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 Abstract: Ion probe dating is used to determine the relative ages of amphibolite-facies meta-clastic sedimentary rocks 

and crosscutting granitoid rocks within an important ‘basement’ outcrop in northwestern Turkey. U-Pb ages of 89 

detrital zircon grains separated from sillimanite-garnet micaschist from the Central Sakarya basement terrane range 

from 551 Ma (Ediacaran) to 2738 Ma (Neoarchean). Eighty fi ve percent of the ages are 90–110% concordant. Zircon 

populations cluster at ~550–750 Ma (28 grains), ~950–1050 Ma (27 grains) and ~2000 Ma (5 grains), with smaller 

groupings at ~800 Ma and ~1850 Ma. Th e fi rst, prominent, population (late Neoproterozoic) refl ects derivation from a 

source area related to a Cadomian-Avalonian magmatic arc, or the East African orogen. An alternative Baltica-related 

origin is unlikely because Baltica was magmatically inactive during much of this period. Th e early Neoproterozoic 

ages (0.9–1.0 Ga) deviate signifi cantly from the known age spectra of Cadomian terranes and are instead consistent 

with derivation from northeast Africa. Th e detrital zircon age spectrum of the Sakarya basement is similar to that of 

Cambrian–Ordovician sandstones along the northern periphery of the Arabian-Nubian Shield (Elat sandstones). A 

sample of crosscutting pink alkali feldspar-rich granitoid yielded an age of 324.3±1.5 Ma, whilst a grey, well-foliated 

biotite granitoid was dated at 327.2±1.9 Ma. A granitoid body with biotite and amphibole yielded an age of 319.5±1.1 

Ma. Th e granitoid magmatism could thus have persisted for ~8 Ma during late Early Carboniferous time, possibly related 

to subduction or collision of a Central Sakarya terrane with the Eurasian margin. Th e Central Sakarya terrane is likely to 

have rift ed during the Early Palaeozoic; i.e. relatively early compared to other Eastern Mediterranean, inferred ‘Minoan 

terranes’ and then accreted to the Eurasian margin, probably during Late Palaeozoic time. Th e diff erences in detrital 

zircon populations suggest that the Central Sakarya terrane was not part of the source area of Lower Carboniferous 

clastic sediments of the now-adjacent İstanbul terrane, consistent with these two tectonic units being far apart during 

Late Palaeozoic–Early Mesozoic time. 

Key Words: Central Sakarya basement, Ion Probe dating, zircon, Carboniferous, NE Africa

Orta Sakarya Temelinin İyon Prob U-Pb Yaşlandırması:

Geç Erken Karbonifer Yaşlı Yitim/Çarpışma İle İlişkili Granitik Mağmatizma ile

Kesilen Gondwana-Kenarı Kökenli Bir Blok

Özet: Kuzeybatı Anadolu’daki önemli bir ‘temel’ yüzeylemesinde yeralan amfi bolit fasiyesi meta-kırıntılı sedimenter 

kayalar ile bunları kesen granitoidik kayaların göreli yaşlarını saptamak için iyon prob yaşlandırması yapılmıştır. Orta 

Sakarya temelindeki bir sillimanit-granat mika şistden ayrılan 89 kırıntılı zirkon mineralinin U-Pb iyon-prob yaş tayini 

551 My (Ediyakaran)’dan 2738 My (Neoarkeen)’a kadar yaşlar vermiştir. Elde edilen yaşların yüzde seksenbeşi %90–

110 konkordandır. Zirkon popülasyonları ~550–750 My (28 tane), ~950–1050 My (27 tane) ve ~2000 My (5 tane), 

daha küçük bir grup ise ~800 My ve ~1850 My’da kümelenmektedir. İlk, baskın popülasyon (geç Neoproterozoyik) 

Kadomiyen–Avalonya mağmatik yayı veya Doğu Afrika orojeni ile ilişkili bir kaynak alandan beslenmeyi yansıtır. 

