
Introduction

The most important point in plate tectonics is the
thickness of the lithosphere and how it behaves for long
geological eras. With the development of isostasy, one of
the basic assumptions of the plate tectonics was put
forward which is a fact that the plates have long been
remained rigid during large time scales. Briefly, the
concept of isostasy is an important milestone in defining
the lithosphere. 

Nowadays, two models of compensation are
commonly accepted. In the first isostatic model,
compensation occurs with the thickening under
topography (Airy 1855) or with the lateral variances in
the density of the crust (Pratt 1855). In the second type
of model, known as flexural model, loads are supported
by the elastic stresses in the lithospheric plate lying over

the fluid and weak astenosphere (Vening Meinesz 1932;
Gunn 1943; Walcott 1970). According to this model of
flexure, lithosphere is bowed in the regions where large
loads act and the crustal thickness is well below the
average. As a result of this, stresses are seen in the upper
and lower parts of the plate which are exposed to
bending. While the stresses form the fragile faultings in
the brittle portion of this boundary, on the other hand,
the stresses in the lower ductile part lead to flows which
easily changes shape (Watts 2001). The boundary where
the brittle plate ends and the ductile plate starts, gives us
the thickness at which lithosphere is resistant to
topographic load, namely the effective elastic thickness.

The response of the plate in the flexural model, in
other words the flexural rigidity is characterized by the
effective elastic thickness. Similar to the Airy model,
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Abstract: Isostasy is concerned with how the crust and mantle adjusts to shifting loads of limited spatial and temporal dimensions.
By analysing the frequency content of gravity and topography data, it has been possible to determine the compensation scheme of a
region. In this study, the compensation mechanism of the Western Anatolia, which has dynamic loads, was investigated by isostatic
response functions. Effective elastic thickness in Western Anatolia region was estimated based on admittance and coherence between
gravity and topography data. 

The two most reliable indicators of lithospheric strength are the focal depth distribution of earthquakes and relation of gravity
anomalies with topography. For this reason, the seismogenic thickness and thermal structure of Western Anatolia was correlated
with the effective elastic thickness. The results of this study showed that the strength of the lithosphere of the Western Anatolia
resided in average 6 km. 
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Efektif Elastik Kalınlık Kestirimi ile Batı Anadolu’daki 
İzostatik Dengeleme

Özet: İzostazi, sınırlı uzay ve zaman ortamında yer değiştiren yüklere karşı kabuk ve mantonun nasıl bir tepki verdiği ile ilgilidir.
Gravite ve topoğrafya verilerinin frekans içeriğini analiz ederek, bir alana ait dengeleme mekanizması tanımlanabilir. Bu çalışmada,
dinamik yüklere sahip Batı Anadolu Bölgesi’nin dengeleme mekanizması, izostatik yanıt fonksiyonları ile incelenmiştir. Batı Anadolu
Bölgesi’ndeki efektif elastik kalınlık kestirimi, gravite ve topografya verileri arasındaki girişim (admittance) ve uyuma (coherence)
bağlı olarak yapılmıştır.

Deprem odak dağılımı ve gravite ile topografya arasındaki ilişki, litosferik dayanımın en iyi iki göstergesidir. Bu amaçla, sismojenik
kalınlık ve Batı Anadolu’nun termal yapısı arasında efektif elastik kalınlık ile ilişki kurulmuştur. Bu çalışmanın sonucunda Batı
Anadolu’ya ait litosferik dayanımın ortalama 6 km olduğu saptanmıştır.

Anahtar Sözcükler: Efektif elastik kalınlık, izostatik yanıt fonksiyonları, gravite, Batı Anadolu, girişim analizi



topographic loads appear with the bending downward
and the crustal thickness. What it differs from the Airy
model is that the flexural rigidity is not accepted as zero.
In the approach of the interpretation of the isostatic
compensation regarding this model, the relation between
the gravity anomalies induced by the underground masses
and the topography is used. In order to define this
relation in the domain wave-number and frequency, and
linear transfer function techniques were developed
(Dorman & Lewis 1970). By using and developing these
techniques, the estimation of effective elastic thickness
was achieved in several studies (e.g., McKenzie & Bowin
1976; Zuber et al. 1989; Hartley et al. 1996; Watts
2001; Rajesh & Mishra 2003; Pamukçu 2004; Yurdakul
et al. 2005; Pamukçu & Yurdakul 2006; Luis & Neves
2006).

