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Abstract: Local S-wave velocity-depth profiles and bedrock depth distribution are key factors in assessing seismic hazard and
earthquake ground motion characteristics since they allow determination of the amplification potential of geological formations
overlying bedrock. In this study, an empirical relationship between the thickness of Tertiary—Quaternary sediments (hereafter
referred as cover) overlying Palaeozoic bedrock and their resonance frequencies was calculated for the Istanbul region and the
bedrock depth distribution beneath the city was presented. The relationship was investigated by comparing transfer functions
obtained from single station microtremor analyses and one-dimensional (1D) S-wave velocity profiles at sites where shallow velocity
structure is known. Geotechnical data consisting of standard penetration test (SPT) blow counts and standard soil descriptions were
evaluated from 15 boring sites and microtremor measurements were carried out. The bedrock depth of each site was determined
by computing analytical transfer functions to fit the resonance frequency and the shape of experimental transfer functions. Based on
those results, a relationship between the resonance frequency and the thickness of the cover was derived. Finally, the bedrock
distribution beneath populated areas of Istanbul was obtained by applying the derived relationship to 86 strong-motion sites, where
the resonance frequencies are known.
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istanbul’'un Giiney Kiyilarinin Temel Kayasi Derinligi Haritalamast:
Analitik ve Deneysel Analizlerin Karsilastirilmasi

Ozet: Bolgesel S-dalgasi hizinin derinlikle degisimi ve temel kayast derinlik dagilimi jeolojik formasyonlarin biiyiitme potansiyellerinin
anlasiimasi bakimindan sismik tehlike ve deprem hareketi karakteristiklerinin tahmininde énemli rol oynamaktadir. Bu calismada
istanbul bolgesi icin Paleozoyik temel Kkayasi izerindeki Tersiyer—Kuvarterner yasli tabakalarin (bundan sonra értii olarak
adlandirilacaktir) Kalinligi ile rezonans frekansi arasinda ampirik bir iliski hesaplanmis ve sehrin temel Kayasi derinlik dagilimi
sunulmustur. Ampirik iliski, mikrotremor analizleri ve tek boyutlu (1D) S-dalgasi hiz profillerinden elde edilen transfer
fonksiyonlarinin karsilastiriimasi ile hesaplanmistir. Bu amacla bélgede var olan 15 kuyudaki standart penetrasyon testi (SPT) darbe
sayllari ile standart zemin tanimlamalarindan olusan geoteknik veriler degerlendirilmis ve kuyular civarinda tek istasyonlu
mikrotremor 6l¢iimleri yapilmistir. Her kuyu icin temel kayasi derinligi, analitik transfer fonksiyonlarin sekli ve rezonans frekansi
arazi olcimlerinden elde edilen transfer fonksiyonlarina uyum saglayacak sekilde, hiz-derinlik profillerine muhendislik kayasi
katmaninin eklenmesi ile hesaplanmistir. Bu hesaplamalardan rezonans frekans ile Paleozoyik temel kayasi Uzerindeki ortunin
kalinligi arasinda ampirik bir denklem elde edilmistir. Bu ampirik iligkinin, rezonans frekansi bilinen 86 kuvvetli yer hareketi kayit
istasyonunda kullaniimasi ile istanbul'da kentsel niifusun yogun oldugu bélgelerin altindaki temel Kkayasi derinlik degisimi
hesaplanmistir.

Anahtar Sézciikler: zemin davranisi, mikrotremor, rezonans frekans, temel kayasi derinligi, istanbul

Introduction

The severe consequences of sediment amplification of
ground motion have been well-known since the beginning
of the 20th century. Numerous site response studies in
earthquakes during the last three decades showed large
concentrations of damage in specific areas overlain by soft
sediments (e.g., Bard & Bouchon 1980; Kawase 1996;

Wald & Graves 1998; Kudo et al. 2002). The most
important parameters deduced from site response studies
are the resonance periods of soil vibration and the
amplification factors of ground motion in certain
frequency ranges. Microtremor measurements offer an
inexpensive and simple tool to determine resonance
frequencies of sites. The horizontal to vertical spectral
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ratio (H/V) technique (Nakamura 1989) provides reliable
estimates of resonance frequencies of sites, despite its
inadequacy in estimating amplification (e.g., Bard 1999).