Alternatif olarak Baltık kalkanı ile bir bağlantı çok zayıf bir olasılıktır. Çünkü Baltık kalkanı bu dönemin büyük bir 

bölümünde mağmatik açıdan pasif kalmıştır. Erken Neoproterozoyik yaşları (0.9–1.0 Gy), Kadomiyen bloklarındaki 

bilinen yaş aralığından önemli ölçüde sapma gösterir ve bunun yerine kuzeydoğu Afrika’nın bir bölümünden beslenme 
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Introduction

U-Pb detrital zircon age populations in terrigenous 
sedimentary or metasedimentary rocks can be used 
to infer the source regions of exotic terranes in 
orogenic belts. Th is can be achieved by comparing the 
ages of tectono-thermal events recorded in the zircon 
grains with the source ages of the potential source 
cratons. U-Pb detrital zircon ages can also provide 
a maximum age of deposition for clastic sediments, 
which is particularly useful where the rocks are 
metamorphosed or unfossiliferous. Th e dates of 
cross-cutting igneous intrusions can be combined 
with the ages of detrital zircons to provide additional 
constraints on the timing of deposition. We use this 
approach here to shed light on the potential source 
region of the Central Sakarya basement (~Sakarya 
Continent) in N Turkey, where granitoid rocks cut 
previously undated schists and paragneisses.

Turkey is made up of a mosaic of continental 
blocks separated by dominantly Late Cretaceous–
Cenozoic ophiolitic suture zones (Şengör & Yılmaz 
1981; Okay & Tüysüz 1999; Figure 1). In particular, 
the İzmir-Ankara-Erzincan suture zone separates the 
Triassic rocks of the Pontides to the north (correlated 
with Eurasia) from the Anatolides and Taurides to 
the south (correlated with Gondwana). Th e Pontide 
tectonic belt of northern Turkey is itself a composite 
of several terranes. Two major continental blocks 
are exposed in the northwest Pontides, namely the 
Istranca Massif and the İstanbul terrane (Figures 
1 & 2). Th e Istranca Massif comprises a Palaeozoic 
metamorphic basement, unconformably overlain 
by Triassic–Jurassic metasedimentary rocks (A.I. 
Okay et al. 2001a; Sunal et al. 2011). Th e adjacent 

İstanbul terrane exposes an unmetamorphosed, 

transgressive sedimentary succession of Ordovician 

to Early Carboniferous age, with an unconformable 

Triassic sedimentary cover (Abdüsselamoğlu 1977; 

Şengör 1984; Özgül 2012). Th e Palaeozoic succession 

of the İstanbul terrane begins with Ordovician 

red continental clastic rocks and shallow-marine 

sedimentary rocks. Platform sedimentation persisted 

until the Late Devonian when rapid drowning of 

the platform was associated with the deposition of 

pink nodular limestones coupled with intercalations 

of radiolarian chert (Şengör 1984; T. Ustaömer & 

Robertson 1997; P.A. Ustaömer et al. 2011; N. Okay 

et al. 2011; Özgül 2012). Sedimentation continued 

with deposition of black ribbon cherts containing 

phosphatic nodules and this was followed by a Lower 

Carboniferous turbiditic sequence (Şengör 1984; N. 

Okay et al. 2011; Özgül 2012).

Th e more easterly part of the Pontide tectonic 

belt includes the Sakarya Zone (Okay & Tüysüz 

1999), also known as the Sakarya Composite 

Terrane (Göncüoğlu et al. 1997). Th e Sakarya 

Zone is characterised by a Lower Jurassic to Upper 

Cretaceous sedimentary succession that is interpreted 

to record the development of a south-facing passive 

margin (Şengör & Yılmaz 1981; Y. Yılmaz et al. 1997). 

Th e passive margin switched to become part of a 

regional Andean-type active margin during the Late 

Cretaceous (Y. Yılmaz et al. 1997). A regional Mid-

Eocene unconformity above the Mesozoic succession 

is interpreted as the result of a collision of the Sakarya 

Zone with the Anatolide-Tauride Platform to the 

south (Y. Yılmaz et al. 1997; A.I. Okay & Whitney 

2011).

ile uyumludur. Bu çalışmadan elde edilen Sakarya temelinin taşınmış zirkon yaş aralığı, Arap-Nubiya Kalkanının kuzey 

kenarı boyunca birikmiş Kambriyen–Ordovisyen kumtaşlarına (Elat kumtaşları) aşırı derecede benzerlik sergiler.

