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Introduction

Th e ocean turbulence is mostly related to chaotic 
motion of coherent eddies of diff erent size and 
intensity fi lling up the upper layers. Recently, 
availability of high-frequency (HF) radar has 
permitted the measurement of eddies with high 
space and time resolution. Çağlar et al. (2006) 
have estimated Eulerian characteristics of the eddy 
turbulence from real data, based on a stochastic 
velocity fi eld that represents coherent structures. 
Further analysis of the data is important to provide 
new perspectives on advanced ocean models. 

In this paper, we study Lagrangian prediction 
based on HF radar data for Eulerian velocity. Th e 
prediction of particle trajectories in the ocean is of 
practical importance for problems such as searching 
for objects lost at sea, designing oceanic observing 
systems, and studying the spread of pollutants and fi sh 
larvae. We also investigate the correlation structure 
of the velocity fi eld and the trajectories. Temporal 
covariance analysis, via Lagrangian and Eulerian 
approaches, is followed by spatial covariance analysis 
and spectral analysis.
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 Abstract: A velocity fi eld obtained from the ocean surface by high-frequency radar is used to test Lagrangian prediction 

algorithms designed to evaluate the position of a particle given its initial position and observations of several other 

simultaneously released particles. Th e problem is motivated by oceanographic applications such as search and rescue 

operations and spreading pollutants, especially in coastal regions. Th e prediction skill is essentially determined by 

temporal and spatial covariances of the underlying velocity fi eld. For this reason correlation analysis of both Lagrangian 

and Eulerian velocities was carried out. Space covariance functions and spectra of the velocity fi eld are also presented 

to better illustrate statistical environments for the predictability studies. Th e results show that the regression prediction 

algorithm performs quite well on scales comparable with and higher than the velocity correlation scales.
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Euler Verilerle Lagrange Yörüngelerin Tahmini

ve İlintilerin İncelenmesi

Özet: Okyanus yüzeyinden yüksek çözünürlükte radarla elde edilen hız alanı verileri, başlangıç noktası ve aynı anda 

salıverilen başka parçacıkların gözlemleri verildiğinde bir parçacığın konumunu bulmak için tasarlanmış olan Lagrange 

tahmin algoritmalarını incelemek için kullanılmıştır. Bu problem, özellikle kıyıda arama ve kurtarma çalışmaları, kirli 

atıkların saçınımı gibi uygulama alanlarından doğmuştur. Tahmin başarısını özünde hız alanının zamansal ve uzaysal 

kovaryansları belirler. Bu nedenle, hem Euler hem de Lagrange hız alanının ilintileri incelenmiştir. Tahmin edilebilirlik 

çalışmaları için var olan istatistiksel ortamı belirlemek üzere, uzay kovaryans fonksiyonları ve hız alanı spektrumu da 

bulunmuştur. Sonuçlar, regresyon tahmin algoritmasının hız alanı ilinti ölçekleri ve daha üstü ölçeklerde oldukça iyi 

başarıma sahip olduğunu göstermektedir. 

Anahtar Sözcükler: türbülanslı akışlar, stokastik akışlar, Lagrange yörünge tahmini, döngü, ilinti, spektrum, Euler hız 

alanı
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Th e application of Lagrangian prediction to 
search and rescue operations relies on predictor 
data obtained from several drift ers/buoys released 
simultaneously at diff erent, but known, positions 
on the ocean surface. Th e problem is to predict 
the trajectory of an unobservable fl oat at any time 
given its initial position and the trajectories of the 
predictor fl oats. In the presence of Eulerian velocity 
fi eld, Lagrangian trajectories are fi rst computed, and 
then a linear regression based prediction algorithm is 
implemented using the computed data.

Th e velocity correlations are closely related to 
the predictability problem. Higher correlations, or 
dependence, imply a stronger functional relationship 
between the trajectories, which improves the 
prediction. Th erefore, Lagrangian and Eulerian 
correlations were also studied in the data. Th e 
previous work on stochastic fl ows for upper ocean 
turbulence in particular, Lagrangian prediction and 
eddy parameter estimation were reviewed in Piterbarg 
& Çağlar (2008). A Çinlar stochastic velocity model 
has been used in this study to parameterize the sub-
mesoscale eddies detected in the data. Th e presence 
of submesoscale eddies at the coast have a direct 
impact on Lagrangian prediction. Motivated by 
such eddies, a Çinlar stochastic velocity fi eld model 
represents the fl ow through randomization of the 
eddy features. Th is includes random arrival of eddies, 
randomization of their centres, amplitudes and 
radii, and their exponential decay with a constant 
parameter. Th e fl ow is incompressible and isotropic 
by construction. 