Recently, Ibs-Von Seht & Wohlenberg (1999)
proposed that resonance frequencies in H/V spectra
correlate well with the overall soil thickness, ranging from
tens of metres to more than 1000 m. Delgado et al.
(2000) confirmed the validity of the method comparing
abundant geotechnical information and results of
microtremor measurements available in Spain. They
addressed limitations of the method as well. A practical
application of the method was also performed by Parolai
et al. (2002) and Hinzen et al. (2004) in the Cologne area
of Germany.

Little is known about the site-effects and subsurface
velocity structure information in Istanbul except in certain
areas where microtremor measurements were performed
(e.g., Kudo et al. 2002; Ozel et al. 2002, 2004; Sorensen
et al. 2006). In 2005, microtremor measurements were
carried out at 100 Rapid Response (RR) strong motion
stations spread throughout the city of istanbul (Ozel et al.
2006). Together with the usage of four near-field
(B<M<4.5) event recordings at RR sites, resonance
frequency distributions using the H/V Technique and
relative site amplifications through Standard Spectral
Ratio ((SSR), (Borcherd 1970) were estimated at 86 of
100 stations (Figure 1) by Birgéren & Ozel (2006). Those
measurements showed that the resonance frequencies
significantly vary between 0.44 Hz and 7 Hz within the
city. Distribution of the resonance frequencies generally
shows that sites along the coast line of the southwestern
part of the city have very low values (0.44 — 1 Hz.) and
frequencies increase from south to north, ranging up to
about 4.6 Hz. Resonance frequencies shift to higher
values at sites on the Asian side of the Bosphorus.

As part of a basic disaster prevention/mitigation
project for Istanbul, the Japan International Cooperation
Agency (JICA) team performed 48 deep and shallow
borings (h < 206 m) to evaluate S-wave velocity
structures underneath the city, especially on the European
side where sedimentary formations of Tertiary-
Quaternary ages exist (JICA & IMM 2002). The results
were used to produce the distribution of S-wave velocity
averaged to 30 m depth beneath the city, since only this
information is required to estimate site-dependent design
spectra for use in building codes (e.g., IBC 2006).
However, average S-wave velocity in the uppermost 30 m
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only gives amplification information relating to 1D site
effects and is insensitive to 2D and 3D site effects.
Realistic strong motion estimations at sites located on
thick soil deposits depend on a well-known subsurface
structure modelling. Therefore, a correlation between
bedrock depth obtained from borehole data and
resonance frequencies obtained from the analysis of
microtremor recordings may be used as a practical tool to
get an outline of the subsurface structure, particularly in
regions where subsurface geology is poorly known, such
as Istanbul city.

The objective of this study is to derive an empirical
relationship between the resonance frequencies obtained
from the H/V Technique and the thickness of the cover,
and generate a rough bedrock depth distribution beneath
the Istanbul city. This information is critical for
earthquake ground motion simulation studies since the
city is the most populated area in the Marmara Region
which is under earthquake threat, as indicated by several
studies performed after the 1999 Kocaeli Earthquake
(e.g., Parson et al. 2000).