Orta Sakarya metamorfi k temeli granitoyidik intrüzyonlar ile kesilir. Pembe, alkali feldspatca zengin bir granitoyid 

324.3±1.5 My yaşı; gri, foliasyonlu biyotit granitoid 327.2±1.9 My yaşı vermiştir. Biyotit ve amfi bol içeren bir diğer 

granitoyid kütlesinden ise 319.5±1.1 My yaşı elde edilmiştir. O nedenle, yitim veya Orta Sakarya blokunun Avrasya 

kenarına çarpışması ile ilişkili granitoyidik mağmatizmanın geç Erken Karbonifer döneminde ~8 My boyunca 

devam ettiği anlaşılmaktadır. Orta Sakarya bloku, Doğu Akdeniz bölgesindeki diğer ‘Minoan’ bloklarına göre daha 

önce, Erken Paleozoyik döneminde rift leşmiş ve daha sonra, olasılıkla Geç Paleozoyik döneminde Avrasya kenarına 

eklenmiş olmalıdır. Taşınmış zirkon topluluklarındaki farklılıklar, Orta Sakarya blokunun şu an bitişiğindeki İstanbul 

blokunun Alt Karbonifer kırıntılı sedimanları için bir kaynak alan oluşturmadığını, o nedenle bu iki tektonik birliğin 

Geç Paleozoyik–Erken Mesozoyik döneminde birbirlerinden oldukça uzak olduklarını göstermektedir.

Anahtar Sözcükler: Orta Sakarya temeli, İyon Prob yaşlandırması, zirkon, Karbonifer, KD Afrika
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Th e pre-Lower Jurassic basement of the Sakarya 

Zone is dominated by the Karakaya Complex, which is 

widely interpreted as a Triassic subduction-accretion 

complex related to northward subduction beneath a 

continental margin arc terrane (Tekeli 1981; Pickett 

& Robertson 1996, 2004; A.I. Okay 2000; Robertson 

& Ustaömer 2012). Associated metamorphosed 

continental units (e.g., Central Sakarya basement; 

Pulur Massif) are correlated with this Palaeozoic 
active margin.

Metamorphosed continental units are exposed in 
several inliers along the length of the Pontides (Figure 
1). From west to east these are the Kalabak basement 
(A.I. Okay et al. 1991; A.I. Okay & Göncüoğlu 2004; 
Pickett & Robertson 2004; Robertson & Ustaömer 
2012; Aysal et al. 2011), the Central Sakarya 

+

+

Black Sea
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F

Figure 2.  Tectonic map of NW Anatolia showing the various basement terranes of the Sakarya Zone and the Variscan continental 

units to the north (İstanbul terrane and the Istranca Massif). Th e contact between the İstanbul terrane and the Istranca 

Massif is inferred to be a right-lateral strike-slip fault zone (West Black Sea Fault: WBF), active during opening of the West 

Black Sea oceanic basin in the Late Cretaceous (A.I. Okay et al. 1994). Th e Intra-Pontide Suture Zone formed during the 

Late Cretaceous related to closure of Tethyan ocean to the south (Şengör & Yılmaz 1981; Robertson & Ustaömer 2004). Th e 

İzmir-Ankara Suture (İAS) which formed during Early Cenozoic is the most prominent suture zone in Turkey as it separates 

the Eurasian and Gondwanan terranes to the north and south (Şengör & Yılmaz 1981; Okay & Tüysüz 1999; Robertson et al. 

200  9). Inset: the main suture zones of Turkey. Modified aft er Okay 2010 and Robertson & Ustaömer 2012. Red box shows the 

location of the study area shown in Figure 3.
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basement (Y. Yılmaz 1977, 1979; Y. Yılmaz et al. 1997; 
Göncüoğlu et al. 1996) and the Pulur Massif (Figures 
1 & 2; Topuz et al. 2004; T. Ustaömer & Robertson 
2010). Smaller continental units further east include 
the Devrekani metamorphics in the Central Pontides 
(O. Yılmaz 1979; Tüysüz 1990; T. Ustaömer & 
Robertson 1993, 1997; Nzegge et al. 2006) and the 
Tokat Massif in the Eastern Pontides (Figure 1; Y. 
Yılmaz et al. 1997). Th e basement units as a whole 
are typically exposed in the hanging walls of large 
thrust sheets (Y. Yılmaz 1977; A.I. Okay & Şahintürk 
1997; T. Ustaömer & Robertson 2010), with a Jurassic 
sedimentary cover above. Two additional large 
metamorphic massifs, the Kazdağ Massif and the 
Uludağ Massif, are exposed beneath the Karakaya 
Complex in the western Pontides (Figure 2). Th e 
Uludağ (A.I. Okay et al. 2008c) and Kazdağ Massifs 
in particular still remain poorly dated (Erdoğan et al. 
2009).

