1975). Measurements of
the Pb standard NBS 981 in ion-counting mode yielded an
average fractionation of ca. 0.1% per atomic mass unit
(Chen et al. 2000). This value is considered a suitable
estimate for correction of mass fractionation. The errors
on the ages are reported as 2σ mean of the population of
weighted 207Pb/206Pb ratios (Table 2).

Zircon Morphology

Zircons from three orthogneiss samples were
investigated under the scanning electron microscope
(SEM) (Figure 11). Twenty crystals were chosen from
each zircon type for typological investigation (Pupin
1980) by SEM. The zircon concentrates were studied
optically and divided into individual types. Selection for
analysis was based on differences in size, colour,
morphology, inclusions, turbidity, abundance of cores,
lack of cracks, etc. In samples 95–57, 96–34 and 97–58,
all zircons had similar morphologies which were typical of
magmatic zircons (Figure 11). They are euhedral,
sometimes asymmetric, colourless to slightly pink and
brown, transparent, clear to slightly turbid, short- (2:1)
and long- (3:1, 4:1) prismatic, occasionally metamict, and
have few inclusions. According to the classification of
Pupin & Turco (1974), these zircons predominantly

belong to subtypes S7 and S12 and, to a lesser extent, to
subtypes L1, S17, S13, and S2 (Figure 12). In other
words, the zircons of these orthogneisses are
characterised by a combination of (101) < (211)-
pyramids and (100) < (110) and (100) = (110)-prisms
(Figure 12). The crystallisation temperatures of the
predominant subtypes is estimated at 700–750 ºC (Pupin
& Turco 1974). The typological analysis of the zircon
populations places them in the field of intrusive,
peraluminous, crustal-derived granites (Pupin 1980).

The cathodoluminescence (CL) technique, allowing an
examination of magmatic zoning, inherited cores and
overgrowth in zircon grains, was used for investigating
the internal structures of the zircons. The zircons of our
samples are similar to each other with respect to internal
structures of the cores and zoned overgrowths. Most of
the elongated prismatic zircons have no cores and show
typical oscillatory zoning, indicative of a magmatic origin
(Figure 13a–c, f–h). These types of grains were selected
for evaporation analyses. Some zircon grains contain
inherited (detrital) cores of highly variable size and
multiple growth stages (Figure 13d, e, i, j) (not analysed).
Primary older growth zoning is well preserved in parts of
some cores (Figure 13d, j) whereas, in others, it is largely
obliterated and apparently replaced by strongly
luminescent and nearly homogenous stubby zircon. The
cores and overgrowths are separated by well-preserved
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resorption surfaces marked by ‘C’ in Figure 13 (d, e, i and
j). This complex zircon population provides evidence for
the protoliths of orthogneisses that are of hybrid
granitoids with mostly S-type components or S-type rock
(Poller 1999).

Description of the Samples and 207Pb/206Pb Ages

Two samples (96–34 and 97–58) from different
orthogneiss bodies were selected for 207Pb/206Pb isotopic
dating (Figure 3).

Sample 96–34 was collected 1.5 km east of Aksu
village (Figure 3). The rock is composed of quartz,
orthoclase, plagioclase, muscovite, biotite, zircon, apatite
and opaque oxides. The zircon grains are predominantly
white, yellowish, light pink, clear, translucent and short-
and long-prismatic. SEM images show that the zircon
grains are euhedral, and have morphologies which
strongly suggest an igneous origin (Figure 11). The
zircon grains were inspected with CL for evidence of
magmatic zonation, inherited zircons, and new
overgrowth. Most of the zircons are predominantly long-
prismatic and perfectly euhedral. They show oscillatory
zoning indicating a magmatic origin (Figure 13a–c). The
CL photographs indicate multiple growth stages (Figure
13b) and xenocrystic cores with oscillatory zoning for
some zircon crystals (Figure 13d, e). Four long-prismatic
grains (Figure 13a–c) from this sample were evaporated

individually and yielded ages of 550 to 564 Ma. An
average value of 561.5±1.8 Ma was obtained (Table 2,
Figure 14a). This age is interpreted to represent the
intrusion age of the magmatic protoliths of the
orthogneiss.