Geological Setting

The northern, northeastern and central parts of istanbul
are dominated by Palaeozoic rocks, which are regarded as
seismological bedrock due to their high S-wave velocity.
The Palaeozoic basement consists of firm rocks of
Ordovician (Kurtkdy and Aydos formations), Devonian
(Baltalimani, Kartal, Trakya, Gdzdag, Dolayoba and Tuzla
formations) and Carboniferous ages. The oldest Tertiary
sediments lying unconformably on the Palaeozoic
formations form the Middle Eocene to Early Oligocene
Kirklareli formation. This sequence starts transgressively
with a basal conglomerate and strata containing clay and
coal, which are overlain by cream-coloured limy
claystones and karstic reef limestones. The top of the
formation comprises lithologies such as argillaceous
limestone, marl and limy sandstone. Soft sediments are
generally seen in the southwestern part of the city as
shown in Figures 2 & 3. In this region, upper Miocene
sediments such as the Cukurcesme, Gungéren and
Bakirkdy formations directly overlie the Palaeozoic
bedrock (Okay 1986). Among them, the Cukurcesme
formation contains dense to very dense sand, silty sand,
clayey sand, gravel and clay. The Gilngéren formation
consists of fissured, highly plastic, thinly-laminated clays,
and the Bakirkdy formation comprises white, porous,
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Figure 3. Stratigraphic section showing major lithostratigraphic units of the istanbul area (after Yildirim & Savagkan 2003).
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chalky, medium to hard limestone and subordinate clay.
The Late Quaternary Kusdili formation, consisting of clay,
sand and mud, covers the southern shore of the
Kugclkcekmece Lake and the Golden Horn. Deposits of
fluvial origin consist of gravel, sand, silt and clay (Yildirim
& Savaskan 2003). The RR array covers geological
settings ranging from alluvium to limestone/sandstone.
However, detailed description of geological strata and
near-surface velocity structures under stations are
unavailable.

Microtremor Measurements

Single station noise measurements at 9 deep (h > 87 m)
boring sites and a microtremor array measurement site
(ISU) located in the southwestern part of the city (Figure
2) were undertaken using a Guralp CMG6T type three-
component broadband frequency digital seismometer. At
5 of those 9 sites measurements were simultaneously
done with both the Guralp CMG6T and with Geosig
GSR18 strong motion accelerographs equipped with
Guralp CMG-5T sensors. To estimate resonance
frequencies at 6 shallow (h < 56 m) borehole sites,
GSR18 recordings of RR stations, located close (< 250
m) to these borehole sites, and broadband seismometers
were used. Microtremor measurements were carried out
for about one hour at 100 Hz sampling rate.

The H/V Technique was used to obtain resonance
frequencies of sites. To estimate resonance frequencies,
all records were visually checked to avoid intensive
artificial sources. Each record was divided into 40 s-time
windows, and corrected for baseline. The Fourier
Spectrum of each 40 s portion of noise recordings was
computed after applying 10% cosine tapering. The root-
mean square of the spectra from the two horizontal
components was used as the numerator of the spectral
ratio, and divided by spectrum of the vertical component
to get the H/V ratio. This procedure was repeated with
the remaining windows. The average H/V ratio of the
whole windows was then smoothed using a low pass
filter.

In general, resonance frequencies obtained from H/V
ratios are instantly recognizable at most borehole sites
(Figures 4-6). Peak frequencies of the H/V ratios at sites
in the European side of the city are between 0.44-1.54
Hz. Resonance frequencies increase from south to north.
KKS25 and ZKS15, both on the Asian side of the city,
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have resonance frequencies of 4.5 and 5 Hz, respectively
(Table 2). These values are consistent with the findings of
previous studies (e.g., Birgéren & Ozel 2006; Sorensen et
al. 2006).

Soil Profile Modelling by 1D Site Response Analysis

Site response analyses were performed at 15 (9 deep and
6 shallow) borehole sites. At each one representative soil
profiles (2 or 3 shallow layers overlying on a single stiff
soil which can be considered as the engineering bedrock)
were defined. Most of the deep boreholes failed to reach
the engineering bedrock. Therefore a layer representing
engineering bedrock deposits was included into each
velocity profile, with S-wave velocity of 760 m/s. Beneath
this layer, Palaeozoic bedrock with S-wave velocity of
2500 m/s was defined as a half space.

The basic properties of representative soil profiles
such as total unit weight, thickness of layers, and S-wave
velocities (Vs) were determined from both detailed
borehole studies and in-hole PS-logging S-wave velocity
measurements. Several procedures can be used to
establish the Vs distribution with depth. Aside from
measurements in the borehole, which were only available,
several empirical correlations between SPT and CPT data
and S-wave velocity can be utilized (e.g., Ohta & Goto
1978; Mayne & Rix 1995; lyisan 1996). Among them the
correlation of the S-wave velocity with the SPT values
seems to offer the best fit and the relation proposed by
lyisan (1996) has been selected since it involves all soil

types.

