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Abstract: In the Ayd›nc›k area, the Lower Liassic carbonates consist predominantly of dolomites, including
limestone and dolomitic limestone intervals. These carbonates were deposited in peritidal environments, and later
underwent early and late stage dolomitization. Petrographically, three dolomite-types are determined: (1) very fine
to fine crystalline dolomite (T1) with crystal size of 13–65 µm and a good fabric preservation, (2) coarse crystalline
sucrosic dolomite (T2) with size of 65 to 270 µm and fabric destruction, and (3) dolomite cement (T3) that occurs
as a clear outer rim to cloudy coarse dolomite crystals (T2) or as a pore-lining and cement-fill of fenestral pores.
The T1-type dolomites characterize the early stage of dolomitization formed from seawater by syn-sedimentary
replacement of peritidal sediments. T2-type dolomites are derived from T1-type dolomites by recrystallization at
increased burial temperature of ~50 °C. T3-type dolomites are precipitated as a cement from the same
dolomitizing fluid. The recrystallization caused changes in texture, crystal ordering, isotope compositions and trace
element contents. X-ray diffraction data indicates that the recrystallized dolomite (T2) is slightly better ordered
and less calcium-rich than early dolomites (T1). More negative δ18O values and lower Sr contents of the coarse
crystalline dolomites (T2) reflect an equilibration with late diagenetic fluid during the recrystallization. The
covariant trend between δ18O and Sr values of T2-type dolomites shows an inverse relationship with their crystal
size, suggesting progressive recrystallization. The δ13C values of both dolomites are almost in the same range
indicating the typical marine values that suggest little modification during late dolomitization. The T2-type dolomite
geometry pinching out to the southward indicates an invasion of dolomitizing fluid from the north to the seaward
into the platform carbonates, as a result of early compaction.
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Ayd›nc›k Yöresinde (Mersin, Güney Türkiye) Alt Liyas Dolomitlerinin
Petrografisi, Jeokimyas› ve Kökeni

Özet: Ayd›nc›k yöresinde Alt Liyas karbonatlar› hakim olarak kireçtafl› ve dolomitik kireçtafl› ara seviyeleri içeren
dolomitlerden oluflur. Bu karbonatlar gel-git çevresi ortam›nda çökelmifl ve daha sonra erken ve geç evre
dolomitleflmesine u¤ram›flt›r. Petrografik olarak üç tip dolomit belirlenmifltir: (1) 13–65 µm kristal boyutlu ve iyi
doku korunmal› çok ince ile ince kristalli dolomit (T1); (2) 65–270 µm kristal boyutlu ve doku korunmas›z iri
kristalli fleker dokulu dolomit (T2); ve (3) bulan›k iri dolomit kristalleri (T2) çevresinde aç›k d›fl kenar veya fenestral
gözenekleri çevreleyen ve çimento dolgusu olarak görülen dolomit çimento (T3). T1-tip dolomitler gel-git çevresi
çökellerin çökelmeyle yafl›t ornat›m›yla deniz suyundan oluflmufl erken evreyi karakterize eder. Daha sonra T2-tip
dolomitler yaklafl›k 50 °C gömülme s›cakl›¤›nda T1-tip dolomitlerin yeniden kristallenmesiyle oluflmufltur ve T3-
dolomitler ayn› dolomitleflme s›v›s›ndan çimento olarak çökelmifltir. Yeniden kristallenme erken evre dolomitlerinin
dokusunda, kristallenme derecesinde, izotop kimyas›nda ve iz element içeri¤inde de¤iflimlere neden olmufltur. X-
›fl›n› difraksiyonu verileri yeniden kristallenme dolomitlerinin (T2) erken dolomitlere (T1) göre hafifçe daha iyi
kristallenmeli ve daha az kalsiyum içerikli oldu¤unu gösterir. ‹ri kristalli dolomitlerin (T2) daha negatif δ18O
de¤erleri ve düflük Sr içerikleri yeniden kristallenme s›ras›nda diyajenetik s›v› ile dengeyi yans›t›r. T2-dolomit
örneklerinin δ18O ve Sr de¤erlerinin birlikte de¤iflim e¤ilimi ilerleyici yeniden kristallenmeyi destekler flekilde kristal
boyutuyla ters bir iliflkiyi gösterir. Dolomitlerin δ13C de¤erleri hemen hemen ayn›d›r ve dolomitleflme s›ras›nda çok
az de¤iflim gösteren tipik denizel de¤erleri gösterir. T2-dolomitlerinin güneye do¤ru kapanan geometrisi,
dolomitleflme s›v›s›n›n erken s›k›flma sonucu olarak kuzeyden güneye platform karbonatlar›n›n içine ilerledi¤ini
gösterir.

Anahtar Sözcükler: dolomitleflme, gömülme, ornatma, yeniden kristallenme, Liyas, Türkiye
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Introduction

The study area is located in the Aydıncık (Mersin) district
which is known as a part of the central Taurides in
southern Turkey (Özgül 1984; Figure 1). The Tauride
mountains consist mostly of platform carbonates
deposited during Palaeozoic and Mesozoic time. In the
central Taurides, the Mesozoic platform carbonates are
represented by the Cehennemdere Formation (Demirtafllı
et al. 1984). The lower most part of the Cehennemdere
Formation is made up predominantly of Lower Liassic
platform dolomites. There is a little information available
concerning dolomitization in either the study area or
Tauride platform carbonates in southern Turkey. The
recent detailed study has been published by Varol &
Matsumoto (2005) that provides an information about
Middle Devonian platform dolomites of the Tauride
mountains. Therefore, this study aims to determine
petrographic and geochemical features of the Lower
Liassic dolomites in the Aydıncık area, and proposes a
model to explain their occurence.