Monin et al. (1971) give a classical account of 
correlation analysis of Lagrangian and Eulerian 
velocity fi elds. Recently, Lagrangian velocity 
correlations were considered in Mordant et al. (2002) 
who approached intermittency in turbulence from 
a dynamical point of view. Cressman et al. (2004) 
investigated turbulent fl uid motion at the surface, 
but in an experimental setting where the fl ow is 
compressible. Mordant et al. (2004) described an 
original acoustic method to track the motion of tracer 
particles in turbulent fl ows and resolve Lagrangian 
velocity across the inertial range turbulence. More 
recently, Lagrangian velocity correlations and 
timescales were studied numerically using direct 
numerical simulation and a large-eddy simulation 

coupled with a subgrid Lagrangian stochastic model 
in Wei et al. (2006). 

In the rest of the paper the available data and 
the applicability of both the data collection and the 
analysis to the coastal areas in Turkey and its vicinity 
are described fi rst. Secondly, the computation 
of Lagrangian trajectories from Eulerian data is 
discussed. Th en, Lagrangian prediction is performed 
with the linear regression algorithm. In the following 
section, the temporal correlation results are given for 
both Eulerian and Lagrangian velocity. For the data, 
spatial covariance functions and energy spectral 
density are computed. Finally, the conclusions are 
outlined.

HF Radar Data and Potential Study Areas 

Th e data upon which our analysis is based and the 
applicability of this work to the Turkish coast and its 
vicinity are described as follows. 

HF Radar Data

In this paper, Lagrangian prediction methods are 
applied, based on HF radar data for Eulerian velocity. 
Th e high-r esolution radar data of surface velocity 
were obtained by satellite observation technology in 
the region between the Florida Current and the coast 
(Shay et al. 2000). Th ese snapshots are sequenced by 
a constant time lag of 15 minutes and cover 28 days 
in total. At each snapshot, there are 91x91 velocity 
values, each representing a grid with 125m space 
interval, a total area of 11.25km by 11.25km. Th e 
velocity vector at a grid point with coordinates (x,y) 
at time t is denoted by 

(U(x,y,t), V(x,y,t))

where U and V are zonal and meridianal components 
respectively. 

 

Coasts of Turkey and the Surrounding Areas

Th e methods in the present work are demonstrated 
by the available data from the Florida coast. Th e new 
radar technology for collecting Eulerian data and 
the accompanying analysis are also applicable to the 
coastal areas in the Black Sea and the Mediterranean. 
More generally, this work contributes to eff orts 
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to build a European capacity in ocean observing 
systems and their analysis. Th e need for more data 
collection and analysis in Europe was emphasized by 
several papers in Dahlin et al. (2003). 

As for Lagrangian studies in the Black Sea, 

most observations are from autonomous drift ing 

platforms for data collection called drift ers, equipped 

with satellite communication devices. Most recently, 

Tolstosheev et al. (2008) presented the results of the 

Black Sea drift er monitoring in 2002–2006 within 

a number of international programs and projects. 

Long-term data were obtained about the circulation of 

the surface currents in particular. Similarly, Ivanov et 

al. (2007) revealed wind induced oscillator dynamics 

and single gyre structures during 2002–2003. Th e 

statistical description of the Black Sea near-surface 

circulation is given in Poulain et al. (2005) using the 

earlier drift er observations of 1999–2003.

Th e availability of HF radar technology makes 

high resolution Eulerian observations also possible 

in the Black Sea, especially useful in coastal areas 

for predictions such as the spread of pollutants. 

Likewise, Maderich (1999) simulated the transport 

of radionuclides in the chain system of the 

Mediterranean seas by incorporating submodels of 

the Black Sea, Azov Sea, Marmara Sea, Western and 

Eastern Mediterranean.

We demonstrate the analysis of Eulerian data for 

Lagrangian prediction, as Lagrangian trajectories 

can be effi  ciently computed numerically from such 

data. Th erefore, much of the previous analysis based 

on drift er data can be replicated with HF radar 

observations. For example, Lipphardt et al. (2000) 

applied a spectral method that was fi rst applied to 

drift er and model data from the Black Sea (Eremeev 

et al. 1992), using HF radar data and model velocities 

in Monterey Bay. Similarly, the approach of the 

present paper is applicable to various coastal areas, in 

particular those of Turkey.

 

Lagrangian Trajectories from Eulerian Data

In this section, we describe our method for obtaining 
Lagrangian trajectories from Eulerian velocity data 
by interpolating its values both in space and time. 
Th en, the linear regression method is demonstrated 

as a proper approach for predicting unobserved 
trajectories from the observed ones. 

Interpolation Method

Th e path (X
t
, Y

t
) of a particle starting from the point 

(x,y) at time 0, is found as the solution of the fl ow 
equations

 (1)

 

 

dXt

dt
=

U

U( Xt ,Yt ,t)

dYt

dt
= V (Xt ,Yt ,t)

X0 = x

Y0 = y

  

(2)

Since the velocity values are available on a grid and 
only for every 15 mins, the data are interpolated as 
required in the numerical solution procedure. 