The variation of S-wave velocities with depth was
determined by utilizing available SPT blow count numbers
using the empirical relationship proposed by lyisan
(1996) as follows

Vs = 51.5\°°"° (1)

where Nis uncorrected standard penetration blow counts.
In this study, the variations of SPT-N values with depth
for formations in boreholes are given in Table 1.
Representative S-wave velocities were determined for
each layer using estimated S-wave velocities along
boreholes.

Borehole sites were modelled by Shake91 (Schnabel et
al. 1972; Idriss & Sun 1992), a one-dimensional site
response program that propagates vertically incident S-
waves from bedrock outcrop or half-space through a
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Figure 4. Comparison between H/V spectral ratios from microtremor measurements at A3, A4, A5, A7, A8, A10 sites. Inset
figures show the 1D Velocity-depth profiles at the borehole locations. The dark line of the profiles shows the borehole
results, and grey lines are calculated results.
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Figure 5. Comparison between H/V spectral ratios from microtremor measurements at A11, B3, B5, B10, B13, B14
sites. Inset figures show the 1D Velocity-depth profiles at the borehole locations. Dark line of the profiles shows
the borehole results, and grey lines are calculated results.
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Figure 6.
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Comparison between H/V spectral ratios from microtremor measurements at DHM, ISU, ZKS15,
KKS25, ZYT sites. Inset figures show the 1D Velocity-depth profiles at the borehole locations. The
dark line of the profiles shows the borehole results, and grey lines are calculated results. Profiles
of ISU and DHM are determined from microtremor array measurements of Kudo et al. (2002) and
Ozel et al. (2004), respectively.
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column of visco-elastic layers of infinite horizontal extent.
It is based on the continuous solution to the wave-
equation adapted for use with transient motions through
the Fast Fourier Transform. Nonlinearity of the shear
modulus and damping is accounted for by the use of
equivalent linear soil properties (Idriss & Seed 1968; Seed
& Idriss 1970) using an iterative procedure to obtain
values of modulus and damping which are compatible
with the effective strains in each layer. The formations in
the boreholes were accepted to be compatible with the
formations for which degradation curves (G/G,,,) are
defined from Vucetic & Dobry (1991) relationships. For
clayey soils, the G/G,,,, and damping curves proposed by
Vucetic & Dobry (1991) were used and for alluvial or
sandy soils the curves of Seed & Idriss (1970) were used.
Excitation from the Palaeozoic bedrock was provided by a
simple Ricker wavelet with a central frequency of 4 Hz.

The thickness of the engineering bedrock layer was
determined by computing analytical transfer functions to
fit the resonance frequency and shape of experimental
transfer functions. By extending the thickness of
engineering bedrock between 10-250 m, position of the
resonance frequencies was caught. No depth adjustment
was done for borehole sites ZKS 15 and KKS 25, since
the deeper core samples confirm the existence of
Palaeozoic bedrock. Analytical transfer functions for
microtremor array measurement sites DHM and ISU (see
Figure 2 for the locations) were calculated with direct use
of thickness and velocity information given in Ozel et al.
(2004) and Kudo et al. (2002), respectively.

In order to further confirm the resonance frequencies
of borehole sites, site transfer functions were also

calculated using Haskell's (1953, 1960) method. The
resulting frequencies obtained by this method show no
significant deviation from those calculated using the
Shake91 code.

Figures 4-6 show the calculated transfer functions
compared with H/V spectra from strong motion and
broadband instruments at 17 sites.