Th e Kalabak basement includes cross-cutting 
granites, which are radiometrically dated as Early 
to Mid-Devonian (A.I. Okay et al. 1996, 2006; Aysal 
et al. 2011). In contrast, the Pulur Massif and the 
Devrekani metamorphics are intruded by granites 
that are dated as Early Carboniferous (Topuz et 
al. 2007, 2010; Nzegge et al. 2006; T. Ustaömer & 
Robertson 2010).

In this paper, we report new Ion Probe U-Pb 
zircon age data from the Central Sakarya basement. 
We have dated detrital zircon grains from a sample 
of sillimanite-garnet-mica schist and igneous zircons 
from three cross-cutting granitoid intrusions.

Geological Setting of Dated Lithologies

Th e study area is located between the city of Bilecik 
in the west and the small town of Söğüt in the east 
(Figures 2 & 3). Pre-Jurassic basement and a Jurassic–
Upper Cretaceous cover are well exposed along the 
Karasu and Sakarya rivers in this area (Altınlı 1973a, 
b; Demirkol 1977; Y. Yılmaz 1977, 1981; Saner 1978; 
Şentürk & Karaköse 1981; Kadıoğlu et al. 1994; Kibici 
1991, 1999; Kibici et al. 2010; Duru et al. 2007). Th e 
Jurassic–Upper Cretaceous cover begins with Lower 
Jurassic coarse clastic sedimentary rocks (Bayırköy 
Formation), which pass gradually into Jurassic–
Cretaceous neritic carbonates (Bilecik Limestone). 
Th e succession continues with diagenetic chert-
bearing pelagic limestones and marls of Callovian–

Aptian age (Soğukçam Formation). Th is unit is 
overlain by pelagic limestone, shale, volcanogenic 
sedimentary rocks and a turbiditic sequence that 
includes occasional debris-fl ow deposits of Albian–
Late Palaeocene age (Yenipazar Formation; Duru 
et al. 2007). Th e clasts and blocks in the debris fl ow 
deposits are indicative of derivation from an ophiolitic 
source, plus the underlying Bilecik Limestone and its 
metamorphic basement. Th e Eocene is represented 
by unconformably overlying red continental clastic 
sedimentary rocks, limestones and marls.

Two diff erent basement units are exposed 
unconformably beneath the Lower Jurassic cover 
units. Th e fi rst, in the north, is an assemblage of 
paragneiss, schist and amphibolite, which is cut 
by granitoid intrusions (Göncüoğlu et al. 2000; 
Duru et al. 2002). Th is unit is termed the Central 
Sakarya basement and is the subject of this study 
(Ustaömer et al. 2010). Th e granitoid rocks (Figure 
4) are also known as the Sarıcakaya granitoid 
(Göncüoğlu et al. 1996; Duru et al. 2007; Kibici et 
al. 2010), the Central Sakarya granite (O. Yılmaz 
1979), the Söğüt magmatics (Kadıoğlu et al. 1994) 
and the Akçasu magmatics (Demirkol 1977). Th e 
paragneiss-schist and amphibolitic host rocks 
of the granitoid intrusions are also equivalent to 
the Söğüt metamorphics (Göncüoğlu et al. 1996, 
2000; Şentürk & Karaköse 1979, 1981). Th e Söğüt 
metamorphics are mainly sillimanite-staurolite-
garnet-bearing paragneiss, staurolite-bearing mica 
schists, muscovite-biotite schists, amphibolites, 
marble and quartz schists (Göncüoğlu et al. 2000). 
Lens-shaped bodies of cumulate metagabbro and 
meta-serpentinite also occur locally. Th e amphibolite 
facies metamorphic rocks are cut by grey and pink 
dykes and veins of granite, as exposed in the Küplü-
Aşağıköy area (Figure 3) and the Akçasu and 
Sarıcakaya areas (to the NE of, but outside the study 
area).

Th e second type of basement unit in the area, of 

mainly greenschist or lower metamorphic grade, is 

correlated with the Triassic Nilüfer and Hodul units 

of the Karakaya Complex in the type area of the Biga 

Peninsula (Figure 2).

