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Abstract: This study aims to examine crustal structure in the eastern part of central Anatolia using the
magnetotelluric (MT) method. MT data have been collected from 37 stations along a north—-south 220 km profile
crossing in succession the Tokat Massif (Pontide basement), the Ankara-Erzincan Suture Zone, the Kirsehir Massif,
the Pinarbasi-Divrigi Ophiolitic Belt and the Tauride-Anatolide Belt. Data were modelled to derive a geo-electrical
model using 2-dimensional inverse techniques. Low resistivity values (<38 Ohm.m) extend to a maximum depth of
7 km beneath the Sivas Basin, 4 km in the Kangal Basin, 10 km in the Glrln Basin, 6 km in the Ovacik Basin and
6 km in the Elbistan Basin and are interpreted as sediment infill. Three high resistive zones (>981 Ohm.m) coincide
with the southern part of the Pontide Magmatic Arc, the Kirsehir Block and the Tauride-Anatolide Belt and are
interpreted as upper crust of igneous and metamorphic origin. Low resistivity values (< 981 Ohm.m) are identified
below the upper crust and the layer accepted as lower crust ranges from 10-15 km beneath the high resistive
zones. Total crust thickness is approximately 45 km in the Tokat Massif, Kirsehir Massif and Tauride-Anatolide
Platform. Two vertical conductive zones have been detected beneath the Ankara-Erzincan Suture in the north and
the Divrigi-Pinarbas! Ophiolitic Belt in the south. The northern conductive zone identifies the Ankara-Erzincan
Suture and the southern conductive zone corresponds to the Divrigi-Pinarbasi Ophiolitic Belt where it provides
evidence for an Inner Tauride Suture. The relationship between the gravity and resistivity data has been researched
and the high gravity anomalies were found to be consistent with high conductive zones along the MT profile.
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Orta Anadolu’nun Dogu Kesiminin (Tiirkiye) Kabuk Yapisi

Ozet: Bu calismanin amaci manyetotelliirik (MT) yéntemi kullanarak Orta Anadolu'nun dogu kesiminin kabuk
yapisini incelemektir. MT verileri kuzeyden guneye Tokat Masifi (Pontidlerin temeli), Ankara-Erzincan Kenet
kusadi, Kirsehir Masifi, Pinarbasi-Divrigi Ofiyolit Kusadi ve Torid-Anatolid Kusadi'ni kesen 220 km'lik bir profil
boyunca 37 istasyonda alinmistir. Bu veriler 2-boyutlu ters ¢dzim yoéntemi kullanilarak modellenmistir. Sivas
Havzasi'nin altinda maksimum 7 km, Kangal Havzasi'nda 4 km, Glrin Havzasi'nda 10 km, Ovacik Havzasi'nda 6
km ve Elbistan Havzasi'nin altinda ise 6 km derinlige kadar uzanan dustk 6zdiren¢ degerli kesimler (<38 Ohm.m)
cOkel dolgusu olarak degerlendirilmistir. Kirsehir Bloku, Torid-Anatolid Kusagi ve Pontid Magmatik Yayr'nin giney
bélumune Karsilik gelen U¢ yuksek 6zdirencli zon (>981 Ohm.m) belirlenmistir. Bu yuksek 6zdirencli zonlar tst
kitasal kabuk olarak yorumlanmistir. Ust kabugun altinda ise dusik ozdirenc degerleri (< 981 Ohm.m)
gorulmektedir. Alt kita kabugu olarak kabul edilen bu katmanin, ylksek 6zdirencli zonun altindaki kalinligi 10-15
Km arasinda degismektedir. Toplam kabuk kalinligi Tokat Masifi, Kirsehir Masifi ve Torid-Anatolid Platformu’nda
yaklasik 45 km dir. Kuzeyde Ankara-Erzincan Kenedi ve giineyde Divrigi-Pinarbasi Ofiyolit Kusagi'nin altinda iki
dusey iletken zon belirlenmistir. Kuzeydeki iletken zon Ankara-Erzincan Kenedi'ni dogrulamaktadir ve Divrigi-
Pinarbasi Ofiyolit Kusagi'na denk gelen giineydeki iletken zon ise I¢ Toros Siituru'nun bir kaniti olabilir. Ayrica MT
hatti boyunca gravite degerleri ile iletkenlik iliskisi arastiriimis ve yiksek gravite anomalilerinin yuksek iletkenlik
zonlart ile uyum icinde oldugu gordlmustir.

