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Abstract: Ion probe dating is used to determine the relative ages of amphibolite-facies meta-clastic sedimentary rocks
and crosscutting granitoid rocks within an important ‘basement’ outcrop in northwestern Turkey. U-Pb ages of 89
detrital zircon grains separated from sillimanite-garnet micaschist from the Central Sakarya basement terrane range
from 551 Ma (Ediacaran) to 2738 Ma (Neoarchean). Eighty five percent of the ages are 90-110% concordant. Zircon
populations cluster at ~550-750 Ma (28 grains), ~950-1050 Ma (27 grains) and ~2000 Ma (5 grains), with smaller
groupings at ~800 Ma and ~1850 Ma. The first, prominent, population (late Neoproterozoic) reflects derivation from a
source area related to a Cadomian-Avalonian magmatic arc, or the East African orogen. An alternative Baltica-related
origin is unlikely because Baltica was magmatically inactive during much of this period. The early Neoproterozoic
ages (0.9-1.0 Ga) deviate significantly from the known age spectra of Cadomian terranes and are instead consistent
with derivation from northeast Africa. The detrital zircon age spectrum of the Sakarya basement is similar to that of
Cambrian-Ordovician sandstones along the northern periphery of the Arabian-Nubian Shield (Elat sandstones). A
sample of crosscutting pink alkali feldspar-rich granitoid yielded an age of 324.3+1.5 Ma, whilst a grey, well-foliated
biotite granitoid was dated at 327.2+1.9 Ma. A granitoid body with biotite and amphibole yielded an age of 319.5+1.1
Ma. The granitoid magmatism could thus have persisted for ~8 Ma during late Early Carboniferous time, possibly related
to subduction or collision of a Central Sakarya terrane with the Eurasian margin. The Central Sakarya terrane is likely to
have rifted during the Early Palaeozoic; i.e. relatively early compared to other Eastern Mediterranean, inferred ‘Minoan
terranes” and then accreted to the Eurasian margin, probably during Late Palaeozoic time. The differences in detrital
zircon populations suggest that the Central Sakarya terrane was not part of the source area of Lower Carboniferous
clastic sediments of the now-adjacent Istanbul terrane, consistent with these two tectonic units being far apart during
Late Palaeozoic-Early Mesozoic time.
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Orta Sakarya Temelinin fyon Prob U-Pb Yaglandirmas::
Geg Erken Karbonifer Yash Yitim/Carpisma ile fligkili Granitik Magmatizma ile
Kesilen Gondwana-Kenar1 Kokenli Bir Blok

Ozet: Kuzeybati Anadoludaki énemli bir ‘temel’ yiizeylemesinde yeralan amfibolit fasiyesi meta-kirintili sedimenter
kayalar ile bunlar1 kesen granitoidik kayalarin goreli yaslarini saptamak i¢in iyon prob yaslandirmasi yapilmigtir. Orta
Sakarya temelindeki bir sillimanit-granat mika sistden ayrilan 89 kirintili zirkon mineralinin U-Pb iyon-prob yas tayini
551 My (Ediyakaran)dan 2738 My (Neoarkeen)’a kadar yaslar vermistir. Elde edilen yaslarin yiizde seksenbesi %90
110 konkordandir. Zirkon popiilasyonlar1 ~550-750 My (28 tane), ~950-1050 My (27 tane) ve ~2000 My (5 tane),
daha kiiciik bir grup ise ~800 My ve ~1850 Myda kiimelenmektedir. lk, baskin popiilasyon (geg Neoproterozoyik)
Kadomiyen-Avalonya magmatik yay1 veya Dogu Afrika orojeni ile iligkili bir kaynak alandan beslenmeyi yansitir.
Alternatif olarak Baltik kalkani ile bir baglanti ¢ok zayif bir olasiliktir. Clinkii Baltik kalkani bu dénemin biiyiik bir
boliimiinde magmatik agidan pasif kalmigtir. Erken Neoproterozoyik yaglar: (0.9-1.0 Gy), Kadomiyen bloklarindaki
bilinen yag araligindan 6nemli 6lgiide sapma gosterir ve bunun yerine kuzeydogu Afrikanin bir bolimiinden beslenme
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ile uyumludur. Bu ¢aligmadan elde edilen Sakarya temelinin tasinmis zirkon yas araligi, Arap-Nubiya Kalkaninin kuzey
kenar1 boyunca birikmis Kambriyen-Ordovisyen kumtaglarina (Elat kumtaslar1) asir1 derecede benzerlik sergiler.

Orta Sakarya metamorfik temeli granitoyidik intriizyonlar ile kesilir. Pembe, alkali feldspatca zengin bir granitoyid
324.3+1.5 My vyasi; gri, foliasyonlu biyotit granitoid 327.2+1.9 My yast vermistir. Biyotit ve amfibol iceren bir diger
granitoyid kiitlesinden ise 319.5+1.1 My yas! elde edilmistir. O nedenle, yitim veya Orta Sakarya blokunun Avrasya
kenarina ¢arpismasi ile iligkili granitoyidik magmatizmanin ge¢ Erken Karbonifer déneminde ~8 My boyunca
devam ettigi anlagilmaktadir. Orta Sakarya bloku, Dogu Akdeniz bélgesindeki diger ‘Minoan” bloklarina gére daha
once, Erken Paleozoyik doneminde riftlesmis ve daha sonra, olasilikla Geg Paleozoyik doneminde Avrasya kenarina
eklenmis olmalidir. Tasinmus zirkon topluluklarindaki farkliliklar, Orta Sakarya blokunun su an bitisigindeki Istanbul
blokunun Alt Karbonifer kirintili sedimanlari i¢in bir kaynak alan olusturmadigini, o nedenle bu iki tektonik birligin
Geg Paleozoyik-Erken Mesozoyik doneminde birbirlerinden oldukga uzak olduklarini gostermektedir.