In contrast to Turkey, there are numerous studies in
the world from different locations, particularly
concerning the pervasive dolomitization of platform
carbonates and associated reefs (e.g., Theriault &
Hutcheon 1987; Zengzhao et al. 1998; Reinhold 1998;
Balog et al. 1999; Qing et al. 2001; Haas & Demeny
2002; Auajjar & Boulegue 2003). Many platform
carbonates and associated reefs show two major stages
of dolomitization: (1) early stage (syn-sedimentary) –
characterized by generally very fine to fine crystalline
dolomites with good fabric preservation, and (2) post-
depositional stage, represented by medium to coarse
crystalline dolomites with fabric destruction (Morrow
1982). Most authors agree that the early dolomites form
by replacement of the precursor sediments soon after
deposition from evaporative or normal marine waters
(Theriault & Hutcheon 1987; Carballo et al. 1987; Budd
1997; Zengzhao et al. 1998; Yoo & Lee 1998; Qing
1998; Qing et al. 2001; Varol & Matsumoto 2005). In
the platform carbonates, the post-depositional or burial
stage is commonly characterized by the recrystallization
and subsequent chemical alteration (neomorphic
alteration) of the early-formed metastable dolomites
(Land 1985; Morrow 1982). The recrystallization results
textural, crystallographic and geochemical changes (Land
1985; Machel 1997). This study confirms a similar
diagenetic evolution for the Lower Liassic platform
carbonates. 

Geological Setting

Turkey has been subdivided geologically into four major
tectonic units, namely the Pontides, Anatolides, Taurides
and Border folds (Ketin 1966). The Taurides extend on
east–west direction, subparallel to the coastline of the
Mediterranean Sea, and represent a part of the Alpine
orogenic system in southern Turkey (Figure 1a). In
Turkey, the Alpine orogenic system is a product of the
destruction of Tethys (Adamia et al. 1980; fiengör &
Yılmaz 1981; fiengör et al. 1984). In the Mesozoic time,
the Tethyan domain between African-Arabian and
Laurasia consisted of two oceans, separated by a string of
continental fragments (Dewey et al. 1973). The northern
ocean has been named the Palaeotethys, and southern
ocean the Neotethys.

The Late Mesozoic–Cenozoic evolution of the Taurides
was controlled by tectonic events which caused the
opening and closing of the Neotethys (fiengör & Yılmaz
1981). The evolution of the Neotethys has been
summarised by Robertson (1998). The Neotethys was
formed by continental rifting in the Triassic, followed by
a passive margin history during the Jurassic–Early
Cretaceous, and the genesis and emplacement of
ophiolites in the Late Cretaceous. A remnant of the
Neotethys survived into the Early Tertiary times (with
localised subduction/accretion and arc volcanism), until
initial continental collision. The collision was completed by
Middle to Late Miocene time, followed by a switch to
strike-slip and the westward tectonic escape of Anatolia.

The Tauride carbonate platform, developed on the
passive margin, is considered either as an independent
continental block, separated during Mesozoic time from
the African-Arabian continent by an oceanic basin, or as
an integral part of the African-Arabian continent with the
only ocean basin being situated to the north of it (Dewey
et al. 1973). 

In the Aydıncık area, a thick sedimentary pile ranging
in age from the Infra-Cambrian (Precambrian) to the
Recent is present (Figures 2 & 3). The Jurassic to Lower
Cretaceous Cehennemdere Formation, first named by
Demirtafllı et al. (1984), is situated in the middle of this
thick sedimentary succession (Figure 3). The general
geological studies have been carried out by Yüksel
(1985), Koç (1996) and Koç et al. (1997, 2005) who
subdivided the Cehennemdere Formation into three
members. These are the Dibekli Member (mostly
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Figure 1. (a) A schematic map illustrating the Tauride Orogenic Belt and its subdivisions (modified from Özgül
1984; major faults from Bozkurt 2001); (b) location map of the measured sections; (c), (d), (e)
topographic maps showing the positions of the measured sections of Pirencik hill, Erenler hill and
So¤uksu location, respectively. NAFZ– North Anatolian Fault Zone, EAFZ– East Anatolian Fault Zone,
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Liassic–Dogger?) comprising dolomite, microbially
laminated limestone, and cyclic carbonates (Eren et al.
2002; Kabal & Taslı 2003); the Örendüzü Member
(Dogger–Early Cretaceous) consisting predominantly of
dolomite and dolomitic limestones, and the Çambeleni
Member (Early Cretaceous) composed mainly of miliolid-
bearing limestones (Yüksel 1985; Koç 1996). Yeflilot
(2005) provides early information on the Lower Liassic
dolomites in the area, which is the base for this study.
The lower part of the Liassic carbonates either lack fossils
or contain few fossils because of extensive dolomitization,
so that its age is uncertain and the nature of the lower
boundary of the Liassic carbonates remains obscured.
Biostratigraphic details are provided by Kabal & Taslı
(2003), based on the benthic foraminifera. The upper
boundary of the Lower Liassic carbonates is marked by a
zone, taking place between the Orbitopsella zone (Upper
Sinemurian to Lower Pliensbachian) and Lituosepta
recoarensis zone (Upper Sinemurian). The marker zone
roughly corresponds to the lower boundary of the cyclic
carbonates which is easily recognizable on the field. The
carbonates below the Lituosepta recoarensis zone with
scarce Siphovalvulina sp. are attributed to
Hettangian–Lower Sinemurian time because the genus
Siphovalvulina is a Jurassic form.