Resonance Frequency-Cover Thickness Relationship

In order to have a quantitative interpretation of the
relationship between resonance frequency and cover
thickness, an estimate was derived from the measured
H/V peak frequencies. Assuming that the origin of the H/V
spectral ratio resonance peak is related to S-wave
resonances in a single sediment layer over half space
(Nakamura 1989); the layer thickness can be related to
the H/V resonance peak frequency as

fr=na2n=(1.35..) (2)

where Vs is the S-wave velocity of the sediment layer. A
better approximation for the depth distribution of the S-
wave velocity is a power law of the form:

Vs(z)= Vso(1+Z)" (3)
Here, Z is the depth, Vso the S-wave velocity at the
surface, Z= z/zo with zo= 1 m, and x describes the depth
dependence of the velocity (Ibs-von Seht & Wohlenberg
1999; Scherbaum et al. 2003). In this case h can be

derived from f. by integrating the velocity function over
the depth range and can be written as the form

h=af (4)

Table 1. SPT-N blow counts and soil description for the formations in the study area.

SPT-N blow counts Soil type Unit weight (kN/mZ) Shear Wave Velocity (m/sec)
5-20 GM-GC or CL 16.67-17.85 120-250
12-30 SM-SC or CL-CH 16.67-17.85 180-300
15-50 CH or MH 19.62-23.54 200-450
30-50 SM-SC 19.12-20.11 300-400
10-50 CL-CH 16.67-19.62 170-400
30-50 SM-SC 18.64-19.62 300-400
soft rock 19.62-26.00 250-500
strong rock 19.62-26.00 500-800
strong rock 19.62-25.00 400-700
CL-ML 16.67-19.62 300-400
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Table 2. Site locations and resulting frequencies and cover thicknesses used to derive Equation 5.

Site Name Latitude (N) Longitude (E) Resulting Frequencies (Hz) Boring depth (m) Soil thickness (m)
A3 40.979 28.774 0.44 106 366
A4 40.970 28.795 0.8 106 214
A5 41.034 28.791 1.54 106 116
A7 41.026 28.849 1.38 87 137
A8 40.979 28.826 0.6 106 222
A10 41.024 28.893 1.25 106 140
Al1 40.974 28.736 0.46 206 283
B3 40.983 28.746 0.44 106 166
B5 41.003 28.781 0.66 56 284
B10 41.012 28.832 0.7 56 256
B13 40.961 28.837 0.47 56 352
B14 41.000 28.864 0.64 56 282
YT 40.986 29.908 0.63 195 295
ZKS15 40.993 29.076 5 20 20
KKS25 40.985 29.092 4.5 20 20
ISU 40.991 28.723 0.56 Microtremor 213
DHM 40.964 28.813 0.4 Array Measurement 449
H/V ratios from 15 measurements at the borehole
locations and velocity profiles of 2 microtremor array 1000

measurement sites were used to derive such a
relationship. From these data, a nonlinear relationship
(Figure 7) between cover thickness (H) and resonance
frequency of site (f.) is found and a and b values in
Equation (4) were calculated as

H = 150.99f, "' (5)

Statistically the R value is 99.5%, indicating a strong
relationship between the frequency and thickness. The
figure also displays 95% confidence limits for the true
mean values of the thickness in the form of bounds
around the regression line. The bounds are close to the
regression line confirming the strong relationship
indicated by the R value.

The resulting resonance frequencies and cover
thicknesses of 17 sites found by site response analysis are
summarized in Table 2. Cover thicknesses vary between
20-449 m, where deepest covers correspond to sites
located in the southwestern part of the city (at sites DHM,
B13 and A3).
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Figure 7. Empirical relationship between resonance frequency and the
thickness of cover overlying bedrock in the istanbul region.
The solid line is the nonlinear fit to the data points according
to Equation 5. Dashed lines indicate 95% confidence limits
for the true mean values of the thickness.
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Figure 8. Distribution of soil thicknesses overlying Palaeozoic bedrock is derived by using the derived empirical relationship.
Triangles and blue dots show, respectively, the location of RR stations and Boreholes & Microtremor array measurement
sites used in the study. The closest active fault with very high seismic hazard is also shown.