In this study, an approach was developed towards the
isostatic model of the lithosphere of the Western
Anatolian region where considerably complex tectonic
incidents occur. For this purpose, by using the admittance
function, the lithospheric flexure model of the region was
analysed with the help of Bouguer gravity and
topographic data.

To examine the accuracy of the effective elastic
thickness estimations, the coherence and the penalty
function were computed. Furthermore by using software
package (Braitenberg et al. 2006; Wienecke 2006)
gravity inversion was calculated to estimate the Crust-
Mantle interface for using of the effective elastic thickness
estimations.

In the final stage of the study, the seismogenic zone in
the Western Anatolian region was investigated together
with the heat flow, thermal gradient and the effective
elastic thickness.

Regional Tectonic Setting of the Western Anatolia

The Western Anatolian region, being within the Alpine-
Himalayan orogenic belt, is a part of the extensive
compressional zone which lies between Arabian, African
and Eurasian plates (Figure 1). It is one of the most
tectonically active and rapidly deforming and extending
areas in the world (e.g., Dewey & Şengör 1979; Jackson
& McKenzie 1984; Şengör et al. 1985; Eyidoğan &
Jackson 1985; Şengör 1987; Ambraseys 1988; Seyitoğlu
& Scott 1991; Taymaz et al. 1991; Reilinger et al. 1997;
Ambraseys & Jackson 1998; Bozkurt 2001).

The fundamental tectonic structures of Western
Anatolia are the Sakarya and the İzmir-Ankara Suture
Zone, the Menderes Massif, grabens and the Taurides
(e.g., Şengör & Yılmaz 1981; Okay et al. 1996; Barka &
Reilinger 1997; Bozkurt 1996, 2003, 2004, 2007; Emre
1996; Lips et al. 2001; Sözbilir 2001, 2002; Yılmaz et al.
2000). The Aegean Arc is on the southern side of the area
(Taymaz et al. 1991; Papazachos et al. 2000).

There are two types of basins trending at E–W and
NE–SW direction in western Anatolia (see Şengör et al.
1985; Şengör 1987; Seyitoğlu & Scott 1991, 1992;
Emre 1996; Koçyiğit et al. 1999; Bozkurt 2000, 2001,
2003; Yılmaz et al. 2000; Sözbilir 2001, 2002, 2005;
Bozkurt & Sözbilir 2004; Kaya et al. 2004; Tokçaer et al.
2005; Aldanmaz 2006; Erkül et al. 2006; Emre &
Sözbilir 2007 for further reading). The region has been
extending in N–S direction since the Early Miocene.
Today, in the region approximately 30–40 mm/year
extending is occured in N–S direction (Oral et al. 1995; Le
Pichon et al. 1995). The westward movement of Anatolia
is seen in the counterclockwise rotation as well as
transition (Westaway 1994; McKenzie 1970; Dewey &
Şengör 1979; Rotstein 1984; Jackson & Mc Kenzie
1988). According to Bozkurt (2001), this is taken up by
a response of the continental lithosphere moving laterally
away from zones of compression (tectonic escape), to
minimize topographic relief and to avoid subduction of
buoyant continental material. There is still a controversy
about westward motion in western Turkey (e.g., Dewey
& Şengör 1979; McKenzie 1972; Şengör et al 1985;
Seyitoğlu & Scott 1992; Koçyiğit et al 1999; Bozkurt &
Sözbilir 2004, 2006).

Extension in Western Anatolia has been attributed to
the following tectonic models: (1) tectonic escape model:
the westward extrusion of the Anatolian block along its
boundary structures, North Anatolian Fault and East
Anatolian Fault since the Late Serravalian (Dewey &
Şengör 1979); (2) back-arc spreading model: back-arc
extension caused by the south-southwestward migration
of the Aegean trench system (McKenzie 1972); (3)
orogenic collapse model: lateral spreading of the over-
thickening crust following the latest Palaeogene collision
across Neotethys during the latest Oligocene (Seyitoğlu &
Scott 1992); (4) episodic, two-stage basin formation: a
Miocene–Early Pliocene graben formation (orogenic
collapse) followed by a Plio–Quaternary rift-mode stage
(westward escape of the Anatolia) under N–S extension
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(e.g., Koçyiğit et al. 1999; Bozkurt & Sözbilir 2004,
2006).