Anahtar Sozciikler: Orta Sakarya temeli, 1yon Prob yaslandirmasi, zirkon, Karbonifer, KD Afrika

Introduction

U-Pb detrital zircon age populations in terrigenous
sedimentary or metasedimentary rocks can be used
to infer the source regions of exotic terranes in
orogenic belts. This can be achieved by comparing the
ages of tectono-thermal events recorded in the zircon
grains with the source ages of the potential source
cratons. U-Pb detrital zircon ages can also provide
a maximum age of deposition for clastic sediments,
which is particularly useful where the rocks are
metamorphosed or unfossiliferous. The dates of
cross-cutting igneous intrusions can be combined
with the ages of detrital zircons to provide additional
constraints on the timing of deposition. We use this
approach here to shed light on the potential source
region of the Central Sakarya basement (~Sakarya
Continent) in N Turkey, where granitoid rocks cut
previously undated schists and paragneisses.

Turkey is made up of a mosaic of continental
blocks separated by dominantly Late Cretaceous-
Cenozoic ophiolitic suture zones (Sengdr & Yilmaz
1981; Okay & Tiiysiiz 1999; Figure 1). In particular,
the Izmir- Ankara-Erzincan suture zone separates the
Triassic rocks of the Pontides to the north (correlated
with Eurasia) from the Anatolides and Taurides to
the south (correlated with Gondwana). The Pontide
tectonic belt of northern Turkey is itself a composite
of several terranes. Two major continental blocks
are exposed in the northwest Pontides, namely the
Istranca Massif and the Istanbul terrane (Figures
1 & 2). The Istranca Massif comprises a Palaeozoic
metamorphic basement, unconformably overlain
by Triassic-Jurassic metasedimentary rocks (A.IL
Okay et al. 2001a; Sunal et al. 2011). The adjacent
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Istanbul terrane exposes an unmetamorphosed,
transgressive sedimentary succession of Ordovician
to Early Carboniferous age, with an unconformable
Triassic sedimentary cover (Abdiisselamoglu 1977;
Sengdr 1984; Ozgiil 2012). The Palaeozoic succession
of the Istanbul terrane begins with Ordovician
red continental clastic rocks and shallow-marine
sedimentary rocks. Platform sedimentation persisted
until the Late Devonian when rapid drowning of
the platform was associated with the deposition of
pink nodular limestones coupled with intercalations
of radiolarian chert (Sengor 1984; T. Ustaémer &
Robertson 1997; P.A. Ustadmer et al. 2011; N. Okay
et al. 2011; Ozgﬁl 2012). Sedimentation continued
with deposition of black ribbon cherts containing
phosphatic nodules and this was followed by a Lower
Carboniferous turbiditic sequence (Sengor 1984; N.
Okay et al. 2011; Ozgiil 2012).

The more easterly part of the Pontide tectonic
belt includes the Sakarya Zone (Okay & Tiiysiiz
1999), also known as the Sakarya Composite
Terrane (Gonciioglu et al. 1997). The Sakarya
Zone is characterised by a Lower Jurassic to Upper
Cretaceous sedimentary succession that is interpreted
to record the development of a south-facing passive
margin ($engor & Yilmaz 1981; Y. Yilmaz et al. 1997).
The passive margin switched to become part of a
regional Andean-type active margin during the Late
Cretaceous (Y. Yilmaz et al. 1997). A regional Mid-
Eocene unconformity above the Mesozoic succession
is interpreted as the result of a collision of the Sakarya
Zone with the Anatolide-Tauride Platform to the
south (Y. Yilmaz et al. 1997; A.I. Okay & Whitney
2011).
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Figure 2. Tectonic map of NW Anatolia showing the various basement terranes of the Sakarya Zone and the Variscan continental
units to the north (Istanbul terrane and the Istranca Massif). The contact between the Istanbul terrane and the Istranca
Massif is inferred to be a right-lateral strike-slip fault zone (West Black Sea Fault: WBF), active during opening of the West
Black Sea oceanic basin in the Late Cretaceous (A.I. Okay et al. 1994). The Intra-Pontide Suture Zone formed during the
Late Cretaceous related to closure of Tethyan ocean to the south (Sengdr & Yilmaz 1981; Robertson & Ustadmer 2004). The
[zmir-Ankara Suture (IAS) which formed during Early Cenozoic is the most prominent suture zone in Turkey as it separates
the Eurasian and Gondwanan terranes to the north and south ($engér & Yilmaz 1981; Okay & Tiiysiiz 1999; Robertson et al.
2009). Inset: the main suture zones of Turkey. Modified after Okay 2010 and Robertson & Ustadmer 2012. Red box shows the
location of the study area shown in Figure 3.

The pre-Lower Jurassic basement of the Sakarya Pulur Massif) are correlated with this Palaeozoic

Zone is dominated by the Karakaya Complex, which is
widely interpreted as a Triassic subduction-accretion
complex related to northward subduction beneath a
continental margin arc terrane (Tekeli 1981; Pickett
& Robertson 1996, 2004; A.I. Okay 2000; Robertson
& Ustaomer 2012). Associated metamorphosed
continental units (e.g., Central Sakarya basement;
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active margin.

Metamorphosed continental units are exposed in
several inliers along the length of the Pontides (Figure
1). From west to east these are the Kalabak basement
(A.L Okay et al. 1991; A.L. Okay & Gonciioglu 2004;
Pickett & Robertson 2004; Robertson & UstaOmer
2012; Aysal et al. 2011), the Central Sakarya
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basement (Y. Yilmaz 1977, 1979; Y. Yilmaz et al. 1997;
Gonciioglu et al. 1996) and the Pulur Massif (Figures
1 & 2; Topuz et al. 2004; T. Ustadmer & Robertson
2010). Smaller continental units further east include
the Devrekani metamorphics in the Central Pontides
(O. Yilmaz 1979; Taysiiz 1990; T. Ustaémer &
Robertson 1993, 1997; Nzegge et al. 2006) and the
Tokat Massif in the Eastern Pontides (Figure 1; Y.
Yilmaz et al. 1997). The basement units as a whole
are typically exposed in the hanging walls of large
thrust sheets (Y. Yilmaz 1977; A.I. Okay & Sahintiirk
1997; T. Ustadmer & Robertson 2010), with a Jurassic
sedimentary cover above. Two additional large
metamorphic massifs, the Kazdag Massif and the
Uludag Massif, are exposed beneath the Karakaya
Complex in the western Pontides (Figure 2). The
Uludag (A.I. Okay et al. 2008c) and Kazdag Massifs
in particular still remain poorly dated (Erdogan et al.
2009).