Sample 97–58 was collected 2 km southwest of
Bahad›r village (Figure 3). It shows well-developed
schistosity and comprises quartz, orthoclase, plagioclase,
muscovite, biotite, zircon, apatite, tourmaline and opaque
oxides. The zircon grains are predominantly white, pink,
clear, translucent and short- and long-prismatic. SEM
photographs show that the zircons are euhedral, and
have morphologies that point to an igneous origin (Figure
11). A CL study revealed magmatic zonation, inherited
zircons, and new overgrowth. The zircons are
predominantly long-prismatic and euhedral - typical of
granitic populations (Figure 13f–h). Some zircon grains
have xenocrystic cores (Figure 13i, j) and preserve
oscillatory zoning of magmatic origin. The CL images
indicate multiple growth stages for some zircon crystals
(Figure 13g, h). Four long-prismatic grains (Figure
13f–h) of this sample were evaporated and yielded ages
of 520 to 720 Ma. Three grains of this sample yielded an
average value of 570.5±2.2 Ma (Table 2, Figure 14b).
This age is interpreted as the intrusion age of the
magmatic protolith of the orthogneiss. In this sample, an
older zircon grain yielded age of 720.3±1.1 Ma, which is
interpreted as an inherited grain (Table 2).

PAN-AFRICAN MAGMATISM IN THE MENDERES MASSIF, W TURKEY

50

Table 2. Radiogenic 207Pb/206Pb ratios of evaporated zircon grains and corresponding ages.

Sample number Zircon Grain Number Evaporation 207Pb/206Pb 207Pb/206Pb
description of ratio temperature (ºC) ratios (mean) Age (Ma)

96–34 cl, c, t, lp 1 129 1460–1490 0.058564±50 561.5±1.9
cl, c, t, lp 2 88 1460–1480 0.058942±33 564.5±1.2
cl, c, t, lp 3 57 1520 0.058866±24 561.6±0.9
y, c, t, lp 4 208 1450–1490 0.058592±43 551.4±1.9

Mean (grain 1,2,3,4) 482 0.058564±22 561.5±0.8
(2σm)

97–58 p, c, t, lp 1 51 1530 0.063375±31 720.3±1.1
cl, c, t, lp 2 75 1540 0.059326±92 578.5±3.4
cl, c, t, lp 3 52 1540 0.059012±39 567.0±1.4
cl, c, t, lp 4 17 1450 0.58678±209 554.6±7.8

Mean (grain 2,3,4) 144 0.059125±62 570.5±2.2
(2σm)

p - pink, y -  yellowish,  cl – colourless, c – clear,  t – translucent, lp - long prismatic
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Figure 11. SEM images of typical zircons from the orthogneisses. (a) clear,
colourless, long-prismatic, clustering around L1; (b) clear,
colourless, long-prismatic, clustering around S12; (c) clear,
colourless and slightly pink, long-prismatic, clustering around S7;
(d) clear, colourless and slightly pink, long-prismatic clustering
around S17; (e) clear, colourless, slightly pink and brown, short
and long-prismatic, clustering around S7; (f) clear, colourless,
long-prismatic, clustering around S2.



Discussion

The overall aim of this study was to understand
constraints on the Pan-African geological evolution of the
orthogneisses of the basement rocks in the Ödemifl-Kiraz
submassif of the Menderes Massif (western Turkey). The
origin of these orthogneisses has been controversial for
many years. Especially in previous studies, most

researchers suggested sedimentary protoliths for these
orthogneisses (Schuiling 1962; Baflar›r 1970, 1975; Akat
et al. 1975; Akdeniz & Konak 1979; Öztürk & Koçyi¤it
1983; Akkök 1983; Akkök et al. 1984; fiengör et al.
1984; Sat›r & Friedrichsen 1986). Öztürk & Koçyi¤it
(1983) proposed a sedimentary origin due to the
intercalation of orthogneisses with quartz arenites which
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Figure 12. Main types and subtypes of the typologic classification and corresponding geothermometric scale, after Pupin & Turco (1972).



show some features interpreted as primary cross-
bedding. Ages scattered between 545 and 670 Ma, based
on an Rb/Sr whole rock isochron age, were interpreted as
the sedimentation ages of the protoliths of the gneisses

by Sat›r & Friedrichsen (1986). Alternatively, a granitic
protolith has been suggested by some researchers
(Graciansky 1965; Konak 1985; Konak et al. 1987;
Erdo¤an 1992, 1993; Bozkurt 1994; Bozkurt & Park
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Figure 13. Cathodoluminescence (CL) images of characteristic zircon populations in the orthogneisses. A characteristic feature of the zircons is
oscillatory zoning indicating a magmatic origin (a–c, f–h). Zircons with older core are shown in d, e, i and j. ZCA– zoning-controlled
alteration, SCA– surface-controlled alteration, C– the sharp boundary (resorption surface) between cores and overgrowths. 