Anahtar SoézcukKler: kabuk yapisi, manyetotelllrik, kenetler, Orta Anadolu, Turkiye

Introduction

Anatolia is a segment of the Alpine-Himalayan mountain
belt which has been accreted and shaped by collision
between Laurasia in the north and Afro-Arabia in the
south. This continental convergence was the result of two

main episodes of ocean growth and consumption, namely
the Paleotethys (Carboniferous to Triassic) and Neotethys
(Triassic to Cretaceous) (Sengér & Yimaz 1981). The
eastern part of central Anatolia consists of seven
east-west Paleotethyan and Neotethyan tectonic belts.
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From north to south these belts are the Pontides (Pontide
Magmatic Arc and the Tokat Massif), the izmir-Ankara-
Erzincan Suture Zone, the Kirsehir Massif, the Pinarbasi-
Divrigi Ophiolite Belt, the Tauride-Anatolide Platform, the
Bitlis-Zagros Suture Zone and the Arabian Platform
(Figures 1 & 2).

The Pontides comprise an orogenic belt formed by the
Cimmeride and Alpine orogenic events (Sengér & Yilmaz
1981), and the Pontide Magmatic Arc which mainly
consists of Upper Cretaceous volcanic rocks and
intercalated sediments intruded by granitoids (Boccalatti
et al. 1974; Sengdr & Yiimaz 1981; Okay & Sahintlrk
1998). This magmatic arc is interpreted to have formed
during northward subduction of the Ankara-Erzincan
Ocean (Akin 1978; Sengér & Yilmaz 1981). The Tokat
Massif comprises metamorphic basement of the Eastern
Pontides and can be correlated with the Karakaya
Complex, which generally is interpreted as an
accretionary prism (Tekeli 1981; Okay 2000; Pickett &
Robertson 1996, 2004). Around the Tokat Massif are
pre-Liassic low-grade metavolcanic and sedimentary
rocks, an ophiolitic olistostrome made up exotic blocks
including Silurian to Triassic limestones, and ophiolites in
a metaclastic and metavolcanic matrix, an Upper
Cretaceous ophiolitic mélange and heterogeneous
metamorphic rock associations. From bottom to top the
latter consist of metaclastic and metabasic rocks, phyllite,

CENTRAL ANATOLIA

marble and meta-volcaniclastics with exotic blocks (Ozcan
et al. 1980; Yiimaz 1980, 1982; Yiimaz & Yilmaz 2004).

The Ankara-Erzincan Suture was the collisional site of
the main Tethys Ocean between Laurasia and Gondwana
during the Late Palaeozoic—Early Tertiary interval (Okay
& Tuysiz 1999) and is composed of a range of different
ophiolitic tectono-stratigraphic units. Some of these units
are internally chaotic dismembered ophiolites (Yilmaz
1980; Norman 1988) but also include slivers of ordered
ophiolites (Yilmaz et al. 1993) obducted into their
present tectonic setting during the Late Cretaceous and
reworked during the Eocene. An ophiolitic mélange
association was obducted onto the Pontides, and south-
vergent thrusts were developed during the Late
Cretaceous (Yilmaz et al. 1993, 1997). Ophiolite nappe
packages, mainly composed of thick and dismembered
ophiolitic slices, were reworked during the Eocene
(Yiimaz et al. 1993 and Figure 3). Rice et al. (2006)
suggested that the Izmir-Ankara-Erzincan Suture Zone in
the Central and Eastern Pontide regions comprises Upper
Cretaceous units that record the development of an
accretionary complex, a volcanic arc, a forearc basin and
a rifted back-arc basin.