The Kalabak basement includes cross-cutting
granites, which are radiometrically dated as Early
to Mid-Devonian (A.I. Okay et al. 1996, 2006; Aysal
et al. 2011). In contrast, the Pulur Massif and the
Devrekani metamorphics are intruded by granites
that are dated as Early Carboniferous (Topuz et
al. 2007, 2010; Nzegge et al. 2006; T. Ustadmer &
Robertson 2010).

In this paper, we report new Ion Probe U-Pb
zircon age data from the Central Sakarya basement.
We have dated detrital zircon grains from a sample
of sillimanite-garnet-mica schist and igneous zircons
from three cross-cutting granitoid intrusions.

Geological Setting of Dated Lithologies

The study area is located between the city of Bilecik
in the west and the small town of Ségiit in the east
(Figures 2 & 3). Pre-Jurassic basement and a Jurassic-
Upper Cretaceous cover are well exposed along the
Karasu and Sakarya rivers in this area (Altinl 1973a,
b; Demirkol 1977; Y. Yilmaz 1977, 1981; Saner 1978;
Sentiirk & Karakdse 1981; Kadioglu et al. 1994; Kibici
1991, 1999; Kibici et al. 2010; Duru et al. 2007). The
Jurassic-Upper Cretaceous cover begins with Lower
Jurassic coarse clastic sedimentary rocks (Bayirkdy
Formation), which pass gradually into Jurassic-
Cretaceous neritic carbonates (Bilecik Limestone).
The succession continues with diagenetic chert-
bearing pelagic limestones and marls of Callovian-

Aptian age (Soguk¢am Formation). This unit is
overlain by pelagic limestone, shale, volcanogenic
sedimentary rocks and a turbiditic sequence that
includes occasional debris-flow deposits of Albian—
Late Palaeocene age (Yenipazar Formation; Duru
et al. 2007). The clasts and blocks in the debris flow
deposits are indicative of derivation from an ophiolitic
source, plus the underlying Bilecik Limestone and its
metamorphic basement. The Eocene is represented
by unconformably overlying red continental clastic
sedimentary rocks, limestones and marls.

Two different basement units are exposed
unconformably beneath the Lower Jurassic cover
units. The first, in the north, is an assemblage of
paragneiss, schist and amphibolite, which is cut
by granitoid intrusions (Gonciioglu et al. 2000;
Duru et al. 2002). This unit is termed the Central
Sakarya basement and is the subject of this study
(Ustadmer et al. 2010). The granitoid rocks (Figure
4) are also known as the Saricakaya granitoid
(Gonctioglu et al. 1996; Duru et al. 2007; Kibici et
al. 2010), the Central Sakarya granite (O. Yilmaz
1979), the Sogiit magmatics (Kadioglu et al. 1994)
and the Akgasu magmatics (Demirkol 1977). The
paragneiss-schist and amphibolitic host rocks
of the granitoid intrusions are also equivalent to
the So6giit metamorphics (Gonciioglu et al. 1996,
2000; Sentiirk & Karakose 1979, 1981). The Sogiit
metamorphics are mainly sillimanite-staurolite-
garnet-bearing paragneiss, staurolite-bearing mica
schists, muscovite-biotite schists, amphibolites,
marble and quartz schists (Gonctioglu et al. 2000).
Lens-shaped bodies of cumulate metagabbro and
meta-serpentinite also occur locally. The amphibolite
facies metamorphic rocks are cut by grey and pink
dykes and veins of granite, as exposed in the Kiiplii-
Asagikoy area (Figure 3) and the Akgasu and
Saricakaya areas (to the NE of, but outside the study
area).

The second type of basement unit in the area, of
mainly greenschist or lower metamorphic grade, is
correlated with the Triassic Niliifer and Hodul units
of the Karakaya Complex in the type area of the Biga
Peninsula (Figure 2).

The contact of the Central Sakarya basement with
the Karakaya Complex is a north-dipping mylonitic
shear zone (Y. Yilmaz 1977; Kadioglu et al. 1994).
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Figure 3. Geological map of the study area, compiled from Y. Yilmaz (1979), Kadioglu et al. (1994) and Duru et al. (2002, 2007).

pre-Lower Carboniferous

910



PA. USTAOMER ET AL.

Previous Work on the Sampled Units

Y. Yilmaz (1977) distinguished five mappable units of
granitoid rocks in the Central Sakarya basement near
Bilecik-Sogiit, based on field relations, petrographic
and geochemical features (Figure 4). These are the
Kiire aplitic granite, the Hamitabat porphyritic
microgranite, the Borcak granodiorite, the Calti
gneissic granite and the Yenikoy migmatite. Kadioglu
et al. (1994) similarly divided the granitoid into three
mappable units (Figure 4). Both of these studies
identified north-dipping tectonic contacts between
the individual granitoid units. In contrast, more
recent MTA mapping (Duru et al. 2007) depicted
a single granitoid body, termed the Saricakaya
granitoid.