1994, 1997a, 1997b, 1999, 2001; Bozkurt et al. 1992,
1993, 1995; Mittwede et al. 1995a, 1995b, 1997;
Hetzel & Reischmann 1996; Loos & Reischmann 1999).
This suggestion was based mainly on: (i) the weathering
style (spheroidal weathering) and morphological features
(bald hills) (Bozkurt 1994); (ii) petrographic
characteristics and field relations (preserved primary
intrusive contact relationships between orthogneisses and
predominantly metasedimentary country rocks) (Erdo¤an
1992, 1993; Bozkurt et al. 1992, 1993, 1995;
Mittwede et al. 1995a, 1995b, 1997) and the
geochemical characteristics of orthogneisses (Bozkurt et
al. 1992, 1993, 1995; Mittwede et al. 1995a, 1995b,
1997). Konak et al. (1987) and Dora et al. (1990) have
drawn a distinction between the augen and granitic
gneisses. According to these authors, while the augen
gneisses have a distinct sedimentary origin, the granitic
gneisses were derived from a granitic precursor. Dora et
al. (1994) suggested that the protoliths of all gneisses
(with different structures) are syn- to post-metamorphic
granites which intruded the basement during the last

stage of the Pan-African Orogeny. Based on their
geochemical characteristics, the protoliths of the augen
gneisses have been interpreted as calc-alkaline,
peraluminous, S-type, syn- to post-tectonic granites and
granodiorites (Bozkurt et al. 1992, 1993, 1995; Dannat
1997; Koralay & Dora 1999). 

The orthogneisses exposed in the study area (eastern
part of the Ödemifl-Kiraz submassif) have well-preserved,
original intrusive contact relationships with Precambrian
country rocks (Figure 5), clearly revealing the igneous
origin of these rocks. In this study, geochemical analyses
show that the orthogneisses are of similarly igneous
origin and have a granitic to granodioritic composition.
They originated from S-type, peraluminous, calc-alkaline
magma involving some crustal material, and these rocks
have geochemical signatures indicative of a syn- to post-
collisional tectonic environment. 

In previous studies, Rb–Sr age determinations done
on whole-rock orthogneiss samples from the Çine
submassif yielded isochron ages of 490±90 Ma (Dora
1975, 1976) and 471±9 Ma  (fiengör et al. 1984; Sat›r
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Figure 14. Zircon ages for orthogneiss samples, 96–34 and 97–58. Histograms of radiogenic 207Pb/206Pb ratios for evaporated zircons indicating
ages of 561.5±0.8 Ma (2σ mean) and 570.5±2.2 Ma (2σ mean), respectively.
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&  Friedrichsen 1986) which  were  interpreted  as
intrusion ages of the protoliths. Most of the recent
geochronological studies were carried out on
orthogneisses in the Çine submassif, southern submassif
of the Menderes Massif. Hetzel & Reischmann (1996)
proposed that 546.2±1.2 Ma is interpreted as the
intrusion age of the granitic precursor of the augen
gneisses in the southern Menderes Massif. Loos &
Reischmann (1999) have obtained 521±8 Ma to 572±7
Ma intrusion ages from augen gneiss samples north of
Selimiye in the Çine submassif (southern Menderes
Massif). Similar intrusion ages, 547±1 Ma and 566±9
Ma, have already been reported in various parts of the
Çine submassif by Gessner et al. (2001b) and Gessner et
al. (2004), respectively. These data were obtained from
zircons using the 207Pb/206Pb single-grain evaporation and
SHRIMP methods. In the Ödemifl-Kiraz submassif, very
limited geochronological studies have been done on the
orthogneisses. Dannat (1997) has interpreted that the
age of 528.0±4.3 Ma is the intrusion age of augen
gneisses that cut paragneisses of upper nappe unit in the
Derbent area (Figure 3). An anatectic metagranite derived
from paragneisses from the Ödemifl-Kiraz submassif,
dated by the conventional U–Pb method, yielded an
intrusion age of 551.5±1.4 Ma (Hetzel et al. 1998). All
these ages cluster between 540 Ma and 550 Ma and
demonstrate that large volumes of orthogneiss in the
Menderes Massif are the result of magmatic activity
related with to the Pan-African Orogeny (fiengör et al.
1984; Kröner & fiengör 1990; Dora et al. 1990; Hetzel
& Reischmann 1996; Dannat & Reischmann 1997; Loos
& Reischmann 1999). 