Methodology

During the field work, three measured-sections were
surveyed at Pirencik hill, Erenler hill, and So¤uksu
location (Figure 1). A total of 128 samples were collected
from the three sections. Thin-sections were prepared
from each sample, and were stained with a mixture of
alizarin red S and potassium ferricyanide to differentiate
calcite from dolomite and their ferroan and non-ferroan
phases (Dickson 1966). All thin-sections were examined
under an optical microscope. Representative carbonate
samples were analyzed for their mineralogical
characteristics by X-ray powder diffractometry (XRD)
(Rigaku-Geigerflex) and scanning electron microscopy
(SEM-EDX) (JEOL JSM 84A-EDX). XRD analyses were
performed using CuKa radiation and a scanning speed of
1o 2θ/min to determine mineralogical composition of the
bulk samples. Semi-quantitative mineral abundances are
obtained by multiplying the basal peak intensities of each
mineral by suitable factors according to a method
represented by Brindley (1980) and later modified by
Gündo¤du (1982). In this method, the relative error is

less than 15% (Gündo¤du 1982). Estimation of the
ordering degree in dolomites is based on the ratio of the
intensities of the d015 to d110 (hexagonal index) peaks
(Hardy & Tucker 1995). Furthermore, crystal ordering
of dolomites is obtained from a ratio between d015 and
d110 peak heights with a standard deviation (σ) of 0.11
for very fine to fine crystalline dolomites (T1-type) and
0.19 for coarse crystalline dolomites (T2-type).
Representative dolomite samples were prepared for
SEM-EDX analysis by adhering the fresh, broken surface
of the sample on to an aluminium sample holder with
double-sided tape and thinly coating with a film (~350 Å)
of gold using a Giko ion coater.

Chemical composition of selected samples were
determined using inductively coupled plasma atomic
emission spectroscopy (ICP-AES) analyses, and were
carried out at the ACME Analytical Laboratories LTD.,
Vancouver, BC (Canada). In these analyses, experimental
error is less than ±0.04 wt% for major elements, and
less than ±5 ppm for trace elements. The mole % MgCO3

content of dolomite is determined using the result of
geochemical analyses. Sample selection for stable isotope
analyses was based on detailed petrography, XRD and
ICP-AES analyses. A Finigan MAT 252 mass
spectrometer, Southern Methodist University (SMU),
Dallas, TX, USA has been used for oxygen and carbon
analysis. 5–10 mg powdered carbonate samples reacted
with 100% phosphoric acid (H3PO4) at 50 oC for
dolomites and 25 oC for calcite. The acid fractionation
factors (α) are 1.010250 for calcite and 1.011091 for
dolomite. Replicate analyses on the randomly selected
samples give a mean deviation of ±0.057 ‰ for δ18O and
±0.02 ‰ for δ13C. All isotope data are reported in per
mill (‰) with repect to the PDB standard.

Lower Liassic Dolomites

Field Description

The field description of dolomites is based on the three
sections (Figures 1, 4–7). The thickness of the Lower
Liassic carbonates is measured approximately 281 m at
Pirencik hill, 248 m at Erenler hill and 247 m at So¤uksu
location. In the sections, Lower Liassic carbonates are
conformably overlain by Upper Liassic cyclic carbonates
consisting of intraformational conglomerate, Megalodont
Orbitopsella-bearing micritic limestone and microbially
laminated limestone (Eren et al. 2002). At the So¤uksu
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Figure 4. The So¤uksu measured stratigraphic section (see Figures 1d & 2 for location).
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Figure 6. The Erenler hill measured stratigraphic section (see Figures 1e & 2 for location).
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location, situated on the southern flank of a syncline
(Figure 2), Lower Liassic carbonates conformably overlie
Triassic sediments of the Murtçukuru Formation
composed of dolomites and clastic sediments (Kabal &
Taslı 2003). At Pirencik hill, located on the northern flank
of the syncline, Lower Liassic dolomites tectonically
overlie the Upper Cretaceous sediments of the Yavca
Formation along a thrust fault. At Erenler hill, Lower
Liassic carbonates unconformably overlie Upper Devonian
sediments of the Akdere Formation which consists of
brachiopod-bearing limestone, quartz-arenite, siltstone
and shale alternation. On the field, Lower Liassic
dolomites are typically grey in colour and often have a
coarsely crystalline sucrosic texture. The bed-thickness is
variable, but massive and thick-bedding are common. 

Petrography

Petrographic examination reveals that the dolomite
occurs in three modes in the Lower Liassic carbonates.
One of the most common modes is very fine to fine
crystalline dolomite (T1; Figure 8) (predominantly 13–26
µm and up to 65 µm in size) replacing unfossilliferous or
scarcely fossilliferous mudstone often with irregular
fenestral voids, laminated mudstone-microbialite- and/or
intraclast-peloid-bearing grainstone/packstone with
laminoid or irregular fenestrae, and non-laminated
intraclast-peloid bearing grainstone/packstone. Scarce
fossils are mostly ostracod fragments and gastropods.
Some peloidal packstones contain oncoids. This type of
dolomite shows well-preserved textures of original
sediments. Desiccation cracks, local microbrecciation and
clotted textures are associated with these mud-supported
carbonate rocks (Figure 8g, h). Late diagenetic stylolites
are also present, and are parallel or subparallel to bedding
planes.

The second type of dolomite (T2) is pervasive like the
first type, but is fabric destructive, probably formed
through recrystallization and/or replacement and
consisting of coarse dolomite crystals (sucrosic dolomite;
Figure 9) with a size of 65 to 130 µm, up to 270 µm.
Both idiotopic and xenotopic textures are common. Some
dolomite crystals have a larger size and clear rims (limpid)
towards the pore centre (Land 1980; Morrow 1982;
Qing 1998; Qing et al. 2001). In most cases, tiny crystals
are observed in the cloudy central part of euhedral
dolomite rhombs; they are probably relics of the first-

type of dolomites after recrystallization. The rocks with a
xenotopic texture seem to be a mosaic of anhedral
dolomite crystals with a cloudy appearance and irregular
crystal boundaries. In this type of dolomite, the relics of
original fabrics are absent or sparse except for some
traces of birds-eye structures and a few fossils. In
addition, late diagenetic stylolites truncate the second
type of dolomite crystals.