The Kirsehir Massif consists of magmatic (CAG:
Central Anatolian Granitoids), metamorphic (CAM:
Central Anatolian Metamorphics) and ophiolitic rock
(CAO: Central Anatolian Ophiolites) assemblages which
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Figure 1. Simplified tectonic divisions of Turkey (from Okay & Tuysiz 19
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Figure 2. Major tectonic divisions in the eastern part of Central Anatolia (after Ketin 1966; Okay 1989; Okay & Tlyslz 1999).
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are collectively termed the Central Anatolian Crystalline
Complex (Gonctoglu et al. 1991, 1994). The CAG,
comprising Late Cretaceous granitoids and syenitoids,
cuts the CAM and CAO. The CAM consists of
metamorphosed platform-type successions subjected to
pre-early Late Cretaceous polyphase medium-high-grade
metamorphism (Gonctoglu 1986; Goncioglu et al.
1991). The CAO is a partially preserved ophiolitic
sequence containing metamorphic tectonites, cumulate
and isotropic gabbros, plagiogranites, diabases, pillowed
basalts, and epi-ophiolitic sediments (Yaliniz & Géncloglu
1998). This sequence exhibits a supra-subduction zone
chemistry (Gonctioglu & Tireli 1993; Yaliniz et al. 1996,
1999; Floyd et al. 1998, 2000; Yalniz & Goéncioglu
1998) and its formation age is Turonian to Santonian
(Yaliniz et al. 1996)

An ophiolitic belt also crops out south of the Kirsehir
Massif near Divrigi (Sivas) and Pinarbagi (Kayseri) and
comprises an ophiolitic mélange (Erkan et al. 1978;
Yilmaz et al. 1989; Yilmaz et al. 1993) and partly altered
ophiolites (Yilmaz et al. 1993; Yilmaz et al. 2001). The
origin of the Divrigi-Pinarbasi Ophiolitic Belt is
controversial and according to some researchers, the
ophiolitic suite originated in the Maastrichtian—-Late
Eocene (Sengdr & Yilmaz 1981) Inner Tauride Ocean
(Demirtagl 1977; Sengdr & Yilmaz 1981; Kogyigit 1990;
Gorlr et al. 1984; Robertson & Dixon 1984; Gokten
1993; Gokten & Floyd 1987; Andrew & Robertson
2002; Clark & Robertson 2002). Alternatively it could
belong to the northern branch of the Neotethys and
comprise rootless ophiolitic slices transported from north
to south (Kelling et al. 1989; Cater et al. 1991; Yilmaz et
al. 1993; Goncloglu et al. 1996-1997).

Ophiolitic rocks tectonically overlie the Tauride-
Anatolide Platform (Yiimaz & Yilmaz 2004) and consist
of the GUrun Relative Autochthon and the Keban-Malatya
Unit (Yilmaz et al. 1993).

The Gurin relative autochthon mainly consists of
limestone and clastic rocks and the Keban-Malatya Unit is
composed of gneiss, schist, marble and carbonate rocks
intruded by Palaeozoic granitoids (Peringek & Kozlu
1984). This north-dipping unit is interpreted as a Late
Palaeozoic—Mesozoic carbonate platform sequence that
formed part of the Tauride Carbonate Platform to the
north of the Southern Neotethys Ocean (Robertson et al.
2006). Some ophiolitic rocks (Erkan et al. 1978; Yilmaz
1983) tectonically overlie the Tauride-Anatolide Platform
in the south.
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The study area is underlain from north to south, by
the Sivas, Kangal, Gurln, Ovacik and Elbistan basins. The
Sivas Basin underlain by the Kirsehir Block (Gorlr et al.
1998) or a mosaic comprising the Kirsehir Massif and
ophiolitic rocks (Clark & Robertson 2005; Yimaz &
Yilmaz 2006). The Kangal Basin developed on the
Pinarbagi-Divrigi Ophiolitic Belt. The Gurlin and Ovacik
basins developed on the Gurin relative autochthon, and
the Elbistan Basin developed on the Gurin relative
autochthon and Keban-Malatya Unit (Figure 3). In
summary, the crust of the study area is built up of five
major structural divisions comprising the Pontide
(Pontide Magmatic Arc and Tokat Massif), the Kirsehir
Block, the Anatolide-Tauride Platform, the Ankara-
Erzincan Suture, the controversial Inner Tauride Suture
and some sedimentary basins developed on these
geotectonic units.