Methods

Admittance and Coherence

The approach in the interpretation of the isostatic
compensation is achieved by investigating the relation
between the gravity anomalies that are induced by
underground masses and the topography.

Admittance isostatic response function Z (k), was
determined by analyzing the relationship between the
Fourier transforms of the gravity and topography
(Dorman & Lewis 1970). The relationship is given by

G(k) = Z(k) . T(k) (1)

where k (= 2π/wavelength) is wave-number, G(k) and
T(k) are discrete Fourier transforms of gravity and

topography. Observed admittance is computed by using
the cross-spectrum between the gravity and topography
and power spectrum of the topography. McKenzie &
Bowin (1976) used complex conjugates (*) to eliminate
the noise of the data, therefore, defined the observed
admittance function as

(2)

Here, N is the number of data within the profiles that are
taken at equal length from the gravity and topography
maps that have the same sampling interval.

The profiles in equation (2) were investigated for
different tectonic (McKenzie & Bowin 1976) and same or
different geological features (Watts 1978). In this study,
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Figure 1. Main features of Turkey (Bozkurt 2001) and location of the study area. K– Karlıova, KM– Kahramanmaraş, DSFZ– Dead
Sea Fault Zone, EAFZ– East Anatolian Fault Zone, NAFZ– North Anatolian Fault Zone, NEAFZ– Northeast Anatolian Fault
Zone. Heavy lines with half arrows are strike-slip faults with arrows showing relative movement sense. Heavy lines with
filled triangles shows major fold and thrust belt: small triangles indicate direction of vergence. Heavy lines with open
triangles indicate an active subduction zone, its polarity indicated by the tip of small triangles. The heavy lines with hachures
show normal faults: hachures indicate down-thrown side. Open arrows indicate relative movement direction of African and
Arabian plates; bold filled arrows, relative motion of Anatolian Plate. Short arrows show the sense of plate motion, half
arrows the relative motion senses on strike-slip Faults. The hatched area shows the transition zone between the western
Anatolian extensional province and the central Anatolian ‘ova’ province.



the four profiles were selected parallel to each other in
order to reflect the western Anatolian extensional region
in Figure 1 and remaining within the continental part
(Figure 2). 

Coherence analysis is important since it provides a
method for estimating the portion of the spectral domain
of gravity which is supposed generated by topography.
Within this band, located at intermediate wavelengths, the

coherence is approximately 1. Towards short-
wavelenghts the coherence is approximately 0 since
gravity effect of topography is suppressed by the distance
of the source due to depth and smoothing given by
gravity filter. In order to investigate the coherence
between gravity and topography anomaly McKenzie &
Bowin (1976) and Watts (1978) found it useful to
compute the coherence:
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Figure 2. Bouguer gravity map of the field and A–A’, B–B’, C–C’, D–D’ profiles.



(3)

In the presence of noise, Munk & Cartwright (1966)
indicate that a better measure of coherence is given by

(4)

Here N is the number of data. Where C(k) is cross-
spectrum of observed gravity and topography data, E0(k)
and E1(k) are the power spectra of observed gravity and
topography data. They are given by:

(5)

(6)

(7)

Different isostasic model theories and admittance
equations are approached to the relation given in equation
(2) which is about the gravity and topography. Generally,
theoretical admittance values used for the flexure model
were calculated following the method given by McKenzie
& Fairhead (1997)

(8)

Equation (8) assumes that the density structure of the
crust and density of material below the assumed flexed
elastic plate. In Equation 8: (1) D is rigidity, (2) k (= 2π/
wavelength) is wave-number, (3) G is gravitational
constant, (4) E (= 10 11 Pa) is Young’s modulus, (5) σ (=
0,25) is Poisson’s ratio, (6) g (= 9,8 m/s2) is the gravity
acceleration, (7) ρc (= 2,7 g/cm3) is average crustal
density, (8) ρm (= 3,3 g/cm3) is density of material below
the assumed flexed elastic plate, (9) tc is effective depth
of compensation, (10) Te is the effective elastic thickness,
(11) Zc is theoretical admittance function.