The third-type of dolomite (T3) is a cement
precipitated in intercrystalline pores as a thin and clear
outer rim or zone around a single or cluster of dolomite
rhombs (second-type) as syntaxial overgrowths (Figure
10a, b) and also in some fenestral pores as pore-lining
and space-filling crystals with variably large crystal sizes
up to 700 µm (Figure 10c, d). The staining of the thin-
sections with potassium ferricyanide reveals that both
outer rim and pore-filling cements are nonferroan. The
thickness of the rim cement is mostly 10–40 µm. The
boundary between rim cement and coarse dolomite
crystals (second-type) is gradational or sharp. The third
type of dolomite is not as important volumetrically as the
first (~60%) and second (~40%) types of dolomite, and
accounts for 1–2% or less of the all dolomites.

Depositional Environment

The sedimentary characteristics of the Lower Liassic
partly or completely dolomitized carbonates indicate
deposition in a peritidal environment including
predominantly intertidal and supratidal zones (Figures 4,
5 & 6). Lime mudstones with fenestral fabric, mudcracks
and un- or sparsely fossiliferous content are quite
common in supratidal environments and suggest low
energy conditions. The abundance of mud cracks in
Pirencik hill and Erenler hill sections (Figures 5 & 6)
suggests that sediments there were frequently subjected
to subaerial conditions. Finely laminated peritidal
carbonates commonly associated with fenestral fabrics
are characteristic of intertidal facies (Ginsburg 1975;
Park 1976; Tucker & Wright 1990). The alternation of
microbialite and micrite laminae with peloidal and small
intraclast-rich laminae is resulted by the alternating tidal
and storm floodings (Park 1976; Tucker & Wright 1990;
Tucker 1991). The laminae, which usually contain peloids
and small intraclasts or oncoids, are deposited during
periods of storm flooding, whereas the microbialite and
micrite laminae are formed during daily tidal flooding.
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Figure 8. Photomicrographs showing characteristic textures and fabrics of host-sediments of early dolomites
and associated limestone. (a) Very fine crystalline dolomite (T1) showing a well-preserved original
sediment fabric of scarcely fossilliferous mudstone. Arrow illustrates a fragment of ostracod shell;
(b) very fine crystalline dolomite (T1) replacing mudstone (micrite) with irregular fenestral pores
(arrow); (c) fine laminated limestone associated with the early dolomites. Arrow shows lamina; (d)
fine crystalline dolomite (T1) showing relics of original lamination (arrow); (e) very fine crystalline
dolomite replacing small intraclast (I)-peloid (P) bearing grainstone; (f) very fine crystalline dolomite
replacing oncoid-small intraclast-peloid bearing grainstone. Arrow shows an oncoid; (g) desiccation
cracks (arrow) with fine crystalline dolomitic clasts (B); (h) very fine crystalline dolomite (T1)
showing clotted texture of the original sediment.



Some oncoid-rich intraclast-peloid-bearing grainstone/
packstone may indicate deposition in a shallow subtidal to
lower intertidal environment (Halley 1975; Tucker &
Wright 1990; Figure 4). Vertical and lateral facies
changes in the sections (Figures 4–7) are interpreted as
having been caused by the sea-level fluctuations and
topography of the depositional environment slightly
deepening to the south (Figure 7), respectively.

Mineralogy and Geochemistry

XRD Analysis. X-ray diffraction (XRD) analysis was used
to determine carbonate mineralogy, semi-quantitative

mineral abundance (Table 1) and crystal-ordering.
Dolomite is dominant mineral associated with accessory
calcite, and locally trace amount of quartz. Some samples
consist mainly of calcite indicating the presence of
undolomitized limestone levels (Table 1). The intensity
ratios of the d015 to d110 peaks range from 0.40 to 0.80
(0.11 σ) for the T1-type dolomites and from 0.50 to
0.88 (0.19 σ) for the T2-type dolomites. These values
demonstrate that all dolomites are poorly to moderately
ordered and calcium-rich. The coarse crystalline
dolomites show a sligthly better ordering with respect to
the T1-type dolomites. The estimated average
compositions of dolomites based on displacement of the
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Figure 9. Photomicrographs and SEM view of second-type dolomites. (a) Photomicrograph of the coarse crystalline dolomite with an
idiotopic texture. Most of the euhedral dolomite crystals show a clear outer cement-rim (arrow); (b) coarse crystalline dolomite
with a xenotopic texture; (c) SEM view of an euhedral coarse dolomite crystal (arrow); (d) late diagenetic stylolite cutting the
coarse dolomite crystals (T2).



d104 peak of calcite (Goldsmith et al. 1961) are Ca56, Mg44

for the T1-type dolomite and Ca55, Mg45 for the T2-type
dolomite.

ICP-AES Analysis. ICP-AES analyses were carried out on
selected samples to determine the precise chemical
composition of the dolomites and coexisting limestone,
and the results are given in Table 2. The T1-type
dolomites contain an average of 20.77 wt% in MgO,
31.10 wt% in CaO, and 84.7 ppm Sr. Whereas the T2-
type dolomites have an average of 21.44 wt% in MgO,
31.42 wt% in CaO, and 57.44 ppm Sr. By comparison,
the T2-type dolomites are slightly enriched in MgO
content (~0.67 in wt%) and depleted in Sr (~27 ppm)
relative to T1-type dolomites. In overall, the Sr values are
considerably lower than modern marine dolomites

(500–800 ppm Sr in Land 1980; ~600–700 ppm Sr in
Behrens & Land 1972), which are due to neomorphic
alteration during later burial diagenesis. The molar
concentration of MgCO3 calculated from the geochemical
results averages 43.5 mole % for T1-type dolomites and
45 mole % for T2-type of dolomite. These values indicate
that both T1- and T2-types are Ca-rich dolomites.