Equations (1) and (2) are solved by Runge-Kutta 
fourth-order method given by (Gerald & Wheatley 
2004):

  

),,(,1 nnnx tyxUhk =

)2/,2/,2/( ,1,1,2 htkykxUhk nynxnx +++=

   
)2/,2/,2/( ,2,2,3 htkykxUhk nynxnx +++=

   
),,( ,3,3,4 htkykxUhk nynxnx +++=

   
6/)22( ,4,3,2,11 xxxxnn kkkkxx ++++=+

        
  

),,(,1 nnny tyxVhk =

   
)2/,2/,2/( ,1,1,2 htkykxVhk nynxny +++=

   
)2/,2/,2/( ,2,2,3 htkykxVhk nynxny +++=

   
),,( ,3,3,4 htkykxVhk nynxny +++=

   
6/)22( ,4,3,2,11 yyyynn kkkkyy ++++=+   
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As required by these steps, the velocity values are 
not only needed at the last position and time, but 
also at intermediate values of the grid points and 
intermediate times even if the time step is chosen 
equal to the time resolution. We fi rst interpolate in 
space. Th e grid points and the intermediate values are 
illustrated in Figure 1 in a 10x10 grid as an example. 
Th e point in space to be interpolated is marked by a 
square. 

First, the velocity values are interpolated at the 
intersection points of the grid with the horizontal 
line that passes through the marked point. Th is is 
accomplished by passing cubic splines from the given 
data on the vertical grid lines, separately for each 
such intersection point. Passing cubic splines a fi nal 
time using the interpolated values at the intersection 
points, we interpolate the velocity at the marked 
point. Th is value is obtained for several snapshots in 
order to interpolate in time as well. Since the time 
resolution is 15 mins, the snapshots for a complete 
day or even less yield a suffi  ciently large sample for 
interpolation in time at the market spatial point. Th e 
interpolation steps are performed for intermediate 
values in space and time as required for the Runge-
Kutta method.

Trajectories

Initially, the time step was taken to be the time 
resolution 15 mins. Th en, it was decreased until 

the computed trajectory converged within an error 
tolerance. In order, h= 0.5, 0.25, 0.125 time units 
were tried and the distance between two trajectories 
was found to be 

D
0.5–0.25 

= Max{2.2328, 2.4349} = 2.4349 units

D
0.25–0.125

 = Max{0.5616, 0.2017} = 0.5616 units

where the unit is one grid spacing, namely 125 m, 
and the distance between the trajectories is taken to 
be the maximum distance in longitude and latitude 
directions. In view of the real dimensions of the sea 
and respective computational errors, we decided 
that h= 0.25, in which case the error is 0.5616x125 
m, approximately 70 m. As shown in Figure 2, the 
visually closer paths are for the smaller values of h. 
Th e starting coordinates are (30,75) and the particle 
traverses the observation area vertically approaching 
its boundary in 1 hr.

Comparison with the Çinlar Model

Th e Çinlar stochastic velocity model represents eddy-
rich fl ows by a sum of random number of eddies 
obtained by random scattering, amplifi cation and 
dilation parameters. Th us, the velocity fi eld is given 
by

e−c(t−si )ai v r -zi
b( )

i=1

N

∑

Figure 1.  An example grid for velocity measurements and an 

intermediate position (marked with a square).

Figure 2.  Particle trajectories computed with the time steps h= 

0.50, 0.25, 0.125 for a total of 1 hr, from the Eulerian 

velocity fi eld. Here, h denotes the fraction of the time 

unit, namely 15 mins. Th e two trajectories closer to 

each other correspond to h= 0.25 and h= 0.125.
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where r= (x,y), s
i
 are moments of eddy birth forming 

a Poisson process in time, hence N denotes the 
number of arrivals up to time t, z

i
 are eddy centres, 

a
i
 are amplitudes, b

i
 are radii of eddies, and as non-

random parameters c > 0 is a decay rate and v is a 
deterministic velocity fi eld with a compact support.

In Figure 3, a trajectory with the Çinlar model 
is obtained with the estimated parameters from the 
same Eulerian velocity data (Çağlar et al. 2006). Our 
experimentation with such trajectories has shown 
that it takes longer for a model particle to traverse 
the same distance than a simulated particle on 
the Eulerian data as in Figure 2. Th is confi rms the 
discrepancy between the model and data about eddy 
decay. Th e average magnitude of eddies estimated 
from data decay linearly, whereas the model contains 
exponential decay to form a Markovian velocity fi eld 
(Çağlar et al. 2006). Although the variances agree 
well, the model has more eddies on a given snapshot 
with the estimated parameters than the average 
number of eddies estimated from data. Th e observed 
eddies have larger average intensity to compensate 
for that number and yield equal variances. Th erefore, 
in Figure 3, the particle moves from eddy to eddy and 
gets dispersed slowly rather than being scattered by a 
few strong eddies as in Figure 2. Th is discrepancy is 
aimed to be removed by modifi cation of the model 
according to real eddy decay dynamics in future 
work.