The magnetotelluric (MT) method has been used to
investigate deep crustal structure, upper mantle and
crustal thickness, and for geothermal (heat source)
exploration (Vozof 1972; Jupp & Vozof 1977; Beblo et
al. 1983; Hersir & Bjérnssonn 1991; Simpson & Bahr
2005). The MT method has also been used successfully to
investigate the geometry of sedimentary basins (Gupta &
Jones 1990; Jones & Craven 1990; Pomposiello et al.
2002; Bayrak et al. 2004; Bayrak et al. 2006) and
ancient subduction/collision zones (Jain 1964; Jones
1993; Bayrak et al. 2004). Following the rationale of
these studies the method has been applied here to
investigate the signature of the sedimentary basins and
ancient subduction zones in a study spanning the
Anatolian accretionary complex described above.

Some geophysical methods have already been applied
to determine the shape of the Sivas sedimentary basin.
Erez (1974) was the first worker to identify the existence
and continuity of some deep low velocity zones in this
region by seismic measurements in a well 3645 m deep
near Celalli in the east of the Sivas Basin. Low density
values calculated from low seismic velocity values were
recognised to be compatible with low gravity values in the
Sivas Basin. By 2D modelling of gravity data Tufan & Ates
(1995a, b) suggested that the maximum depth of the
Sivas Basin is approximately 9 km and direct current
resistivity surveys in the eastern part of the Sivas Basin
indicated an anticlinal structure at 5 km depth (Duvarci
1993; Tanidir & Karli 1993). However, no geophysical
studies have yet investigated the deeper structure in the
study area.
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Figure 3. Generalized columnar sections of the tectonic zones in the eastern part of Central Anatolia. The sources are:
Pontides (after Gedikoglu 1978; Ozsayar et al. 1981); Tokat area (after Oztiirk 1979; Yilmaz 1981, 1983);
Ankara-Erzincan Suture (after Bergougnan 1976; Tatar 1978; Buket 1982; Bektas 1984; Yiimaz 1985);
Sivas area (Yilmaz & Yilmaz 2006); Divrigi-Kangal area (Yilmaz & Yiimaz 2004); Girin area (Yilmaz et al.
1993).
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Thus the aim of the present study is to investigate the
deeper crustal structure of the southern part of the
Pontides, Ankara-Erzincan Suture, Kirsehir Massif,
Pinarbasi-Divrigi Ophiolite Belt and Tauride-Anatolide
Platform along a North—South-trending profile between
Hafik (Sivas) and Elbistan (Kahramanmaras), and to
constrain the depth of the Sivas, Kangal, Girtn, Ovacik
and Elbistan basins located along the same profile (Figure

1).

Magnetotelluric Method

In the MT method, the orthogonal components of the
horizontal electric and magnetic fields induced by natural
primary sources are measured simultaneously as a
function of time. The natural time varying EM field can be
observed as variations in the Earth’s magnetic field. The
sources used for the magnetotelluric method are called
micro pulsations and have frequencies of less than 1 Hz.
Most micro pulsations originate in the Earth's
magnetopause from motions of charged particles ejected
from the Sun.