Kadioglu et al. (1994) divided the S6giit magmatics
into three units in their study area north of Sogiit.
From south to north, in structurally ascending order,
these are the Siraca granodiorite (equivalent to the
Borgak granodiorite of Y. Yilmaz 1977), the Borgak
granite (equivalent to the Calt1 gneissic granite of Y.
Yilmaz 1977) and the Calt1 magmatics (equivalent
to Yenikdy migmatite of Y. Yilmaz 1977). The Siraca
granodiorite is medium grained, with oligoclase +
quartz + muscovite + sericite and minor amounts
of biotite + actinolite + epidote + zircon + apatite
+ limonite. The Borgak granite is a well-foliated
intrusion with quartz + oligoclase + orthoclase +
muscovite + chloritised biotite + limonite. The Calt1
magmatics display compositional variation ranging
from diorite-gabbro in the centre to granodiorite and
granite at the margins. Various aplitic and pegmatitic
dykes cut the Calt1 magmatics.

Based on major-element oxide analysis of a small
number of samples, Kadioglu et al. (1994) inferred
that the Soglit magmatics are of calc-alkaline and
S-type composition and that they were emplaced in
a collisional setting. In contrast, Y. Yilmaz (1977)
suggested an arc-type setting based on major-element
oxide analysis, an interpretation that was supported
by Gonciioglu et al. (1996, 2000). Recently, Kibici
et al. (2010) reported the results of a detailed major,
trace and rare earth-element study of the Sogiit
magmatics from around Saricakaya town in the east
(outside our study area). The geochemistry of these
rocks is indicative of a hybrid, arc-type/lower crustal
origin. The authors infer that lower arc crust was

underplated with subduction-related melts to form
the granitoid intrusions.

Previously, Cogulu et al. (1965) and Cogulu
& Krumennascher (1967) obtained U-Pb zircon
evaporation and K/Ar biotite ages of 290 Ma and
290+5 Ma, respectively for the Sogiit magmatics.
AL Okay et al. (2002) dated amphiboles from the
granitoid using the Ar-Ar technique and obtained an
age of 27242 Ma.

Petrography of the Dated Samples
Calt: Granitoid

The Calt1 granitoid is a granodiorite-tonalite made
up of quartz + plagioclase + alkali feldspar + biotite +
chlorite + opaque minerals. The rock fabric exhibits a
preferred orientation characterised by an alignment of
mica. Quartz was deformed under ductile conditions
and reveals evidence of high-temperature grain-
boundary migration. Large quartz crystals exhibit
‘chessboard’ patterns. Plagioclase is the dominant
feldspar mineral and exhibits well-preserved
magmatic zoning and mechanical twinning. The
cores of the crystals are calcium-rich and more
altered than their rims, which is attributed to low-
temperature hydrothermal alteration. Sericitization is
ubiquitous. Abundant reddish brown biotite is partly
to completely chloritized. Biotite crystals commonly
contain opaque mineral inclusions. Reddish brown
biotite (iron-rich) is commonly replaced by chlorite
with pale green or bluish green interference colours.
An augen texture is developed with quartz and
feldspars surrounded by micas. The fabric of the
granitoid is interpreted to have resulted from high-
temperature deformation within a relatively low-
strain stress environment.

Kiiplii Granitoid

The Kiiplii granitoid is made up of quartz + alkali
feldspar + plagioclase + hornblende * biotite *
chlorite + epidote * sericite + calcite + opaque.
The crystal size is finer than in the Calt1 granitoid
and deformation is more intense. Quartz is almost
completely recrystallized so that any pre-existing
chessboard pattern was destroyed. Some feldspars
are also recrystallized. Plagioclase crystals exhibit
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Figure 4. Subdivisions of the S6giit magmatics according to different authors. See text for further information.

a magmatic zonation and deformation twins are
quite common. Albite-pericline twins occur locally.
Primary magmatic features are preserved despite
the high-temperature deformation. The epidote,
calcite and sericite resulted from low-temperature
hydrothermal alteration.

Borc¢ak Granitoid

The Borgak granitoid is a granodiorite composed
of quartz + alkali feldspar + plagioclase + biotite +
hornblende + epidote + sericite + opaque minerals.
Quartz is well preserved and shows a chessboard
pattern. Quartz is deformed by grain-boundary
migration, similar to the Calt1 granitoid. A penetrative
fabric (e.g., foliation) is absent, in contrast to the two
granitic bodies described above. Plagioclase exhibits
deformation twins. The crystal cores are strongly
altered whereas the rims are less altered. The main
mafic minerals present are biotite and amphibole.
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The biotite is locally deformed with the development,
for example, of kink banding.

Sillimanite-Garnet Schist

The host rock of the Kiiplii granitoid is made up
of quartz + mica (biotite and muscovite) + garnet
+ feldspars + sillimanite. Quartz crystals again
exhibit chessboard deformation. Primary staurolite
is pseudomorphed by muscovite. Secondary
rosette-shaped biotite crystals are likely to have
formed in response to contact metamorphism.
Biotite is commonly replaced by white mica, which
is indicative of retrograde metamorphism. Fine-
grained sillimanite fibres are intergrown with biotite.

U-Pb Zircon Dating

Three samples of granitoid rocks from the Central
Sakarya basement and one sample from the host
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schists were selected for dating. Zircons were
separated from the samples using standard methods
(i.e. crushing, milling, magnetic separation, heavy
liquid separation and hand-picking under a
binocular microscope). One hundred zircon grains
were separated from the schist sample, eighty-nine of
which were analysed.

Ion Microprobe Analytical Method

The U/Pb ion probe dating of the zircons was carried
using a CAMECA ims-1270 ion microprobe at the
Edinburgh Ion Microprobe Facility (EIMF), in the
Material and Micro-Analysis Centre (EMMAC) of
the School of GeoSciences, University of Edinburgh
(UK). The zircons were analysed using a ~4-7nA O
primary ion source with 22.5 keV net impact energy.
The beam was focused using Kohler illumination (~25
pm maximum dimension) giving sharp edges and flat
bottom pits. The effects of peripheral contamination
were minimised by a field aperture that restricted the
secondary ion signal to a ~15 um square at the centre
of the analysis pit.