Prediction by Linear Regression 

In this section, the linear regression method 
for Lagrangian prediction is summarized and 
implemented. Th e results are compared with those 
obtained by the centre of mass method (CM).

Linear Regression Method 

An important application area of the Lagrangian 
approach is the prediction of the position of a lost 
item when observations of other close fl oating 
objects are available. Rigorously the problem is 
formulated as follows: given several particle paths, 
to predict an unobserved trajectory starting from a 
known position. Th e given trajectories are denoted 
by ir , Mi ,,1…= ; in particular )(tri  corresponds 
to the position vector of the ith particle at time 
instant t. Suppose the unobserved path is Mr . As the 
trajectories are random, the predictor that minimizes 
the mean square error is given by

 � ˆ r M (T ) = E[
� 
r M (T ) |

� 
r 1(t),

� 
r 2(t),…,

� 
r M −1(t),0 ≤ t ≤ T ] (3)

where E denotes the expectation operator. In other 
words, the predictor is the conditional expectation 
of the unobserved position given the observed 
trajectories. Th e error is defi ned as the diff erence 
between the true but observed value of )(TrM  and 
its predictor 

� ˆ r M (T )  in (3). In the linear regression 
method of prediction, the position at each instant is 
assumed to be a linear function of the initial position 
(Piterbarg & Özgökmen 2002) as

    � 
r i (t) =A(t)r(0) + b(t) + y (t)

� 
i

where y
i
(t) is the error and the functions A(t) and 

b(t) are to be estimated by the least squares method. 
Th e estimated values of A and b are found in terms of  � 
r 1(t),…,

� 
r M −1(t) as

    
ˆ A (t) = S(t)S(0)−1

ˆ b (t) =
� 
r c (t) − ˆ A (t)

� 
r c (0)

where
Figure 3.  A particle trajectory simulated for 1 hr. from Çinlar 

velocity fi eld model with parameters estimated from 

the Eulerian velocity fi eld. Note that the particle path 

is less dispersed than that of Figure 2.
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S(t) = (
� 
r i(t) −

� 
r c (t))(

� 
r i(0) −

� 
r c (0))T

i=1

M −1

∑

are the centre of mass and the dispersion matrix of 
the observed particles, respectively.

Th e linear regression method assumes that the 
unobserved path depends on the positions of the 
predicting trajectories. Th e prediction skill depends 
on the predictor (observed particle) density. In 
particular, when the numbers of predictors near the 
predicted (and unobservable particle) goes to infi nity, 
the error tends toward zero. Another important detail 
is the initial positions of the predictors. A frequently 
used assumption is that the predict and is initially 
located close to the centroid of the polygon formed by 
the predictors. Such an initialization justifi es the CM 
method which takes the predicted trajectory to be 
the centroid. Next, the results of the linear regression 
method are compared with the results of the method 
of centre of gravity. 

Results for Lagrangian Prediction

Five predictors are initially placed on the corners of 
a pentagon. Th e particle to be predicted is positioned 
close to its centre. Th e trajectories of the particles used 
for prediction are fi rst approximated as above and are 
assumed to be known. Th e known trajectories, as well 
as the trajectory predicted with the linear regression 
method, are shown in Figure 4. In this fi gure, the 
predictand is close to, but not exactly at the centroid.

Th e trajectories predicted from the linear 
regression and CM methods are compared in Figure 
5 with the true trajectory approximated from the 
Eulerian velocity fi eld. Due to its nature, the CM 
algorithm starts with the centre of mass which is also 
taken as the initialization and is diff erent from the 
actual starting point of the unknown trajectory.

Th e error is plotted against time in Figure 6, 
which shows that the linear regression does not 
exceed an error of 0.1 km. According to this result, 
in a suffi  ciently short time, the lost particle can be 
found within a circle of radius 100 m of the predicted 
trajectory. Th e error of 70 m that occurred at the 
calculation stage of approximate trajectories can be 
added to this margin of error. 

If the predicted particle is initially placed exactly 
at the centroid, the error of the CM method is 
found to be lower, and comparable to that of the 
linear regression method. In general, we conclude 
that the linear regression method performs better 
as this type of initialization is not guaranteed in 
real applications. Also, this is a model independent 
prediction algorithm like the CM approach. In 
Piterbarg & Özgökmen (2002), the performance of 
the linear regression algorithm was compared with 
a Kalman fi lter type algorithm which makes use of 
fl ow statistics. It has also been found that regression 
algorithm performs better in view of simulations and 
real fl oat data.

Figure 4.  Known trajectories and the predicted trajectory with 

initial coordinates (–80.07, 26.085).

Figure 5.  Predicted trajectories by two methods and the actual 

path computed from the velocity measurements.
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Temporal Correlation Analysis and Results

In this section, the variance calculations will be 
performed for the spread of the particle trajectories 
and the correlation time scales will be found. Th e 
stochastic velocity model and the fl ow have already 
been analyzed by means of correlation analysis 
in Çağlar (2000, 2003). Th erefore, the covariance 
analysis of the present work can be used to match 
the parameters of the model with data also from a 
Lagrangian perspective. In contrast, our earlier work 
(Çağlar et al. 2006) included parameter estimation 
only from Eulerian data. 