Stable Isotopes. The oxygen and carbon isotopic
compositions of carbonate samples are listed in Table 3,
and plotted in Figure 11. The bulk samples of T1-type
dolomite show δ18O and δ13C values ranging from +0.21
to –1.79 ‰ PDB (avg. –0.52 ‰ PDB) and +1.12 to
–0.58 ‰ PDB (avg. +0.23 ‰ PDB), respectively. The
δ18O and δ13C values for T2-type dolomites are –1.27 to
–3.44 ‰ PDB (avg. –2.80 ‰ PDB) and +1.16 to –0.26
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Figure 10. Photomicrographs of dolomite cements (third-type dolomite). (a) Dolomite cement (third-type dolomite) as clear outer rim
around single (D) and clusters (D1) of dolomite rhombs (second-type); (b) dolomite rim-cement (third-type) lining the
intercrystalline pore (arrow) in the coarse crystalline dolomite (second-type); (c) dolomite cement (third-type) lining (arrow) and
filling (PF) a fenestral pore (?) in the coarse crystalline dolomite (D); (d) dolomite scalenohedral rim cement (arrow) and filling
(PF) a fenestral pore
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Table 1. Semi-quantitative mineralogical compositions of the selected samples. 

sample no dolomite calcite quartz

P-23 +++++ -

P-24 +++++ -

P-25 +++++ -

P-26 +++++ -

P-28 +++++ ac

P-29 +++++ ac

P-31 +++++ ac

P.33 +++++ ac

P-34 +++++ -

P-35 +++++ ac (~ 4%)

P-36 +++++ ac (~ 3%)

P-39 +++++ ac ac

P-40 +++++ ac (~ 4%)

P-41 ++++ + (~ 8%)

P-42 +++++ ac

P-43 +++++ ac

P-44 +++++ ac

P-46 +++++ -

P-47 +++++ -

P-48 +++++ ac

P-49 +++++ -

P-50 +++++ ac ac

P-51 +++++ -

P-52 +++++ -

P-53 +++++ ac

P-55 +++++ ac

P-56 +++++ ac

P-57 +++++ ac

P-58 +++++ ac

P-59 +++++ ac

P-60 +++++ ac

P-62 +++++ ac

P-63 +++++ ac

P-64 +++++ ac

P-65 +++++ ac (~ 3%)

P-66 +++++ ac (~ 3%)

P-67 +++++ ac

S-2 ac +++++ ac

S-3 +++ ++  (~ 22%) + (~ 6%)

S-4 +++++ ac (~ 2%)

S-5 ++ +++

S-6 +++ ++ ac (~ 14%) ac

S-7 +++++ ac (~ 3.5%)

S-8 ++++ + ac

S-9 ++++ + (~ 10%)

+: relative abundance of mineral, ac- accessory
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S-10 + (~6%) ++++ ac (~4%)

S-11 +++++ ac (~4%)

S-12 +++++ ac

S-13 +++++ ac

S-14 +++++ ac (~3%)

S-15 +++++ ac (~3%)

S-17 +++++ -

S-18 ++++ + (~12%)

S-19 ac (~4%) +++++

S-20 +++++ ac (~4%)

S-21 +++++ ac

S-22 +++++ ac

S-23 ac (~3%) +++++

S-25 - +++++

S-28 + (~ 10%) ++++

S-30 ac +++++

Y-3 +++++ - ac

Y-4 +++++ -

Y-5 +++++ -

Y-6 +++++ -

Y-7 +++++ -

Y-8 +++++ -

Y-9 +++++ -

Y-10 +++++ -

Y-11 +++++ -

Y-12 +++++ -

Y-13 +++++ -

Y-14 +++++ -

Y-15 +++++ -

Y-16 +++++ -

Y-17 +++++ -

Y-18 +++++ -

Y-19 +++++ ac (~4%)

Y-20 +++++ -

Y-21 +++++ -

Y-22 +++++ -

Y-23 +++++ -

Y-24 +++++ -

Y-25 +++++ ac

Y-26 ac (~ 4%) +++++

Y-27 +++++ ac

Y-28 +++++ -

Y-29 +++++ ac

Y-30 ac (~ 3%) +++++

Table 1. Continued.

sample no dolomite calcite quartz



M. EREN ET AL.

355

Ta
bl

e 
2.

Ch
em

ic
al

 c
om

po
si

tio
ns

 o
f 

se
le

ct
ed

 s
am

pl
es

.

sa
m

pl
e

Si
O

2
Al

2O
3

Fe
2O

3
M

gO
Ca

O
N

a 2
O

K
2O

Ti
2O

P 2
O

5
M

nO
Cr

2O
3

Ba
N

i
Sr

Zr
Y

N
b

Sc
LO

I
SU

M
no

%
%

%
%

%
%

%
%

%
%

%
pp

m
pp

m
pp

m
pp

m
pp

m
pp

m
pp

m
%

%

ve
ry

 f
in

e 
to

 f
in

e 
cr

ys
ta

lli
ne

 d
ol

om
ite

 (
T1

–t
yp

e)

P-
17

1.
19

0.
44

0.
21

20
.8

7
31

.1
4

0.
03

0.
09

0.
02

0.
03

0.
01

0.
00

2
10

<
20

89
<

10
<

10
<

10
<

1
46

.0
10

0.
05

P-
24

2.
73

1.
08

0.
39

20
.8

6
28

.7
8

0.
02

0.
28

0.
04

0.
02

<
0.