A 60 eV energy window was used together with
mass spectrometer slit widths to achieve a measured
mass resolution of >4000R (at 1% peak height).
Oxygen flooding on the surface of the sample
increased the Pb ion yield by approximately a factor
of two compared to non-flooding conditions. Prior
to measurement, a 15-um raster was applied on the
sample surface for 120 seconds to remove any surface
contamination around the point of analysis (total
diameter of cleaned area ~40 pum).

The calibration of Pb/U ratios followed procedures
employed by SIMS dating facilities elsewhere
(SHRIMP or Cameca ims-1270). This is based on
the observed relationship between Pb/U and the
ratios of uranium oxides to elemental uranium (e.g.,
Compston et al. 1984; Williams & Claesson 1987;
Schuhmacher et al. 1994; Whitehouse et al. 1997;
Williams 1998). However, as noted by Compston
(2004) the addition of UO, can improve the precision
of measurement. The relationship between In(Pb/U)
vs. In(UO,/UO) is employed in preference to the
conventional In(Pb/U) vs In(UO/U) or In(Pb/U)
vs In(UO,/U) methods and results in an increased
within-session reproducibility of our own analyses
of the standard by approximately a factor of two. A

slope factor for In(Pb/U) vs In(UO,/UO) of 2.6 was
used for all zircon calibrations.

U/Pb ratios were calibrated against measurements
of the Geostandards 91500 zircon (Wiedenbeck et
al. 1995: ~1062.5 Ma; assumed 2*Pb/**U ratio=
0.17917), which is measured after each three to four
unknowns. Measurements over a single ‘session’
(a period in which no tuning or changes to the
instrument took place) give a standard deviation on
the Pb/**U ratio of individual repeats of 91500
of about 1% (1s). Fast analyses using a secondary
standard (Temora-2) were performed and the same
age (within error) is obtained.

Th/U ratios in unknown zircons were calculated
by reference to measurements of Th/U and **Pb/***Pb
on the 91500 standard, assuming closed system
behaviour. Element concentrations were determined
based on observed oxide ratios of the standard (UO,/
Zr,0, and HfO/Zr,0; assuming U= 81.2 ppm, Hf =
5880 ppm).

Common Pb contribution to analyses is primarily
assumed to result from surface contamination of the
sample by modern-day common Pb. A correction for
a mass fractionation of 2%o /mass unit was initially
made, followed by a linear correction for the intensity
of drift on all masses with time. To further reduce
possible near-surface contamination of common Pb
(following exclusion of the first five cycles through
the masses) the average ratios were calculated from
the remaining 15 cycles. The total time for each
analysis was approximately 27 minutes.

The uncertainty of the Pb/U ratio includes an
error based on the observed uncertainty from
each measured ratio. This is generally close to that
expected from counting statistics. However, observed
uncertainty of the U/Pb ratio of the standard
zircon is generally an additional 0.8% in excess of
that expected from counting statistics, alone. This
is assumed to be a random error (see Ireland &
Williams 2003) that has been propagated in both
standards and unknowns together with the observed
variation in Pb/U ratios measured for each analysis
(typically close to the counting errors). Uncertainties
on ages quoted in the text and in tables for individual
analyses (ratios and ages) are at the 1s level. Plots and
age calculations have been made using the computer
program ISOPLOT/EX v3 (Ludwig 2003).
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In the exploration, or fast analysis, mode (7
minute analyses) the pre-sputter was limited to 60
seconds and measurements were limited to peaks
for Zr 0, all four lead isotopes, plus ThO2 and U0,
Only 8 cycles were measured and no cycles were
excluded. Approximately 10 unknowns were run
between each measurement of the 91500 standard.
U/Pb ratios were determined using Pb/UO, alone
and assumed constant primary and secondary
beam conditions between each measurement of
the standard. In reality the Pb/UO, ratios were
sufficiently stable that unknowns could be compared
to the average of all standards run over two separate
analytical sessions. Whilst counting errors for the U/
Pb ratio were generally between 0.5 and 1.0%, the
reproducibility of the standard was approximately
1.0% in excess of that expected and the uncertainty
quoted for the unknown. The ThO,/UO, ratios were
used to determine Th/U ratios assuming a closed
system behaviour of the combined 91500 standards.
The average measured ThO,/UO, ratio for the 91500
standard was within 2% of the Th/U ratio calculated
from the measured 2*Pb/**°Pb ratios (and the known
age of the standard). Common lead was corrected
where the measured **Pb exceeded three counts:
20/Pb measured was generally <4 ppb.

Results
Metasedimentary Rock

The detrital zircons that were separated from the
metasedimentary schist are mostly colourless,
although some are brown or reddish. Most of the
zircons are subhedral but a few are euhedral or well
rounded. Internal structures are variable, as revealed
by cathodoluminiscence (CL) images (Figure 5). Most
of the zircon grains display oscillatory zoning, typical
of igneous zircons. The analysed Th/U ratios of the
zircons are > 0.1, consistent with an igneous origin.
A single zircon has a Th/U ratio of 0.01, suggestive of
a metamorphic origin (Teipel et al. 2004).

The resulting ion-probe U-Pb ages of eighty-nine
detrital zircons that were analysed range from 551
Ma (Ediacaran) to 2738 Ma (Neoarchean) (Table
1). Eighty five percent of the ages are 90-110%
concordant. Zircon populations cluster at ~550-750
Ma (28 grains), ~950-1050 Ma (27 grains) and ~2000
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Ma (5 grains), with smaller groupings at ~800 Ma
and ~1850 Ma (Figure 5). The youngest concordant
zircon age is 551 Ma (Figure 6).