Th e covariance function between processes A and 
B, is defi ned as:

RAB (τ)= E {A(t)− µA}.{B(t+ τ) −µB }] t,τ ∈ R[

Th e correlation function is defi ned as:

ρAB (τ)=
RAB (τ)

RAB (0)  
(4)

If A and B are diff erent, the covariance (correlation) 
function is called the cross-covariance (cross-
correlation) function, and when they are equal, 
it is called the autocovariance (autocorrelation) 
function (Bendat & Piersol 1993). Here, A and B are 
components of the Eulerian velocity fi eld, i.e. they 
take values of U (zonal) and V (meridianal), and are 
not necessarily diff erent.

Th ere are two diff erent approaches to determine 
how the fl ow is correlated in time; ‘Lagrangian 
covariance’ and ‘Eulerian covariance’. Eulerian 
covariance corresponds to the covariance of the 
velocity data over time, whereas Lagrangian 
covariance relates to the particle followed in time and 
is found from the velocity data at the particle’s position. 
In this paper, we only compute the autocovariance 
functions, and not the cross-covariance functions. 

As indicated in Piterbarg & Özgökmen (2002) the 
error of the linear regression prediction algorithm is 
mostly determined by two parameters, the Lagrangian 
correlation time (Lagrangian velocity scale) and the 
velocity fi eld space correlation radius. Here we focus 
on investigating the former since estimating the 
latter is problematic, given limited observations. Th e 
Eulerian correlation time is also briefl y discussed, 
since it is related to the Lagrangian correlation time 
although an explicit functional relation is hard to 
fi nd.

Lagrangian Autocovariance

Th e Lagrangian velocity autocovariance functions for 
a moving particle are defi ned as follows:

RU
L (τ)= E [u(t)u(t + τ)]

RV
L ( )= E [v(t)v(t + τ)]τ

where u and v indicate the horizontal and vertical 
component of the velocity vector at the point 
where the particle resides at time t, respectively. 
We then introduce the following estimators for the 
autocovariance functions:

ˆ R U
L (τ) =

1

T − τ
u(t)u(t + τ )

t= 0

T− τ

∑

ˆ R V
L (τ) =

1

T − τ
v(t)v(t + τ )

t= 0

T− τ

∑

where T is the last time value before the particle leaves 
the grid, the time unit corresponds to 15 minutes for t 
which takes positive integer values, and τ = 0, 1, 2, ..., 
must be less than T.

To calculate Lagrangian autocovariance, we need 
a particle’s trajectory in the grid. For this purpose, 

Figure 6.  Th e errors of center of mass and linear regression 

methods for prediction of the true particle path.
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we choose 4 particles with respective initial positions 
(30,75), (35,70), (45,70), (50,75), and track them 
until they leave the grid. We obtain estimates of the 
Lagrangian autocovariance functions by averaging 
the functions due to these 4 particles. Th e estimates 
are plotted in Figure 7. We have used only four 
particles because obtaining Lagrangian velocity 
fi elds requires extensive computation time, and also 
the more the particles the earlier at least one particle 
leaves the grid in a short time. In Figure 7, the curves 
are smooth, indicating that the averaging over only 
4 particles is suffi  cient. Note that the autocovariance 
function vanishes at about 60 time units, which is 
equivalent to 15 hrs.

From this estimate, autocorrelation functions 

 
and  are easily determined by dividing the 

corresponding covariance function by the variance 
 
 

ˆ R U
L (0)  or ˆ R V

L (0) . Autocorrelation functions will be 

displayed in the sequel where correlation times are 
calculated. 

Eulerian Autocovariance

Unlike the previous case, Eulerian autocovariance 
calculation is not related to whether the velocity fi eld 
forces the particle to leave the grid or not. Eulerian 
covariance function depends on the coordinates 
of the data point, and indicates how the velocity is 
correlated throughout time at that particular point.

Eulerian autocovariance functions at point (x,y) 
are defi ned as follows

RU
E (x,y,τ) = E U(x,y,t).U(x,y,t + τ)[ ]

RV
E (x,y,τ) = E V (x,y,t).V (x,y,t + τ)[ ]

Th ese expected values are estimated as

ˆ R U
E (τ)=

1

T − τ
1

MN
U(x,y,t)U(x,y,t + τ)

y=1

N

∑
x=1

M

∑
t=1

T− τ

∑

ˆ R V
E (τ)=

1

T − τ
1

MN
V (x,y,t)V (x,y,t + τ)

y=1

N

∑
x=1

M

∑
t=1

T− τ

∑

Figure 7.  Top– Lagrangian Autocovariance for u with 4 particles; Bottom– Lagrangian Autocovariance for v with 4 particles.
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where T is the latest time for which there is an 
observation. 