As mentioned previously, a large number of single
station seismic noise measurements have been carried out
in istanbul, allowing mapping of the resonance frequency
distribution (Birgéren & Ozel 2006). Using those values
in Equation 5, cover thickness overlying the bedrock in a
wider area of Istanbul were calculated. Figure 8 depicts
the cover thickness distribution beneath istanbul city.
Some of the remarkable points of the resultant map can
be summarized as follows;

It is clear from Figure 8 that the distribution of the
cover thickness increases towards the Sea of Marmara
where upper Miocene—Pliocene sediments overlie older
ones. Especially in the western part of the city, the
resultant resonance frequency distribution and cover
thickness map from these measurements are in
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remarkable agreement with surface geology information.
Sites in the European side of Istanbul, geologically
consisting of younger formations, have thicker covers
compared to those located on the Asian side. The thickest
cover (449 m) occurs in the southwest part of the city.
Site effects are expected to be of particular concern in this
region in the event of a strong earthquake. Thickness of
cover increases from north towards the Marmara Sea in
this region.

Discussion

During the 1999 Kocaeli earthquake, significant site
amplification was observed to locally modify the ground
motion in the metropolitan area. In particular, as shown
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by several studies (e.g., Cranswick et al. 1999; Ergin et
al. 2004; Ozel et al. 2004), the Avclilar district in western
Istanbul (region where an ISU station and A11 borehole
site were deployed) suffered significant damage, largely
due to the amplification of the earthquake ground
motion. As can be seen from Figure 1, there is a quite
good correlation between the areas damaged by the 1999
Kocaeli earthquake and the distribution of the resonance
frequencies; resonance frequencies measured in the
damaged areas are mostly below 2 Hz, reflecting thicker
sediment cover beneath these areas. Cranswick et al.
(1999) studied the correlation between site response and
building response immediately after the earthquake. To
estimate this correlation they calculated the N-S and E-W
horizontal building responses, and the radial and
tangential horizontal site responses. Both N-S and E-W
components of the building response exhibit peaks
between 2-3 Hz as would be expected of the fundamental
mode of a 5-6 storey building (assuming a period of
about 0.1 s per floor). This frequency range is very close
to resonance frequencies measured in this area. However,
they also observed large amplitude phases after S-waves
in the frequency band of about 0.25 Hz, and suggested
that these large amplitude phases might be related to
body wave/surface wave conversion because of
topographical conditions, and/or to higher mode surface-
wave amplification from the thickening of low-velocity
layers. This finding may explain why less/no damage
occurred in the other areas of istanbul having the same
resonance frequencies (>1Hz; Figure 1). These
interpretations, suggested both in this study and in the
other studies (e.g., Cranswick et al. 1999), need to be
verified by more detailed studies.

This study is the first attempt to derive the bedrock
depth map of Istanbul using limited geophysical data. The
accuracy of resonance frequency-sediments thickness
relationship obtained in the current study is highly
dependent on the limited amount of borehole data in our
knowledge available for istanbul. Simplification of
material properties at each representative soil profile is
another important factor that affects the accuracy. It is
intended to improve the depth resolution by proceeding
with more detailed 1D modelling that will be available for
the European side of the city in the near future.

Conclusion

In this paper an empirical relationship between the
resonance frequency and cover thickness was derived
using the geotechnical information from 15 available
boreholes and resonance frequencies of H/V spectra
estimated from single microtremor measurement at
borehole sites. Velocity structure information of 2
microtremor array measurement sites were also utilized
into the study. 1D site response analysis was performed
at each borehole site considering representative soil
profiles. Analytical transfer functions were fitted to the
resonance frequency and the shape of experimental
transfer functions by changing the thickness of
engineering bedrock. The resulting cover thickness and
frequency information could be derived as a nonlinear
equation. The cover thickness across most of the city was
then calculated by the newly derived relationship using the
resonance frequencies previously determined at 86 RR
sites distributed across the city. It has been observed that
sites in the European side of istanbul, geologically
consisting of younger formations, have thicker covers
than those on the Asian side. The thickest cover (449 m)
is in the southwest part of the city.

The results are believed to improve the accuracy of
strong motion estimations for Istanbul, particularly the
ground motion predictions for regions located on thick
soil deposits. It will motivate research groups to perform
further geotechnical experiments to provide more refined
models particularly in the southwest of the city.
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