Th e contact of the Central Sakarya basement with 

the Karakaya Complex is a north-dipping mylonitic 

shear zone (Y. Yılmaz 1977; Kadıoğlu et al. 1994).
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Previous Work on the Sampled Units

Y. Yılmaz (1977) distinguished fi ve mappable units of 
granitoid rocks in the Central Sakarya basement near 
Bilecik-Söğüt, based on fi eld relations, petrographic 
and geochemical features (Figure 4). Th ese are the 
Küre aplitic granite, the Hamitabat porphyritic 
microgranite, the Borçak granodiorite, the Çaltı 
gneissic granite and the Yeniköy migmatite. Kadıoğlu 
et al. (1994) similarly divided the granitoid into three 
mappable units (Figure 4). Both of these studies 
identifi ed north-dipping tectonic contacts between 
the individual granitoid units. In contrast, more 
recent MTA mapping (Duru et al. 2007) depicted 
a single granitoid body, termed the Sarıcakaya 
granitoid.

Kadıoğlu et al. (1994) divided the Söğüt magmatics 
into three units in their study area north of Söğüt. 
From south to north, in structurally ascending order, 
these are the Sıraca granodiorite (equivalent to the 
Borçak granodiorite of Y. Yılmaz 1977), the Borçak 
granite (equivalent to the Çaltı gneissic granite of Y. 
Yılmaz 1977) and the Çaltı magmatics (equivalent 
to Yeniköy migmatite of Y. Yılmaz 1977). Th e Sıraca 
granodiorite is medium grained, with oligoclase + 
quartz + muscovite + sericite and minor amounts 
of biotite + actinolite + epidote + zircon + apatite 
+ limonite. Th e Borçak granite is a well-foliated 
intrusion with quartz + oligoclase + orthoclase + 
muscovite + chloritised biotite + limonite. Th e Çaltı 
magmatics display compositional variation ranging 
from diorite-gabbro in the centre to granodiorite and 
granite at the margins. Various aplitic and pegmatitic 
dykes cut the Çaltı magmatics.

Based on major-element oxide analysis of a small 
number of samples, Kadıoğlu et al. (1994) inferred 
that the Söğüt magmatics are of calc-alkaline and 
S-type composition and that they were emplaced in 
a collisional setting. In contrast, Y. Yılmaz (1977) 
suggested an arc-type setting based on major-element 
oxide analysis, an interpretation that was supported 
by Göncüoğlu et al. (1996, 2000). Recently, Kibici 
et al. (2010) reported the results of a detailed major, 
trace and rare earth-element study of the Söğüt 
magmatics from around Sarıcakaya town in the east 
(outside our study area). Th e geochemistry of these 
rocks is indicative of a hybrid, arc-type/lower crustal 
origin. Th e authors infer that lower arc crust was 

underplated with subduction-related melts to form 

the granitoid intrusions.

Previously, Çoğulu et al. (1965) and Çoğulu 

& Krumennascher (1967) obtained U-Pb zircon 

evaporation and K/Ar biotite ages of 290 Ma and 

290±5 Ma, respectively for the Söğüt magmatics. 

A.I. Okay et al. (2002) dated amphiboles from the 

granitoid using the Ar-Ar technique and obtained an 

age of 272±2 Ma.

Petrography of the Dated Samples 

Çaltı Granitoid

Th e Çaltı granitoid is a granodiorite-tonalite made 

up of quartz + plagioclase + alkali feldspar + biotite ± 

chlorite ± opaque minerals. Th e rock fabric exhibits a 

preferred orientation characterised by an alignment of 

mica. Quartz was deformed under ductile conditions 

and reveals evidence of high-temperature grain-

boundary migration. Large quartz crystals exhibit 

‘chessboard’ patterns. Plagioclase is the dominant 

feldspar mineral and exhibits well-preserved 

magmatic zoning and mechanical twinning. Th e 

cores of the crystals are calcium-rich and more 

altered than their rims, which is attributed to low-

temperature hydrothermal alteration. Sericitization is 

ubiquitous. Abundant reddish brown biotite is partly 

to completely chloritized. Biotite crystals commonly 

contain opaque mineral inclusions. Reddish brown 

biotite (iron-rich) is commonly replaced by chlorite 

with pale green or bluish green interference colours. 