We compute two Eulerian autocovariance 
functions, one for the fi rst 14 day period, and the 
other for the last 14 day period, where the velocity 
fi eld is stationary. Additionally, the estimations 
are carried on a 10-by-10 subgrid, which yields a 
total of 100 data points to be averaged. Estimated 
covariance functions are given in Figure 8. Eulerian 
autocorrelation functions 

 
and 

 
are found by 

using Equation (4) as before.

Lagrangian and Eulerian Correlation Times

Th e correlation time τ can be estimated using the 
autocorrelation function ˆ . It is called Lagrangian 
correlation time τ

L
, if it is derived from the 

Lagrangian autocorrelation function; and Eulerian 
correlation time τ

E 
if it is derived from the Eulerian 

autocorrelation function. Th ere are three approaches 
to estimate τ.

• Method 1: Calculating the area under the graph 
of  ˆ 

 between (0, ∞). 

• Method 2: Calculating the area under the curve 
of ˆ  between 0 and the fi rst real value where ˆ 

 
becomes zero.

• Method 3: approximating 
ˆ ́  ρ (0) .

Lagrangian and Eulerian autocorrelation 
functions are given in Figures 9 and 10, respectively. 
As a result, we see that the autocorrelation in 
vertical, or, in other words the vertical component 
is larger than the horizontal one. Note that the Gulf 
Stream is in this direction. Although the mean fl ow 
has been eliminated from the data, the variance 
remains. In Figure 9, Lagrangian autocorrelation 
diminishes at about 20 time units, equivalent to 
5 hours in the horizontal direction, and at 60 time 

Figure 8.  Top Left – Eulerian Autocovariance for U, First Period; Top Right– Eulerian Autocovariance for V, First Period; 

Bottom Left – Eulerian Autocovariance for U, Second Period; Bottom Right– Eulerian Autocovariance for V, Second 

Period.
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units, equivalently 15 hours in the vertical direction. 
However, the behaviour of Eulerian autocorrelation 
is quite diff erent, as shown in Figure 10. Eulerian 
autocorrelation in the fi rst period can be compared 
with Lagrangian autocorrelation as it is obtained from 
the fl ow in the fi rst period. Eulerian autocorrelation 

seems to decay faster in horizontal direction, while 
it oscillates for a longer time. On the other hand, it 
decays more slowly than Lagrangian autocorrelation 
in the vertical direction. As for comparison of the 
fi rst and the second periods, Eulerian autocorrelation 
seems to decay more slowly in the second period in 

Figure 9.  Top– Lagrangian autocorrelation for u with 4 particles; Bottom– Lagrangian autocorrelation for v with 4 particles.

Figure 10.  Top Left – Eulerian Autocorrelation for U, First Period; Top Right– Eulerian Autocorrelation for V, First Period; 

Bottom Left – Eulerian Autocorrelation for U, Second Period; Bottom Right– Eulerian Autocorrelation for V, 

Second Period.
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the horizontal direction but with no oscillations. In 
the vertical direction, the autocorrelation becomes 
negative aft er a while indicating a slower decay to 
0, possibly with further oscillations. Th ese latter 
observations are consistent with the results of Çağlar 
et al. (2006) where the second period was indicated 
to have larger variance.

Numerical integrations for evaluating the 
correlation times τ

L
 and τ

E 
are accomplished using 

Simpson’s method. Th e results can be found in 
Tables 1 and 2, which show the computed values 
in seconds as well as the same values in hours in 
parentheses. While Eulerian correlation time is close 
to Lagrangian correlation time for the horizontal 
component of the velocity, it is signifi cantly larger 
than Lagrangian time for the vertical component as 
given in Table 2. Also, Eulerian correlation time is 
larger in the fi rst period in both directions. Th is result 
can be reconciled with the discussion of Figure 10 as 
follows. Th e oscillations in the horizontal direction 
contribute to τ

E  
in the fi rst period. In the second 

period, the autocorrelation is observed to be negative 
and any further oscillations have not been observed. 
Th is yields a lower correlation time τ

E  
as a result.

Spatial Covariance Function

Spatial covariance indicates how the velocity data 
are correlated with respect to the distance between 
observation locations. In this case, our covariance 
and correlation functions will be two-dimensional. 
For each snapshot of time, we will obtain a covariance 
and a correlation function by averaging over time, 
or, more precisely, over two periods of time, one of 
which is the fi rst 14 days of the 28 days data, and the 
other is the last 14 days.