Magmatic Rocks

Euhedral zircons from the three intrusions show
marked internal differences. In particular, the zircons
from the Borgak granitoid sample show wider
oscillation bands (Figure 7a) than those from the
Kiiplii granitoid (Figure 7b). In contrast, the zircons
from the Calt1 metagranitoid exhibit inherited cores
that are rimmed by fine oscillatory zoned domains
(Figure 7c). The rims are relatively dark compared to
those from the Kiiplii granitoid.

The Calt1 granitoid is dated at 327.2+1.9 Ma
(Figure 8a, Table 2). The inherited core ages are mostly
discordant except for one that is 99% concordant
(482 Ma; Tremadocian). The Kiiplii granitoid yielded
a slightly younger age of 324.3+1.5 Ma (Figure 8b,
Table 2), compared to the Calt1 granitoid. The Borgak
granitoid, in contrast, yielded a significantly younger
ageo0f319.5+1.1 Ma (Figure 8¢, Table 2). The granitoid
bodies, therefore, appear to have been emplaced over
approximately eight million years during late Early
Carboniferous (Visean to Serpukhovian) time.

Discussion
Age of the Central Sakarya Basement

The morphologies of the zircons separated from
the dated metasedimentary rocks (Figure 5) are
significant for an interpretation of the age results.
Some of these are well-rounded to sub-rounded,
suggesting prolonged sedimentary transport. The
internal structure of these zircons is homogenous,
patchy and weakly zoned. Thin oscillatory rims are
seen in some of these grains (Figure 5). Many of the
well-rounded zircons gave ages of 0.95 to 1.05 Ga,
whereas some of the other well-rounded grains gave
ages of ~0.75 Ga and 1.7 Ga. In addition, the sub-
rounded zircons gave ages mainly between 0.6 and
0.7 Ga, with some from 1.8 to 2.2 Ga and a few from
0.8 to 1.2 Ga. In contrast, a third group of mostly
euhedral zircons yielded ages of 0.68 to 0.7 Ga and
1.8 to 2.1 Ga. The euhedral shape is consistent with a
relatively local source without prolonged sedimentary
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Figure 5. Selected cathodoluminescence images of the zircon grains analysed from the country rock

schist sample. The zircons fall into three groups based on degree of roundness. Locations of
the Ion Probe analysis spots and the corresponding ages are indicated. Note that the Kibaran-
aged zircons (0.9-1.1 Ga) form the most prominent population in the groups of well-rounded
and sub-rounded grains. 2*Pb/>*U is used for ages < 1000 Ma and *”’Pb/**U for > 1000 Ma in
constructing the diagram. See text for discussion.
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207Pb /235U
Figure 6. Probability density distribution (upper) and concordia diagram (lower) of the
detrital zircon ages obtained during this study from the country rock schist
sample. See text for discussion. The dark grey field on the probability density
distribution diagram shows the discordant ages. **Pb/**U is used for ages <
1000 Ma and *"Pb/**U for > 1000 Ma in constructing the diagram.
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Ion Probe analysis spots and the corresponding ages are also indicated. (a) Borgak, (b) Kiiplii and
(c) Calt1 metagranitoids.
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Figure 8. Concordia diagrams of Bor¢ak, Kipli and Calt1
metagranitoids. See text for discussion.

transport. The zircons in this group commonly
display concentric oscillatory zoning although patchy
and homogenous varieties also occur (Figure 5).

The maximum depositional age of the
metasedimentary rock is 551 Ma, based on the
concordant age of the youngest zircon in the sample.
The 327 Ma (Visean) age of the oldest zircons from
the granitoid sample further constrains the age of
deposition as between Ediacaran (551 Ma) and
Visean (327 Ma); i.e. probably Early Palaeozoic.

The possible source area of the metasedimentary
rock can be inferred by comparison with the reported
ages of major cratons and peri-Gondwanian terranes.
In Figure 9, the source ages of major cratons are
placed to the left, the North African basins in the
middle, while several Peri-Gondwanan terranes are
shown to the right of the diagram. Our detrital zircon
data are shown to the right for comparison.

In our data the most prominent population is
of late Neoproterozoic age. This suggests derivation
from a Gondwana-related source area, either related
to the Cadomian-Avalonian magmatic arc, from
550-650 Ma, or from within the East African orogen
(equivalent to the Mozambique belt; Stern 1994) from
550-850 Ma (Nance et al. 2008). Several alternative
potential source areas were not magmatically active
during these time periods. Specifically, Baltica and
Siberia (equivalent to Angara) are not believed
to have been magmatically active during the late
Neoproterozoic (Meert & van der Voo 1997; Greiling
et al. 1999; Hartz & Torsvik 2003; Meert & Torsvik
2003; Murphy et al. 2004a, b; Sunal et al. 2006; see
Figure9). The Avalonian terranes, additional potential
source regions, are characterised by Mesoproterozoic
ages (Figure 9; Nance & Murphy 1994; Winchester
et al. 2006). However, the absence of 1.2-1.6 Ga ages
in our data set makes an Avalonian affinity unlikely.

The second largest population in our data set
is early Neoproterozoic (0.9-1.0 Ga). Cadomian
terranes are characterised by a reported absence
of Grenvillian ages (Fernandez-Suarez et al. 2002;
Gutiérrez-Alonso et al. 2003). The presence of
Kibaran or Grenvillian aged zircons in our data
set, therefore, differs significantly from the known
age ranges of Cadomian terranes (e.g., Armorican
Terrane Assemblage; Figure 9).

An alternative is a source within the Arabian-
Nubian shield of northeast Gondwana. This more
probable because the ‘Minoan terranes that are
believed to have originated from the Arabian-
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Figure 9. Distribution of detrital zircon ages and/or igneous events known from the major cratons, epi-cratonic basins and peri-
Gondwanan terranes. Data sources: Nance & Murphy (1996); Friedl et al. (2000, 2004); Strnad & Mihaljevic (2005); Slama
et al. (2008); Linnemann et al. (2004, 2008); Murphy et al. (2004a, b, ¢); Anders et al. (2006); Zulauf et al. (2007); Sunal et
al. (2008); PA. Ustadmer et al. (2011); Drost et al. (2011) and references therein. The numbers to the right of the bars for
the Istanbul terrane and the Central Sakarya basement refer to the number of zircons in the large zircon populations. NP-
Neoproterozoic, BNS- Benin-Nigeria Shield, TS- Tuareg Shield.