01
0.

00
5

16
<

20
78

<
10

<
10

<
10

<
1

45
.9

10
0.

12

P-
33

0.
85

0.
31

0.
15

20
.8

1
30

.7
3

0.
01

0.
07

0.
01

0.
04

<
0.

01
0.

00
9

7
22

77
<

10
<

10
18

<
1

47
.0

10
0.

01

S-
17

1.
30

0.
39

0.
12

21
.8

1
30

.0
4

0.
03

0.
08

0.
01

0.
03

<
0.

01
<

0.
00

1
10

<
20

94
14

<
10

32
<

1
46

.1
99

.9
3

Y-
6

0.
96

0.
37

0.
13

21
.4

6
29

.7
7

0.
07

0.
08

0.
01

0.
03

<
0.

01
0.

00
6

5
30

72
12

<
10

37
<

1
47

.1
10

0.
01

Y-
15

0.
72

0.
33

0.
17

20
.2

2
32

.0
7

0.
03

0.
07

0.
01

0.
03

0.
01

0.
00

3
9

22
81

16
<

10
38

<
1

46
.2

99
.8

9

Y-
16

1.
28

0.
60

0.
23

19
.0

1
33

.3
7

0.
04

0.
15

0.
02

0.
03

<
0.

01
<

0.
00

1
6

<
20

11
9

<
10

<
10

19
1

45
.3

10
0.

05

Y-
18

0.
66

0.
20

0.
06

21
.4

0
31

.2
6

0.
01

0.
04

<
0.

01
0.

02
<

0.
01

0.
00

4
6

31
68

<
10

<
10

24
<

1
46

.3
99

.9
8

Y-
19

0.
69

0.
27

0.
14

20
.0

7
32

.7
2

0.
02

0.
05

0.
01

0.
02

<
0.

01
0.

00
4

<
5

<
20

94
<

10
<

10
13

<
1

45
.9

99
.9

2

Y-
20

1.
01

0.
51

0.
21

21
.1

7
31

.1
6

0.
01

0.
12

0.
02

0.
04

0.
01

0.
00

6
8

24
75

<
10

<
10

22
<

1
45

.7
99

.9
8

co
ar

se
 c

ry
st

al
lin

e 
do

lo
m

ite
 (

T2
–t

yp
e)

P-
34

0.
07

<
0.

03
0.

04
22

.1
2

31
.4

5
0.

01
<

0.
02

<
0.

01
0.

03
<

0.
01

0.
00

2
<

5
<

20
22

13
<

10
35

<
1

46
.2

99
.9

6

P-
44

0.
34

0.
13

0.
07

22
.1

8
31

.3
3

0.
01

<
0.

02
<

0.
01

0.
03

<
0.

01
<

0.
00

1
<

5
<

20
65

12
<

10
41

<
1

45
.8

99
.9

3

P-
46

0.
16

<
0.

03
<

0.
04

22
.2

6
30

.8
3

<
0.

01
<

0.
02

<
0.

01
0.

05
<

0.
01

<
0.

00
1

6
25

32
26

<
10

54
<

1
46

.6
99

.9
4

P-
48

0.
21

0.
03

0.
06

21
.7

2
30

.9
8

<
0.

01
<

0.
02

<
0.

01
0.

04
<

0.
01

0.
00

4
6

20
48

<
10

<
10

17
1

46
.9

99
.9

6

P-
51

0.
47

0.
06

0.
06

21
.5

7
30

.9
4

0.
02

<
0.

02
<

0.
01

0.
03

<
0.

01
0.

00
5

7
25

58
<

10
<

10
<

10
<

1
46

.8
99

.9
8

P-
60

0.
33

0.
06

0.
05

21
.8

8
31

.2
1

0.
02

<
0.

02
<

0.
01

0.
01

<
0.

01
<

0.
00

1
<

5
<

20
28

<
10

<
10

16
<

1
46

.4
99

.9
9

P-
61

1.
11

0.
48

0.
16

20
.1

4
32

.2
2

0.
04

0.
09

0.
02

0.
02

<
0.

01
0.

00
4

8
<

20
96

<
10

<
10

14
<

1
45

.7
10

0.
00

P-
66

1.
24

0.
57

0.
23

19
.5

0
32

.6
3

0.
04

0.
11

0.
09

0.
02

0.
01

0.
00

2
13

<
20

12
1

20
<

10
40

<
1

45
.5

99
.9

7

Y-
27

0.
27

0.
13

0.
06

21
.5

9
31

.2
3

<
0.

01
<

0.
02

<
0.

01
0.

01
<

0.
01

<
0.

00
1

<
5

<
20

47
<

10
<

10
<

10
<

1
46

.6
99

.9
2

co
ex

is
tin

g 
lim

es
to

ne

S-
9

1.
61

0.
45

0.
20

1.
09

52
.7

8
0.

02
0.

11
0.

02
<

0.
01

0.
01

0.
00

1
10

<
20

31
2

<
10

<
10

<
10

<
1

43
.5

99
.8

3

LO
I-

 lo
ss

 o
n 

ig
ni

tio
n



‰ PDB (avg. +0.73 ‰ PDB), respectively. The coexisting
limestone sample (S-9) has δ18O and δ13C values of –5.44
and –0.93 ‰ PDB, respectively. The T2-type dolomites
exhibit more 18O-depleted values relative to the T1-type
dolomites, and δ18O value of the limestone differentiates
from values of the dolomite samples. 