As our observation area is fi nite, we need an 
estimator formula. Covariance functions at time t are 
estimated using the following expression

 

 (5)
ˆ R AB (Δx,Δy,t) =

1

(M − Δx)(N − Δy)

A(x,y,t)B(x + Δx,y + Δy,t)
y=1

N−Δy

∑
x=1

M −Δx

∑

where Δx and Δy go from 1 to the number of data 
points of each side of the square grid, namely M= N= 
91. Spatial covariance (5) is averaged over time for 
each period as 

ˆ R AB
1 (Δx,Δy) =

1

14m
ˆ R AB (Δx,Δy,t)

t=1

14m

∑

ˆ R AB
2 (Δx,Δy) =

1

14m
ˆ R AB (Δx,Δy,t)

t=14m +1

28m

∑

where the unit of time is still 15 minutes and m=(4)
(24)= 96 is the total number of snapshots in a given 
day. Th e components ˆ ρ AB (Δx,Δy)  of the so-called 
correlation tensor are defi ned as the corresponding 
covariance tensor component divided by the zero 
spatial lag covariance, i.e. variance (Mathieu & Scott 
2000). Th us, we estimate the correlation functions 
using 

AB
j (Δx,Δy) =

ˆ R AB
j (Δx,Δy)

ˆ R AB
j (0,0)

where j=1, 2.

We only give the estimated autocovariance 
functions in Figure 11, as correlation functions, 

Table 1. Correlation Times for u or U (in seconds)

 Method 1 Method 2 Method 3

 

τ
L
 6529 8991  37030

 (1.8hrs) (2.5 hrs) (10.3 hrs)

τ
E 

(1st period) 11877 3816 12778

 (3.3 hrs) (1.1 hrs) (3.6 hrs)

τ
E 

(2nd period) 4230 8235  7732

 (1.2 hrs) (2.3 hrs) (2.2 hrs)

Table 2. Correlation Times for v or V (in seconds)

 Method 1 Method 2 Method 3

 

τ
L
 21731 21731 32140

 (6.0 hrs) (6.0 hrs)  (8.9 hrs)

τ
E 

(1st period) 87406 87406 44130

 (24.3 hrs) (24.3 hrs) (12.3 hrs)

τ
E 

(2nd period) 19162 40966 23635

 (5.3 hrs) (11.4 hrs) (6.6 hrs)
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being their scaled versions, are qualitatively the 
same. In computations, the space lag is changed up 
to 30 grids, which is about 1/3 of the total number 
(91). Th e spatial covariance is qualitatively similar in 
both time periods. Th e spatial autocovariance of the 
horizontal component U of the velocity decays fast 
in the horizontal direction at about 15 grid points, 
equivalently 1.9 km, but more slowly in the vertical 
direction, considerably decreasing at 30 grid spacing, 
namely 3.75 km. Th e autocovariance of the vertical 
component v decays in the vertical direction at about 
20 grids, equivalently 2.5 km, while large covariance 
values persist in the horizontal direction even at 30 
grid spacing, equivalently 3.75 km. In other words, 
the vertical velocity components are highly correlated 
along the same path. Th is may be an eff ect of the Gulf 
Stream in the same direction, although the mean 
fl ow has been subtracted.

Spectral Functions

In this section, the spectral functions to express 
Eulerian and Lagrangian velocity fi elds in the 
frequency domain are described, and the energy 
functions among other results for the spectra are 
computed.

Power Spectral Density

Spectra via Correlation Functions– Assuming that 
Eulerian velocity fi eld is a stationary random process, 
the Power Spectral Density (PSD) can be computed 
by taking the Fourier transform of the autocovariance 
function estimate (Stanišić 1988; Bendat & Piersol 
1993). Th e spectral functions are defi ned as the two 
dimensional Fourier transform
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Figure 11.  Spatial autocovariance functions – fi rst and second period of observations. Velocity in the second period is more correlated. 
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SAB (kx ,ky ,t) =
1

(2p )2
RAB (x,y,t).e

−i(xkx +yky )
dxdy∫∫

If A and B are diff erent, then S
AB

 is called cross-spectral 
density function, and when they are equal, it is called 
autospectral density function, or more oft en power 
spectral density function (PSD) which can in brief be 
denoted as S

A
 (Bendat & Piersol 1993).

Again, an estimation method must be introduced 
because of the fi nite data. A discrete Fourier 
transform is applied to the obtained covariance 
functions, since spectral and covariance functions 
are Fourier transform pairs (Bendat & Piersol 1993). 
Th e resulting estimator is denoted by ˆ S A  below

 

 (6)

ˆ S A
1 (kx ,ky ) =

1

14m
ˆ S A (kx ,ky ,t)

t=1

14m

∑

ˆ S A
2 (kx ,ky ) =

1

14m
ˆ S A (kx ,ky ,t)

t=14m +1

28

∑

where A stands for u or v and the estimation is 
performed for the two diff erent time periods as 
before.

We obtain the energy function E(k
x
,k

y
) by 

summing the two PSD functions as

ˆ E j (kx ,ky ) = ˆ S U
j (kx ,ky ) + ˆ S V

j (kx ,ky )
 

(7)

where j= 1,2 indicate the fi rst and second 14-day 
periods. In isotropic turbulence, it is conventional 
to defi ne the energy spectrum ˆ E (k) by integrating 
(7) over annular regions of (k

x
, k

y
) with k = |(k

x
, k

y
)|. 