Data Acquisition

Phoenix V5 MT equipment was employed to record three
orthogonal (N-S, E-W and vertical) magnetic (H) fields
and two orthogonal (N-S and E-W) electrical (E) field
components. One hundred metre electric dipoles
extending in N-S and E-W geomagnetic directions and
Pb-PbCl electrodes were used for the E field. The
horizontal components of the H field were measured with
an induction coil and the vertical component of the H field
was recorded with an air loop on the ground. MT data
were collected at 37 stations along a N-S direction and
the profile length was approximately 220 km from
Elbistan to Hafik. The average station interval between
the MT stations was approximately 5 km.

The V5 system produces all MT parameters in real-
time. The high frequencies level is 320-7.5 Hz. In this
system, data acquisition is divided into two frequencies
levels which were processed using Fourier transform
techniques in a frequency band. Each band contains two
frequencies and the low frequency level (6—-0.00055 Hz)
is processed using cascade decimation (Wight & Bostick
1980).
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The relationships between the electric and magnetic
components are

E=ZH+Z H, (1)
E=2,H+Z H

Wy
where Z; are transfer functions called impedances and are
a measure of Earth’s response to magnetic fields in the x
and y directions. If the subsurface is homogeneous or
horizontally stratified (one dimensional), the impedances
Z,,and Z,, are equal to zero and Z,, and Z,, impedances
will conform to the equation below:

Z,(()=E(F)/H,(F) )

If the direction of the electric field (E) is parallel to the

geoelectrical strike, the vertical magnetic field is polarized

linearly and called Transverse Electric (TE) mode or E-

polarization. In this situation the direction of the electric

field depends on two orthogonal axes. If the direction is
along the x axis alone the impedance is Z, =E /H,.

If the magnetic field is along the geological strike, it
will be linearly polarized. If y" is perpendicular to strike,
the Transverse Magnetic (TM) mode or H polarization is
defined as Z,,=E/H, and the components of Z,, and Z,
are zero. As the geological strike is not known, MT
measurements are recorded in a geographical extension
(e.g., north—south and east-west). To calculate the
impedances of the TE and TM modes, all tensor
components need to be rotated so that Z, and Z,, tensor
components have minimum values and the difference
between Z,, and Z,, is maximised.

For a homogeneous earth, it is a straightforward
matter to calculate resistivity from the elements of the
impedance tensor. The formula for apparent resistivity is
(Cagniard 1953):

p (H= (11/ wp)iZ ] (3)

However, to obtain an accurate interpretation of MT
data it is essential to eliminate the static-shift effect
resulting from three dimensional near surface small
bodies (Park et al. 1983; Wannamaker et al. 1984; Park
1985; Pellerin & Hohman 1990; Stenberg et al. 1988).
For this purpose the transient electromagnetic method
(TEM) with central loop configuration was applied to each
MT station in the present study. The TEM loop was
square and the sides were selected to be equal to MT E-
lines. Static shifts were removed from the MT data using
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transient electromagnetic data. All TEM windows were
converted to pseudo frequency (Stenberg et al. 1988)
and both MT and pseudo MT (converted from TEM)
apparent resistivities plotted together as the same scale
log-log graph. TE and TM apparent resistivities were then
shifted towards the pseudo MT apparent resistivity
(Figure 4).

Two-Dimensional Interpretation of the MT Data

In this study, we used the WinGLink™ interpretation
package to derive 2-D earth models in which the MT
interpretation section is based on a network analogy. It
uses a finite difference scheme to calculate forward MT
response and has a 2D inversion code denoted
dzinv—nlcg2—fast (Mackie et al. 1997), which reveals the
resistivity distribution in the Earth via.2D inversion of
both TE and TM modes considered jointly. The derived
information relates to both the direction and the depth,
and since this algorithm is based on the nonlinear
conjugate gradient method (Rodi & Mackie 2001) it is
quite fast and requires much less memory than traditional
Gauss-Newton algorithms.