Nubian Shield, close to the Afro-Arabian margin, are ~ and Israel (Avigad et al. 2003). Sandstones of this age
characterised by Grenvillian/Kibaran ages (Zulauf et~ are also known more locally in the Geyikdag Unit of
al. 2007). The Arabian-Nubian Shield is interpreted ~ the Tauride-Anatolide Platform (i.e. the Seydisehir
as a collage of arc-type and ophiolitic terranes that Formation; Dean & Monod 1970), although no
were amalgamated during the assembly of eastern zircon age dating is currently available for these. The
Gondwana (Beeri Shlevin et al. 2009 and references  zircon populations in the Elat sandstones (Kolodner
therein). et al. 2006) are notably similar to our results from the

Cambrian-Ordovician sandstones were deposited ~ Central Sakarya basement (Figure 9), as highlighted
on the northern periphery of the Arabian-Nubian by a density probability diagram (Figure 10). The
Shield (e.g., Elat sandstone), as exposed in Jordan sediments from both our area and the Elat sandstones
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Figure 10. Relative probability histograms of detrital zircon
ages from the Central Sakarya basement, compared
with those from the Cambrian and Ordovician
sedimentary rocks in Jordan (Kolodner et al
2006). Note the similarity of the histograms, with
overlapping peaks of similar ages. See also Figure 11.

are characterised by the Late Neoproterozoic (0.5-
0.75 Ga; 0.8 Ga) and Early Neoproterozoic/late
Mesoproterozoic (0.9-1.1 Ga) ages. Both areas are
also characterised by similar magmatically quiescent
periods. In addition, the two large zircon populations
(Figure 11) in both the Central Sakarya and Elat
source regions exhibit very similar peak magmatic
periods (550 Ma-1.1. Ga). Specifically, peak magmatic
periods are dated at 571, 622, 684, 742, 965 and 1041
Ma for the Central Sakarya basement, whereas those
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Figure 11. Expanded relative probability histograms of
concordant detrital zircon ages < 1.2 Ga from the
Central Sakarya basement compared with the
Cambrian-Ordovician sediments from Jordan. Note
that the peak magmatic periods encountered in both
areas are similar and that the Kibaran-aged zircon
population is relatively more pronounced in the
Central Sakarya basement.



PA. USTAOMER ET AL.

for the Elat sandstone are 574, 638, 678, 750, 974 and
1051 Ma (Kolodner et al. 2006).

The Kibaran ages (0.9-1.1 Ga) from the Cambro-
Ordovician Elat sandstone have been considered
to be enigmatic because of an apparent absence
of any suitable nearby source area (Avigad et al.
2003; Kolodner et al. 2006). A Kibaran-aged zircon
population becomes more pronounced upwards in
the Elat sandstone succession. Kibaran-aged zircons
are very marked in our sample, forming ~35% of
the total zircon population. There are two different
interpretations about these zircons, either that they
are very far travelled or more locally derived. A source
area >3000 km to the south of the Levant region has
been suggested, either Burundi-Rwanda (Cahen
et al. 1984; Kolodner et al. (2006), or the flanks of
Mozambique belt in southeast Africa (Kroner 2001).
In this scenario, Neoproterozoic glaciers could have
transported large amounts of detritus northwards,
followed by fluvial reworking and final deposition as
the Cambro-Ordovician Elat sandstone (Avigad et
al. 2003; Kolodner et al. 2006). Alternatively, a much
more proximal source of sand existed. For example,
suitable protoliths exist in the Negash-Shiraro and
Sa’al units of the present-day Sinai Peninsula, which
then formed part of the northeastern margin of the
northwest Gondwana continent (Beeri Shlevin et
al. 2009). Our Kibaran-age zircon grains are mostly
well rounded, consistent with either fluvial or aeolian
transport (either single or multi-cycle erosion/
deposition). Purely glacial transport can be excluded
as this would not by itself result in well-rounded
zircons. Texture alone cannot distinguish relatively
local (up to hundreds of kilometres) from remote
(~3000 km) sources. However, a relatively local
source (e.g., Taurides/Levant) seems probable.

Timing of Rifting from Source Continent

There are two alternatives for the time of rifting of the
Central Sakarya basement terrane, assuming a source
area in northeast Gondwana near the Arabian-
Nubian shield.

The first involves Early Palaeozoic rifting; i.e.
relatively early compared to the ‘Minoan terranes’ of
the Eastern Mediterranean region (e.g., Menderes,
Crete, Bitlis) that rifted in Permo-Triassic time.
In this case the Central Sakarya basement drifted

northwards and accreted to the south-Eurasian
margin, resulting in the observed amphibolite facies
metamorphism during the Late Palaeozoic Variscan
orogeny. The Early Carboniferous granitoids might
then have formed in response to slab break-off or
delamination. Orogenic collapse or erosion could
then have allowed shallow-marine sediments to be
deposited on the Central Sakarya basement during
Late Carboniferous-Permian time. Similar clastic
sediment are inferred to unconformably overlie the
paragneiss of the Pulur and Artvin basement units
in the Eastern Pontides (A.I. Okay & Sahintiirk
1997) from which zircon age populations similar to
ours have been reported (T. Ustadmer et al. 2010).
Northward subduction of Palaeotethys beneath
the Sakarya Continent then allowed the Karakaya
subduction-accretion complex to be assembled along
the southern margin of the Sakarya Continent. The
arrival of continental fragments and seamounts
resulted in regional deformation and metamorphism
during latest Triassic time (Pickett & Robertson
1996; A.I. Okay 2000; Robertson & Ustadmer 2011).
This was, in turn, followed by the deposition of Early
Jurassic to Upper Cretaceous cover units (Y. Yilmaz
et al. 1997).