Discussion

The Lower Liassic carbonates were deposited in a peritidal
environment, and then subsequently underwent extensive
dolomitization. Two major stages of dolomitization are
identified in the carbonate rocks based on the
petrographic and geochemical data (Figure 12). The very
fine to fine crystalline dolomite (T1) characterizes an
early stage formed from seawater by syn-sedimentary
replacement of peritidal sediments before lithification
(Morrow 1982; Banner et al. 1988; Tucker & Wright
1990; Qing 1998; Arenas et al. 1999; Balog et al. 1999).
The syn-sedimentary origin is based on: (1) the bedded
character of the early formed dolomites; (2) the
lamination of very fine to fine crystalline dolomites with

mud-rich intervals; (3) dolomite clasts in intraformational
conglomerate; (4) desiccation breccias with dolomite
clasts; (5) mud-crack association with T1-type dolomites;
and (6) the occurrence of dolomites from prior to
stylolitization. The very fine to fine crystalline textures
are likely resulted from : (i) slow rates of dolomitization,
(ii) original sediment mineralogy and fine texture, and (iii)
number of nucleation sites (Mresah 1998). The slow
rates may have been controlled by permeability (Dawans
& Swart 1988) or low supersaturation (Boistelle 1982).
The presence of mud-cracks, desiccation breccias and
fenestral pores indicate slightly restricted evaporitic
conditions, and the absence of evaporite minerals and/or
their relics and δ18O values suggest dolomitization from
low supersaturated or penesaline seawater (Zengzhao et
al. 1998; Qing et al. 2001). The slightly depleted δ18O
values of T1-type dolomites are consistent with this
interpretation, and are resulted by their diagenetic
stabilitization in either burial or meteoric environments
(Land 1985; Yoo & Lee 1998; Zengzhao et al. 1998;
Reinhold 1998). However, Veizer & Hoefs (1976) and
Veizer et al. (1999) explain that the wide variations in
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Table 3. Stable isotope compositions of the selected samples.

sample no wt% dolomite d18O (PDB) d13C (PDB)

very fine to fine crystalline dolomite (T1-type)

P-17 93.3 –0.45 0.81

P-24 89.8 0.21 –0.58

P-33 93.6 –0.06 0.89

Y-6 91.8 –0.42 1.12

Y-15 86.6 –1.79 –0.39

Y-16 88.1 –0.60 –0.48

average –0.52 0.23

coarse crystalline dolomite (T2-type)

P-34 92.8 –3.44 1.16

P-44 93.2 –2.55 0.76

P-46 93.5 –3.33 1.00

P-48 93.4 –2.94 –0.26

P-51 89.9 –2.73 0.32

P-60 91.1 –3.32 1.13

P-61 94.6 –1.27 0.98

average –2.78 0.73

coexisting limestone

S-9 88.4  (calcite) –5.44 -0.93



δ18O and δ13C values of ancient syn-sedimentary
dolomites are related to secular fluctuations in seawater
isotopic composition through time. In meteoric
environment, δ18O values of the carbonates tend to be

homogeneous because of a ubiquitous source of oxygen
(Allan & Matthews 1982) and quite negative (e.g., –6.8
‰ PDB for mixing zone dolomite, Taylor & Sibley 1986),
whereas δ18O values are more variable during the
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different stages. Distribution of the T2 dolomite samples (red
points) shows a trend where δ18O and Sr values change
covariantly. These changes are inversely related with their
crystal size; (b) a crossplot of δ18O versus δ13C showing two
dolomite-types.



LOWER LIASSIC DOLOMITES IN THE AYDINCIK AREA, S TURKEY

358

X X X X X X X X
X

X
X

sea-level

Early Stage Dolomitization

(Syn sedimentary)-

X : very fine to fine
crystalline dolomite (T1)

d 18O: avg. – 0.52 ‰ PDB
d 13C: avg. +0.23 ‰ PDB
Sr: avg. 85 ppm

X X X X X X X X X

X

X

Late or Early Burial Stage
Recrystallization/Cementation

DOLOMITIZATION MODELS

seawater pumping

X

dolomite cement (T3)-rim
in fenestral pore

coarse crystalline
dolomite (T2) X : elics of er arly formed

dolomited 18O: avg. – 2.80 ‰ PDB
d 13C: avg. +0.73 ‰ PDB
Sr: avg. 57 ppm

dolomite outer clear
rim-cement (T3)

X X X X

X
X

X
XX

X

X

X X X

Burial (500-1000 m)X

an influx of compactional water
(slightly modified sea-water)

S N

pore-filling dolomite cement (T3)

Figure 12. Schematic illustration of the two stage dolomitization: (1) early (syn-sedimentary) and (2)
relatively late (post-depositional or early burial). 



progressive burial (Tucker & Wright 1990). The similar
oxygen isotope values for syn-sedimentary dolomites are
reported in the literature (Zengzhao et al. 1998; Qing
1998; Balog et al. 1999; Auajjar & Bouleque 2003; Varol
& Matsumato 2005). The thin-section examination shows
that the samples with relatively δ18O-depleted values are
associated with relatively larger crystal sizes (close to
upper size limit of the group) due to the partial
recrystallization during progressive burial. This
interpretation is also supported by the absence of
dissolution moldics and vugs. Considering the oxygen
isotope fractionation value of 3 ± 1 ‰ PDB between
dolomite and calcite (Land 1980), we can conclude that
the δ18O value (–5.44 ‰ PDB) of coexisting limestone
based on the geochemical data is consistent with late
dolomites, and suggests chemical changes during the
burial diagenesis. However, X-ray diffractogram of
sample S-9 suggests dolomite or limy dolomite rock-type.
Difference in results is due to sampling and variation in
the sample. The δ13C values are more typical than the
δ18O values for the syn-sedimentary dolomites (Auajjar &
Bouleque 2003), indicating that the δ13C values are
retained from the precursor marine carbonates (Land
1980). The δ13C values of Lower Jurassic marine
carbonates average ~1.5‰ PDB, which is similar or
slightly greater than that of modern marine carbonates
(~0 to 1‰ PDB; Allan & Matthews 1977; Holser 1984;
Popp et al. 1986; Lohman & Walker 1989; Veizer et al.
1999). Land (1985) concluded that seawater is the only
widely available fluid with sufficient magnesium to cause
massive dolomitization. Dolomitization and Mg transport
were possibly related to a daily pumping of
supersaturated marine fluids through the peritidal
sediments and some degree of vertical pumping of fluids
(Carballo et al. 1987; Mazzullo et al. 1995). The
precursor sediments of this early dolomitization were
predominantly micrite which provides favourable
substrates for dolomitization because the high surface
area provides abundant potential nucleation sites (Sibley
1982). 