An augen texture is developed with quartz and 

feldspars surrounded by micas. Th e fabric of the 

granitoid is interpreted to have resulted from high-

temperature deformation within a relatively low-

strain stress environment.

Küplü Granitoid

Th e Küplü granitoid is made up of quartz + alkali 

feldspar + plagioclase + hornblende ± biotite ± 

chlorite ± epidote ± sericite ± calcite ± opaque. 

Th e crystal size is fi ner than in the Çaltı granitoid 

and deformation is more intense. Quartz is almost 

completely recrystallized so that any pre-existing 

chessboard pattern was destroyed. Some feldspars 

are also recrystallized. Plagioclase crystals exhibit 
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a magmatic zonation and deformation twins are 

quite common. Albite-pericline twins occur locally. 

Primary magmatic features are preserved despite 

the high-temperature deformation. Th e epidote, 

calcite and sericite resulted from low-temperature 

hydrothermal alteration.

Borçak Granitoid

Th e Borçak granitoid is a granodiorite composed 

of quartz + alkali feldspar + plagioclase + biotite + 

hornblende ± epidote ± sericite ± opaque minerals. 

Quartz is well preserved and shows a chessboard 

pattern. Quartz is deformed by grain-boundary 

migration, similar to the Çaltı granitoid. A penetrative 

fabric (e.g., foliation) is absent, in contrast to the two 

granitic bodies described above. Plagioclase exhibits 

deformation twins. Th e crystal cores are strongly 

altered whereas the rims are less altered. Th e main 

mafi c minerals present are biotite and amphibole. 

Th e biotite is locally deformed with the development, 

for example, of kink banding.

Sillimanite-Garnet Schist

Th e host rock of the Küplü granitoid is made up 

of quartz + mica (biotite and muscovite) + garnet 

+ feldspars + sillimanite. Quartz crystals again 

exhibit chessboard deformation. Primary staurolite 

is pseudomorphed by muscovite. Secondary 

rosette-shaped biotite crystals are likely to have 

formed in response to contact metamorphism. 

Biotite is commonly replaced by white mica, which 

is indicative of retrograde metamorphism. Fine-

grained sillimanite fi bres are intergrown with biotite.

U-Pb Zircon Dating

Th ree samples of granitoid rocks from the Central 

Sakarya basement and one sample from the host 
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schists were selected for dating. Zircons were 

separated from the samples using standard methods 

(i.e. crushing, milling, magnetic separation, heavy 

liquid separation and hand-picking under a 

binocular microscope). One hundred zircon grains 

were separated from the schist sample, eighty-nine of 

which were analysed.

Ion Microprobe Analytical Method

Th e U/Pb ion probe dating of the zircons was carried 
using a CAMECA ims-1270 ion microprobe at the 
Edinburgh Ion Microprobe Facility (EIMF), in the 
Material and Micro-Analysis Centre (EMMAC) of 
the School of GeoSciences, University of Edinburgh 
(UK). Th e zircons were analysed using a ~4–7nA O

2
– 

primary ion source with 22.5 keV net impact energy. 
Th e beam was focused using Köhler illumination (~25 
μm maximum dimension) giving sharp edges and fl at 
bottom pits. Th e eff ects of peripheral contamination 
were minimised by a fi eld aperture that restricted the 
secondary ion signal to a ~15 μm square at the centre 
of the analysis pit.

A 60 eV energy window was used together with 
mass spectrometer slit widths to achieve a measured 
mass resolution of >4000R (at 1% peak height). 
Oxygen fl ooding on the surface of the sample 
increased the Pb ion yield by approximately a factor 
of two compared to non-fl ooding conditions. Prior 
to measurement, a 15-μm raster was applied on the 
sample surface for 120 seconds to remove any surface 
contamination around the point of analysis (total 
diameter of cleaned area ~40 μm).

Th e calibration of Pb/U ratios followed procedures 
employed by SIMS dating facilities elsewhere 
(SHRIMP or Cameca ims-1270). Th is is based on 
the observed relationship between Pb/U and the 
ratios of uranium oxides to elemental uranium (e.g., 
Compston et al. 1984; Williams & Claesson 1987; 
Schuhmacher et al. 1994; Whitehouse et al. 1997; 
Williams 1998). However, as noted by Compston 
(2004) the addition of UO

2 
can improve the precision 

of measurement. Th e relationship between ln(Pb/U) 
vs. ln(UO

2
/UO) is employed in preference to the 

conventional ln(Pb/U) vs ln(UO/U) or ln(Pb/U) 
vs ln(UO

2
/U) methods and results in an increased 

within-session reproducibility of our own analyses 
of the standard by approximately a factor of two. A 

slope factor for ln(Pb/U) vs ln(UO
2
/UO) of 2.6 was 

used for all zircon calibrations.