In the study area, first-time investigations of zircon
grains from orthogneisses intruding the Precambrian
schist of the middle nappe unit yield ages of 561.5±1.8
Ma and 570.5±2.2 Ma. These Pb–Pb ages are
interpreted as the intrusion age of the protoliths of the
orthogneisses. As SEM- and CL-photographs (Figures 11
& 13) demonstrate, the analysis of zircon populations
shows distinct magmatic zonation and typical igneous
characteristics. One grain of the idiomorphic variety of
sample 97–58 was analysed and yielded a distinctly
higher isotopic ratio from which an age of 720.3±1.1 Ma
was calculated (Table 2). This grain most likely represents
a xenocryst from an older source that contaminated the
protoliths of the orthogneiss during its formation and/or
ascent, as indicated in the geochemistry section above.

Similar zircon ages (719–721 Ma; Koralay et al. 2003)
were reported from paragneisses, interpreted as the
most probable source rock for the protolith of the
orthogneisses in the Menderes Massif.

Dalziel (1997) and Hofmann (1991) suggested that
the Pan-African and Brazilide ocean basins within the
amalgamating cratons of Gondwana were closing during
the Neoproterozoic until, at least, Cambrian time. Closure
of several Pan-African – Brazilide ocean basins resulted in
the amalgamation of East and West Gondwana (Stern
1994; Trompette 1994; Stein & Goldstein 1996; Unrug
1996). The collision with Arabian terranes constituted
Gondwanaland and wrench faulting, granite plutonism
and molasse sedimentation occurred during the 630–530
Ma interval (Piper 2000). fiengör et al. (1984)
emphasise, based on an age of about 500±10 Ma –
interpreted to represent the deformation and
metamorphism of the core series of the Menderes Massif
– that the metamorphism of the Precambrian basement
was related to the Pan-African Orogeny. The granitic
precursors of orthogneisses, dated at 560 Ma and 570
Ma, are regarded to have been related to magmatic
activity subsequent to the Pan-African Orogeny (Dora et
al. 1994, 1995; Hetzel & Reischmann 1996; Dannat &
Reischmann 1998; Hetzel et al. 1998; Koralay & Dora
1999). The same common magmatic activities are
documented all over Africa (Stern 1994; Kröner et al.
1991, 1996; Tack & Bowden 1999; Hefferan et al.
2000; Jung et al. 2000) and were reported in NNE Africa
as forming a part of West Gondwana (Kröner et al. 1983;
Tadese et al. 2000; Teklay et al. 1998, 2001; Moghazi
2002). This evidence, when combined with
reconstruction of the continents at the Late
Neoproterozoic–Cambrian boundary, indicates that the
Pan-African basement of the Menderes Massif formed as
a part of West Gondwana (NNE Africa) during the Pan-
African Orogeny. Syn- to post- Pan-African magmatism,
which is characterised by granitoid intrusions, is
commonly recognised in this orogenic belt and also in the
Menderes Massif.

Conclusions

1. The precursor rocks of the orthogneisses intruded the
protoliths of the Pan-African basement series, which
consists of metapelites. Numerous sills and dykes of
orthogneiss, which clearly crosscut the schistosity of
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the schists and have sharp contacts, are found in the
schists close to the margins of orthogneiss. The
orthogneisses contain numerous schist xenoliths which
are particularly common close to contacts. The
abundance of xenoliths in the orthogneisses and the
veins in the country rock clearly reveal the original
intrusive contact relationship between the orthogneiss
and metapelites.

2. The geochemical data indicate that the protoliths of
the Pan-African orthogneisses were calc-alkaline,
peraluminous and S-type, and generated in a syn- to
post-tectonic environment.

3. The SEM and CL photomicrographs demonstrate that
the analysed zircon populations from the
orthogneisses have distinct magmatic zoning and
typical igneous morphology. The 207Pb/206Pb ages of
561.5±1.8 and 570.5±2.2 Ma are interpreted as the
intrusion ages of the protoliths of the Pan-African
orthogneisses. 

4. Widespread magmatic activity at around 520–570 Ma
in the Menderes Massif can be interpreted as
representing the effects of the Pan-African Orogeny,
which was related to closure of the Pan-African and
Brazilide ocean basins and amalgamation of East and
West Gondwana.
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