The initial model was taken to be a homogeneous half
space of 100 Ohm-m and comprises 37 stations
represented by a mesh of 81 by 136 cells. The maximum
number of iterations was set at 50. The software
required observed resistivity and phase values.
Additionally, some parameters needed to be initialised.
The first one was a smoothing factor, tau, taken as 3 for
this study. Error floors for all data were kept at 5% as is
the default of the code. The RMS value for the initial half
space of 100 ohm-m for this model was found to be
15.76 although it decreased to 3.95 after 50 iterations.
Pseudo sections of apparent resistivity and phase of
impedance for observed and calculated data are given in
Figure 5. As seen in this figure, there is a good match
between the observed and calculated data.

Gravity Method

Forward modelling with gravity data has been described
in detail by various authors (Grant & West 1965; Parker
1973; Oldenburg 1974). In this study, gravity data was
calculated along the MT profile obtained from the
Bouguer Gravity Map of Turkey (MTA 1999) (Figure 6).
Interpretation of two-dimensional modelling with a

constant density (p,=2.670 gr/cm®) was carried out using
the WinGLink Software Package.

Discussion and Conclusions

The correlation of the MT model generated using 37 MT
sounding sites and the geological structure of the region
is important for evaluating the deeper relationship to
large scale structures. For this purpose we have
constructed a geological cross section along the MT
profile and Figure 7a shows the geological cross-section
of the MT profile with the shallow part of the MT model
(up to 25 km depth) seen in Figure 7b. We find specific
correlations between the electrical model and large scale
structures in this eastern central part of Anatolia. There
are some areas with low resistivity values (<38 Ohm.m)
extending to a maximum depth of 10 km beneath the
surface in the geoelectrical resistivity model. These areas
correlate with the sedimentary basins (Kangal Basin,
Gurln Basin, Ovacik Basin and Elbistan Basin) along the
MT profile and the extension of the low resistivity values
(<38 Ohm.m) probably indicates the thickness of the
basin fill. For example, according to this study the
maximum depth of the Sivas Basin is 7 km and this value
is similar to estimates from some previous geophysical
studies (e.g., Tufan & Ates 1995a, b). As a corollary the
depths of the basins along the MT profile can be
estimated: low resistivity values (<38 0Ohm.m)
interpreted as basin fill extend downward to a maximum
depth of 7 km beneath the Sivas Basin, 4 km in the
Kangal Basin, 10km in the Gurin Basin, 6 km in the
Ovacik Basin and 6km in the Elbistan Basin.

Figure 8a shows observed and calculated gravity best
fit values along the MT profile. Figure 8b shows the
entire crustal model, which is data sensitive to resistivity
structure down to 65 km depth and Figure 8c illustrates
an interpretive cross section based on electrical resistivity
of MT profile and gravity data. There are three resistive
zones and two conductive zones in the geoelectrical
section (Figure 8b). The northernmost resistive zone
(>981 Ohm.m) extending approximately 25 km to a
maximum depth correlates with the southern edge of the
Pontide Magmatic Arc and another body with similar
resistivity values beneath the Sivas Basin defines the
eastern extension of Kirsehir Massif and has a maximum
depth of about 33 km. There is a high resistive layer
(>981 Ohm.m) extending to a maximum depth of about
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300
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Figure 6. Bouguer anomaly map of study area (MTA 1999).