Dolomite (T2) and (T3) are interpreted to have
formed late in diagenetic history, indicating the post-
depositional or early burial stage (Banner et al. 1988;
Qing 1998; Balog et al. 1999; Qing et al. 2001) whereby
dolomite T2 formed by recrystallization of early
dolomites (Land 1985; Hardie 1987; Banner et al. 1988;
Machel 1997; Qing 1998; Reinhold 1998; Al-Aasm &

Packard 2000; Chen et al. 2004) at slightly increased
temperatures, and subsequently dolomite T3 precipitated
as a cement. The evidence for possible recrystallization of
early dolomites (Machel 1997) are: (1) relics of early
dolomites in the intercrystalline areas and also in the large
euhedral crystals; (2) loss of original texture; (3) an
increase in crystal size, MgO content and slight cation
ordering; (4) euhedral crystal shapes; (5) relatively low Sr
values; and (6) a shift toward the lighter δ18O values of
coarse crystalline dolomite (T2). The oxygen isotopic
fractionation between water and carbonates is highly
temperature-dependent (Friedman & O’Neil 1977 and
many others). Therefore, burial temperatures of the late
dolomites (T2) can be estimated using the Fritz & Smith
(1970) expression given in Dickson & Coleman (1980):

T oC= 31.9 – 5.55 (δd – δw) + 0.17 (δd – δw)2

where T is temperature in Celsius, dd and dw are oxygen
isotopic composition of dolomite and formation water
(modified sea water; Land 1985) in PDB scale. Assuming
a constant δ18Oseawater value of –0 ‰ SMOW (Tucker &
Wright 1990; Rosales et al. 2004), the calculated
temperatures for the late dolomitization range from 39
to 53 °C based on oxygen isotope values of dolomite T2
(Hardie 1987; Qing 1998; Reinhold 1998). These
temperatures require subsurface depths of roughly 500
to 1000 m, assuming a surface temperature of 20 °C and
a geothermal gradient of 30 °C / km (Allen & Allen 1990;
Eren 1993). Burial at ~500 m depth is enough to raise
the temperature of pore waters sufficiently to effect
dolomitization (Qing et al. 2001). Taking a consideration
of the secular variation in dw, we need to re-evaluate the
our estimations according to δ18O value of the Early
Jurassic seawater which is lighter than the recent
seawater (Veizer et al. 1999). In the literature, a δwater

value of ~ -1.0 ‰ SMOW seems reasonable for the Early
Jurassic seawater (Reinhold 1998; Haas & Demeny
2002; Rosales et al. 2004). The use of this δ18Ow value
results the burial temperatures from 33 to 46 °C. In the
both cases, the temperature estimations include many
uncertainties such as sampling, analytical errors,
diagenetic factors, etc. The first temperature estimates
seem to be more realistic than the second estimated
values. The δ13 C values of the early and late dolomites are
almost the same, that may indicate marine-derived warm
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dolomitizing fluids. These warm fluids were probably
oxidizing in character (Qing 1998) because of staining of
dolomite cements which are nonferroan. In the early
burial dolomitization, the main source of Mg is the early
dolomites (T1), and additional Mg is provided from the
modified seawater. Geochemically, dolomitization is
favoured at elevated burial temperatures because the
kinetic inhibitions act at low temperatures less than 50 °C
(Machel & Mountjoy 1986; Hardie 1987; Tucker 1991;
Budd 1997). Therefore, the recrystallization took place
at elevated burial temperatures, and resulted an increase
in crystal size and slight cation ordering to form the
coarse crystalline dolomites (T2) and changes in isotope
geochemistry and trace element contents of early
dolomites (T1). The dolomite T1 is calcium rich and
poorly ordered, so characterizing the highly metastable
phase (Land 1985). The covariant trend of δ18O and Sr
values inversely related to cyrstal size (Figure 11a)
suggests progressive recrystallization. The geometry of
dolomite T2 and the absence or poor development of
coarse crystalline dolomites in the So¤uksu section
(Figure 7) suggests an influx of laterally percolating fluids
from landward, resulting from compaction (Qing 1998).
The late dolomitization occurred before any significant
loss of porosity and permeability hindered fluid
circulation through the sediment evidenced by well
preservation of primary pores (Warren 2000). 

Conclusions

In the Lower Liassic carbonates, two major stages of
dolomitization are distinguished on the basis of

petrographic and geochemical characteristics. In the early
stage, very fine to fine crystalline dolomites (T1) formed
from penesaline seawater by syn-sedimentary
replacement of peritidal sediments before lithification. In
the late stage, the coarse crystalline dolomites (T2)
formed as a result of the recrystallization of less
stoichiometric dolomite T1, and subsequently dolomite
cement (T3) precipitated in the pores and around the
dolomite rhomb(s) as a clear outer rim from the same
dolomitizating fluid (modified seawater) at elevated burial
temperatures. The recrystallization caused an increase in
crystal size, a shift to more negative values in δ18O and
low Sr contents in the dolomites. But the δ13 C values do
not exhibit a significant change during the later diagenetic
modification.
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