Th erefore, the resulting power spectrum depends on 
the wave number magnitude k and gives the energy 
spectral density versus k as shown in Figures 12 
and 13 for the fi rst and second observation periods, 
respectively. For comparison, the line k-5/3 is also 
plotted on these fi gures. We conclude that the velocity 
data approximately obey the k-5/3 spectra associated 
with Eulerian turbulence (Mathieu & Scott 2000, p. 
242).

When the spectrums in (6) are considered 
separately, it is found that the meridianal component 
is more energetic than the zonal one during both 
periods while the total energy is higher in the second 
period. No signifi cant extremes are found, meaning 

that there is no space periodicity in the velocity 
variability.

Spectra via Fourier Transform of the Data– PSD and 
the Cross-Spectral Density functions can alternatively 
be obtained without calculating the covariance 
functions as follows

SAB (kx ,ky ,t) = E ˜ A (kx ,ky ,t) ˜ B (kx ,ky ,t)[ ]
where ˜ A  and ˜ B are the Fourier transforms of A and B, 
respectively, given by 

˜ A (kx ,ky ,t) =
1

(2p )2
A(x,y,t).e

−i(xkx +yky )
dxdy∫∫

All the functions of the previous section can 
therefore be calculated using this point of view. Th e 
only diff erence in the estimation process in this 
technique is applying the discrete Fourier transform 
to the data itself and estimating ˆ S AB  by

ˆ S AB (kx ,ky ,t) = ˜ A (kx ,ky ,t) ˜ B (kx ,ky ,t)

using the functions ˜ A  and ˜ B. Due to averaging over 
14 day periods, we defi ne the two functions ˆ S 1  and 
ˆ S 2  in the same way as in Equation (6). Similarly, 
Equation (7) is used for fi nding the energy. Th e 
results are found to be very close to those in fi gures 
12 to 13, as these are equivalent methods.

 

Conclusions

Th e high-resolution observations of surface velocity in 
the region between the Florida Current and the coast 
obtained by high-frequency radar are investigated 
to test Lagrangian prediction algorithms. Th e 
prediction skill is essentially determined by temporal 
and spatial covariances of the underlying velocity 
fi eld. Higher correlations imply a stronger functional 
relationship between diff erent trajectories. For this 
reason correlation analysis of both Lagrangian and 
Eulerian velocities has been carried out. 

Th e North–South velocity components are highly 

correlated along the same path. Th is may be an eff ect 

of the Gulf Stream fl owing in the same direction 

although the mean fl ow has been subtracted. While 

Eulerian correlation time is close to Lagrangian 
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correlation time for the horizontal component of the 

velocity, it is signifi cantly larger than Lagrangian time 

for the vertical component. Furthermore, Eulerian 

correlation time is larger in the fi rst period of the 

observation horizon for both velocity components. 

Space covariance functions and spectra of the 

velocity fi eld have been presented to better illustrate 

statistical environments for the predictability studies. 

Th e meridianal component is more energetic than the 

zonal one during both periods while the total energy 

is higher in the second period. Spectrum decay with 

increasing wave number observed in all instances 

is typical for the upper ocean turbulence. No space 

periodicity in the velocity variability is found.

Th e results show that the regression prediction 

algorithm performs quite well on scales comparable 

with the velocity correlation scales and higher. Also, 

it is better than CM algorithm in terms of prediction 

error. 

In future work, the covariance analysis of the 

present work can be used to match the parameters 

of the model with the data also from the Lagrangian 

perspective. Further improvement of the stochastic 

model and its integration in advanced ocean models 

would then be possible. 
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Appendix

Fourier Transform Implementation in Spectrum Calculation

When calculating spectra, before applying Fourier transform, we extended our function’s domain in order to make the function even. 

Th en, we applied the Fourier transform to the extended even function, and applied ‘fft  shift ’ function in Matlab, which is a simple 

swapping of the two sides of equal length of the array. Th en as our Fourier-transformed function is complex, we took the magnitudes 

of the complex numbers. Finally, the relevant part of this extended array was cropped and plotted. Th e Matlab codes for the 1D and 2D 

cases are provided below in that order.

  

function R = evenfft  (U)

 

[n N]  = size(U);

if N  == 1

    U = U’; N = n;

end

UU = [U(end:-1:2) U];

RR = fft  shift (abs(fft  (UU)));

R = RR(N:end); 

return

 function R = evenfft  2(U)

 

[M N]  = size(U);

UU = [U(:,end:-1:2) U; U(end:-1:2,end:-1:2) U(end:-1:2,:)];

RR = fft  shift (fft  2(UU));

R = RR(M:end,N:end);

return

Note that in the 2D case, we did not utilize the whole 2D covariance functions, since there is not enough data for the high spatial lag 

values. We used a rectangular window (precisely of size 30) to fi lter out the unwanted eff ects of low sample size. 