35 km beneath the Tauride-Anatolide Platform. These
high resistivity values define the upper crust and lower
resistive values (<981 Ohm.m) are seen below. The layer
accepted as lower crust beneath the high resistive zone
varies between 10 and 15 km thick and the thickness of
the total crust is approximately 45 km in the Pontide
Magmatic Arc, Kirsehir Massif and Tauride-Anatolide
Platform. These values correspond well with the average
crustal thickness (45-47 km) in this region proposed by
Zor et al. (2003).
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The boundary between the lower and upper crust is
not seen beneath the Ankara-Erzincan Suture and the
Divrigi-Pinarbasi Ophiolitic Belt and the base of these low
resistive (or relatively conductive) zones (<981 Ohm.m)
is imperceptible. Enhanced conductivity in the lower crust
is most commonly explained by the presence of
interconnected fluid phases as brines or partial melts
(Hyndman & Hyndman 1968; Shankland & Ander 1983;
Gough 1986; Jones 1987) or as carbon films on grain
boundaries (Duba et al. 1989; Frost et al. 1989;
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Figure 8. (a) Calculated and observed gravity anomalies for entire crustal model along MT section. (b) The entire
crustal model data sensitive to resistivity structures to 65 km obtained by 2-D inversion of MT data and
2-D forward modelling of gravity data. (c) Interpretive cross section based on electrical resistivity of

MT profile and gravity data.

Mareschal 1990; Haak et al. 1991). Quaternary volcanic
rocks, seen in a geological columnar section of the
Ankara-Erzincan Suture (Figure 3) can be considered as
evidence of partial melting. Pliocene volcanism in the
Divrigi-Pinarbagi area is also a product of partial melting
(Alpaslan et al. 2004) and Keskin et al. (1998) report
volcanic activity as products of post-collisional crustal
melting related to rapid regional block uplift in eastern
Anatolia. Aydin et al. (2005) have presented a Curie point
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depth map of Turkey and note that shallow depths in the
Curie-point depth map generated by spectral treatment
of aeromagnetic data correlate well with young volcanic
areas and geothermal potential fields and also with heat-
flow highs. There are two areas with shallow Curie depth
in our study area on their map. One is south of Sivas and
corresponds approximately to the Divrigi-Pinarbasi
Ophiolitic Belt and the other is north of Sivas and
coincides approximately with the Ankara-Erzincan suture.



H. YILMAZ & S. OZEL

Partial melting and the presence of geothermal fluids may
therefore be responsible for the enhanced conductivity of
the lower crust in these regions.

MT studies have successfully imaged anomalies of
enhanced electrical conductivity associated with modern,
Mesozoic, Palaeozoic and Early Proterozoic subduction
zones at various locations around the globe, and
electromagnetic images of subduction zones and
collisional orogens show greatly enhanced conductivity,
by one or two orders of magnitude, compared with the
host medium (Jones 1993). These anomalies have been
interpreted as due to either saline fluids generated by
dehydration reactions in subducting oceanic plates, or by
fluids expelled from subducting sediments (Jones 1993).

Two conductive zones determined in this study
correspond to the Ankara-Erzincan suture and the
Divrigi-Pinarbagi Ophiolitic Belt. There is a consensus
about the Late Palaeozoic and Early Tertiary collisional
origin of the Ankara-Erzincan suture (Okay & Tlysuz
1999) but two alternative explanations have been
proposed for the origin of the Divrigi-Pinarbasi Ophiolitic
Belt. Either these ophiolitic rocks belong to the
Maastrichtian—Eocene Inner Tauride Suture (Demirtash
1977; Sengér & Yimaz 1981; Kogyidit 1990; Gokten
1993; Gokten & Floyd 1987; Andrew & Robertson
2002; Clark & Robertson 2002), or the Divrigi-Pinarbasi
Ophiolitic Belt is a rootless ophiolite that belonged to the
northern branch of the Neotethys before being displaced
southwards (Kelling et al. 1989; Cater et al. 1991;
Yilmaz et al. 1993; Goncioglu et al. 1996-1997). The
electromagnetic image of the deeper structure beneath
the Divrigi-Pinarbagi Ophiolitic Belt is similar to the
Ankara-Erzincan suture and supports the existence of the
Inner Tauride Suture. Besides, high gravity anomalies are
consistent with high conductive zones along MT profile
(Figure 8), and this makes it less likely that high
conductivity in these zones results from high
porosity/permeability of neotectonic zones in the area.
The nappes exposed in the Divrigi-Pinarbasi Ophiolitic
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