In a second model, rifting from the Arabian-
Nubian Shield was delayed until Late Palaeozoic
or Early Mesozoic time. In this case, the Early
Carboniferous granitoids could represent arc
magmatism along the north-Gondwana margin
(Gonctioglu et al. 1996; Kibici et al. 2010). The
Carboniferous amphibolite facies metamorphism
could then be attributed to an (unspecified)
collisional event. This would have followed by rifting,
drifting and accretion to the south-Eurasian margin,
either during Permian or Triassic time, prior to
or during the assembly of the Karakaya Complex.
However, there are several problems with the second
model. First, there is no known Permian subduction-
accretion complex to the north of the Central Sakarya
basement, as implied by this interpretation. Secondly,
there is no evidence of comparable Carboniferous
Barrovian-type metamorphism in other ‘Minoan
terranes’ in the region (e.g., Bitlis massif; Anatolide-
Tauride platform).

In summary, we favour the first tectonic model
involving rifting from northeast Gondwana during
the Early Palaeozoic, followed by accretion to Eurasia
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by Late Palaeozoic time. More data are needed to
chart the path of the Sakarya terrane in more detail.

Comparison with Neighbouring Terranes

The adjacent Istanbul terrane in the northwest
Pontides (Figures 1 & 2) has been inferred to have
a source in the ‘Amazonian-Avalonian’ region of
Gondwana (Kalvoda 2001; Kalvoda et al. 2003;
Oczlon et al. 2007; A.L. Okay et al. 2008b; Winchester
et al. 2006; Bozkurt et al. 2008; P.A. Ustadmer et al.
2011). This prompts a comparison of our zircon data
set from the Sakarya basement.

U-Pb detrital zircon data are available for
clastic sedimentary rocks of Early Ordovician and
Early Carboniferous (Tournesian-Visean?) ages,
representing the lower and uppermost parts of
the Palaeozoic stratigraphy of the Istanbul terrane
(PA. Ustadmer et al. 2011; N. Okay et al. 2011).
The Lower Carboniferous turbidites of the Istanbul
terrane display two zircon populations; one Late
Neoproterozoic and the other Late Devonian-Early
Carboniferous. The Central Sakarya basement
is unlikely to be the source of the Carboniferous
sediments of the Istanbul terrane because 0.9-1.2
Ga-age zircons, the largest zircon population in the
Central Sakarya basement, are totally absent from the
Istanbul terrane. Thus, two diffent terranes should
have existed, one inferred to have an Amazonian-
Avalonian source region (Istanbul terrane) and the
other a northeast African source region (Sakarya
terrane). During Early Carboniferous time, the two
terranes were presumably located along different
parts of the south Eurasian margin or were separated
by unspecified oceanic or continental units. N. Okay
etal. (2011) infer that the Istanbul terrane was located
along the southern margin of Europe to the west of
its present position, within central Europe, during
Early Carboniferous time. An arc terrane derived
from the Armorican source continent is inferred to
have collided with the Eurasian margin in this area,
resulting in the Early Carboniferous (Tournaisian)
turbidites being deposited. The Istanbul terrane
subsequently migrated eastwards to the Black Sea
area, reaching its present position by the Cretaceous
when the Western Black Sea basin rifted. In contrast,
the Sakarya terrane and its counterparts further east
(Pulur and Artvin units), although also Gondwana
derived, accreted further east along the Eurasian
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margin compared to the position of the Istanbul
terrane and subsequently remained in this region.

Conclusions

The age and tectonic history of crystalline basement
units in the Sakarya Zone, N Turkey is constrained
utilising field, petrographic and ion-probe studies.

Detrital zircons separated from a metasedimentary
sillimanite-garnet schist range from 551 Ma
(Ediacaran) to 2738 Ma (Neoarchean). The zircon
populations cluster at ~550-750 Ma, ~950-1050 Ma
and ~2000 Ma, with smaller groupings at ~800 Ma
and ~1850 Ma. The presence of a Kibaran (0.9-1.1
Ga) zircon population suggests an affinity with
the Arabian-Nubian Shield. The detrital zircon
age spectrum of the Cambrian-Ordovician Elat
sandstone that was deposited on the northern
periphery of the Arabian-Nubian Shield is similar to
that of the Sakarya basement.

The Central Sakarya metamorphic basement
is cut by a number of granitic intrusions (~ Sogiit
magmatics), three of which were dated during
this study. An alkali feldspar-rich granite (Kiiplii
granitoid) yielded an age of 324.3+1.5 Ma, while
a biotite granite (Calt1 granitoid) was dated at
327.2+1.9 Ma. Another granitic body with biotite
and amphibole (Borgak granitoid) yielded a
significantly younger age of 319.5+1.1 Ma. Late Early
Carboniferous granitic magmatism could, therefore,
have been active in the Central Sakarya terrane for
up to ~8 Ma. The granitic magmatism is likely to
relate to subduction or collision of a Central Sakarya
terrane with the Eurasian margin.

The Central Sakarya basement terrane is
interpreted as a peri-Gondwanan ‘Minoan terrane’
that rifted from northeast Africa. Rifting probably
took place during the Early Palaeozoic in contrast to
other terranes that rifted during the Early Mesozoic.
The Central Sakarya terrane accreted to the Eurasian
margin during the Early Carboniferous, where
it underwent Barrovian-type amphibolite facies
metamorphism during the Variscan orogeny. Post-
collisional felsic melts intruded the terrane during
early Late Carboniferous time. The zircon age
population of the Central Sakarya terrane differs
from the Istanbul terrane in that 0.9-1.2 Ga-age
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zircons are absent. This is consistent with the two
terranes being still far apart during Late Palaeozoic
time.
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