According to McKenzie & Fairhead (1997), Equation
(8) expresses that the density structure of the crust and
upper mantle can be described by one layer of constant
density and variable thickness overlying a constant density
half-space. Since the real crustal density is not constant,
variations of density within the crust will also produce
gravity anomalies. Therefore tc should be described as an
effective depth of compensation. In general, tc will not be
same as the observed crustal thickness. Similar remarks
apply to Te, the effective elastic thickness, where a model
with one elastic layer whose properties are constant is
also an obvious simplification. 

The best fit between the observed and the theoritical
admittance values gives the effective elastic thickness (Te)
of the field.

Any method which uses the penalty function (Hf)
should provide estimates of Te value. The minimum value
of Hf is defined as goodness of Te values. The Hf is defined
as

(9)

where Hf is misfit, Z0 is the mean value of the observed
admittance and ΔZ0 is the standard deviation of Z0 in the
frequency domain, N is number of data. 

Modelling the Crustal-Mantle Interface

In this study software package (Braitenberg et al. 2006;
Wienecke 2006) which was developed in cooperation
between the University of Trieste and the NGU (Geological
Survey of Norway), Trondhem was used to calculate the
inverse modelling of gravity field. As a result of the
calculation, crustal-mantle interface was found.

For calculating the gravity inversion, the reference
depth d of the density interface and the density contrast
across the interface Δρ as starting parametres are
required. If g0(x,y) is the Bouguer gravity field in
Cartesian coordinates x, y and gd(x,y) is the downward
continued field to the depth d, then the Fourier transform
of the Bouguer gravity field FT[g0] can be related to the
Fourier transform of the gravity field. FT[gd] is given by

(10)

where kx, ky are the wave numbers along the coordinates
axes. It is assumed that the field is generated by a sheet
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mass located at the depth d. The surface density of a this
mass ρ(x,y) is given by:

(11)

where FT-1 is the inverse Fourier Transform. The mass
that produces the gravity field can be interpreted as a
horizontally varying surface density. This can be described
with a model of an undulating boundary, which separates
two layers with a density contrast Δρ (Braitenberg &
Zadro 1999). The undulation amplitude of the boundary
is then given by

(12)

The first approach of gravity field by Parker (1972)
was created by the vertical extension limit. A series of
rectangular prism was applied to the vertical extension
limit by Braitenberg & Zadro (1999) and with the
application of the algorithm that was developed by Nagy
(1966), g1(x,y) gravity field was calculated. Residual
gravity field is represented with the contrast between
observatory field g0(x,y) and calculated field g1(x,y). Thus,
δg1(x,y), is given by the equation;

δg1(x,y) = g0 - g1 (13)

Residual field is a way of adjustment and affects on
the undulation magnitude of the density boundary. This
situation continues iteratively and in every k iteration
step, residual gravity field, and undulation magnitude of
the boundary is derived δgk(x,y).

Analysis

In the application, Bouguer gravity (from Directorate of
Mineral Research and Exploration, MTA, Turkey 1979)
and topographic (from Synthetic Aperture Radar, SAR)
data of Western Anatolia lying approximately between
27– 30º E longitudes and 36– 40º N latitudes with 5 km
sampling intervals were mapped (Figures 2 & 3). Along
A–A’, B–B’, C–C‘, D–D’ profiles shown in Figure 2,
sections were taken in N–S direction, with 50 km
intervals, 350 km in length.

The methods of estimating Te that can be used when
the coherence between topography and gravity is high.
The coherence (Figure 4) which is calculated from
equation (4) is high for 0.01<wavenumber<0.1. The
admittance which is determined from the spectral analysis

(Watts 2001) is also smooth within this waveband (Figure
5). It shows that the waveband must be selected
0.01<wavenumber<0.1 to estimate Te of the Western
Anatolia.

Then, in order to determine the tc parameter in
equation (8), software package was used (Braitenberg et
al. 2006; Wienecke 2006). By using the software which
contains application of inverse solution to the Bouguer
gravity data, crust-mantle interface values were calculated
(Figure 6). With the help of this method, crust-mantle
interface was determined as 33 km. The calculated depth
was verified with the previous seismological (Zhu et al.
2006; Akyol et al. 2006) and gravity studies (Ankaya &
Akçığ 1998). As a result tc was taken as 33 km.

By benefiting from these approaches and using
equation (2) and (8), observed and theoretical admittance
curves for various Te values were calculated (Figure 7). As
seen in Figure 7, when theoretical and observed values
are evaluated together, the best fit in long wavelengths is
for Te= 6 km. Besides, the Airy compensation model
determined with Te= 0 in Figure 7, is not suitable for the
region.

This obtained result was evaluated with the penalty
function values that are derived by using equation (9)
(Figure 8). Figure 8 shows that the best fit for admittance
is obtained for tc= 33 km and Te= 6 km because of Hf

minima.

Discussion and Conclusion

According to the elastic plate model, the lithosphere is
gently flexed into broad upwards and downwards in the
region of large loads. The warping induces bending
stresses. These stresses will be relieved by brittle faulting
in the upper crust and by some form of ductile flow in its
lower part. In between the brittle and ductile deformation
fields there is an elastic core, which apparently is able to
support the stresses induced by flexure on long geological
time-scales (Watts 2001; Watts & Burov 2003). Thus,
some relationship might exist between the seismogenic
layer and Te. For this purpose, the relationship between
the effective elastic thickness and the earthquake focal
depths of the Western Anatolia was analysed.

The histograms were formed for the distribution of
the focal depths of the earthquakes with M ≤ 4 between
the years 1900–2007 that were obtained from
Incorporated Research Institutions for Seismology (IRIS)
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(Figure 9). As seen in Figure 9, the seismogenic zone
exists in the first 10 km of the crust. This result is
consistent with Te= 6 km. However, seismogenic layer
thickness reflects the strength of, or more precisely the
stress level in, the uppermost brittle layer of the
lithosphere while Te is indicative of the strength of the
elastic portion of the lithosphere. As a result of this part,

thickness of the seismogenic crustal layer of Western
Anatolia correlates well with the Te. The Te may depend on
thermal gradient of the lithosphere. An increase in heat
flow in a region can be explained by an increase in
thickness of heat producing layers in the crust (Pinet et al.
1991). Te values might decrease in regions where heat
flow increases (Hartley et al. 1996). 
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Figure 3. Topographic map of the field and A–A’, B–B’, C–C’, D–D’ profiles.
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Figure 6. Crust-Mantle interface values.
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According to Dolmaz et al. (2005) the thermal
anomaly of Western Anatolia is interpreted as a result of
asthenospheric upwelling in response to lithospheric
extension in this region. This is an indicative of a possible
problem from the aspect of Te and rigidity in the lower
crust. When Curie depth and heat flow studies which was
done in the region were investigated (Tezcan & Turgay
1989; Dolmaz et al. 2005; Şalk et al. 2005), especially in
the regions where the effective elastic thickness was
calculated, thermal depth is shallow and the heat flow is
high. Moreover, in a deep seismic study performed by
Çifçi et al. (2000) for the same region, the strongest
seismic reflection comes from the first 6 km averagely.

All these consequences are the isostatic model of the
Western Anatolia region which does not fit the local Airy
model and are consistent with the finding that 6 km of

the Western Anatolian lithosphere may be more resistant
to the stresses induced by long time scaled geological
flexure.

Besides these, in the region that corresponds to high
topography in Figure 3 and low amplitude Bouguer
gravity anomaly in Figure 2, there is no significant
increase in the depth of crust-mantle interface (Figure 6).
In addition, the effective elastic thickness in the region is
lower than the world average of similar area (Maggi et al.
2000; Watts 2001). As a result, when all these findings
are evaluated together with extending tectonics in the
region, deformation may affect the strength in the crust
on long time scale.
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Figure 9. The histogram shows the distribution of earthquakes with focal depth.
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