U/Pb ratios were calibrated against measurements 
of the Geostandards 91500 zircon (Wiedenbeck et 
al. 1995: ~1062.5 Ma; assumed 206Pb/238U ratio= 
0.17917), which is measured aft er each three to four 
unknowns. Measurements over a single ‘session’ 
(a period in which no tuning or changes to the 
instrument took place) give a standard deviation on 
the 206Pb/238U ratio of individual repeats of 91500 
of about 1% (1s). Fast analyses using a secondary 
standard (Temora-2) were performed and the same 
age (within error) is obtained.

Th /U ratios in unknown zircons were calculated 
by reference to measurements of Th /U and 208Pb/206Pb 
on the 91500 standard, assuming closed system 
behaviour. Element concentrations were determined 
based on observed oxide ratios of the standard (UO

2
/

Zr
2
O

2
 and HfO/Zr

2
O

2
; assuming U= 81.2 ppm, Hf = 

5880 ppm).

Common Pb contribution to analyses is primarily 
assumed to result from surface contamination of the 
sample by modern-day common Pb. A correction for 
a mass fractionation of 2‰ /mass unit was initially 
made, followed by a linear correction for the intensity 
of drift  on all masses with time. To further reduce 
possible near-surface contamination of common Pb 
(following exclusion of the fi rst fi ve cycles through 
the masses) the average ratios were calculated from 
the remaining 15 cycles. Th e total time for each 
analysis was approximately 27 minutes.

Th e uncertainty of the Pb/U ratio includes an 
error based on the observed uncertainty from 
each measured ratio. Th is is generally close to that 
expected from counting statistics. However, observed 
uncertainty of the U/Pb ratio of the standard 
zircon is generally an additional 0.8% in excess of 
that expected from counting statistics, alone. Th is 
is assumed to be a random error (see Ireland & 
Williams 2003) that has been propagated in both 
standards and unknowns together with the observed 
variation in Pb/U ratios measured for each analysis 
(typically close to the counting errors). Uncertainties 
on ages quoted in the text and in tables for individual 
analyses (ratios and ages) are at the 1s level. Plots and 
age calculations have been made using the computer 
program ISOPLOT/EX v3 (Ludwig 2003).
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In the exploration, or fast analysis, mode (7 

minute analyses) the pre-sputter was limited to 60 

seconds and measurements were limited to peaks 

for Zr
2
O, all four lead isotopes, plus Th O

2
 and UO

2
. 

Only 8 cycles were measured and no cycles were 

excluded. Approximately 10 unknowns were run 

between each measurement of the 91500 standard. 

U/Pb ratios were determined using Pb/UO
2
 alone 

and assumed constant primary and secondary 

beam conditions between each measurement of 

the standard. In reality the Pb/UO
2 

ratios were 

suffi  ciently stable that unknowns could be compared 

to the average of all standards run over two separate 

analytical sessions. Whilst counting errors for the U/

Pb ratio were generally between 0.5 and 1.0%, the 

reproducibility of the standard was approximately 

1.0% in excess of that expected and the uncertainty 

quoted for the unknown. Th e Th O
2
/UO

2
 ratios were 

used to determine Th /U ratios assuming a closed 

system behaviour of the combined 91500 standards. 

Th e average measured Th O
2
/UO

2 
ratio for the 91500 

standard was within 2% of the Th /U ratio calculated 

from the measured 208Pb/206Pb ratios (and the known 

age of the standard). Common lead was corrected 

where the measured 204Pb exceeded three counts: 
204Pb measured was generally <4 ppb.

Results

Metasedimentary Rock

Th e detrital zircons that were separated from the 

metasedimentary schist are mostly colourless, 

although some are brown or reddish. Most of the 

zircons are subhedral but a few are euhedral or well 

rounded. Internal structures are variable, as revealed 

by cathodoluminiscence (CL) images (Figure 5). Most 

of the zircon grains display oscillatory zoning, typical 

of igneous zircons. Th e analysed Th /U ratios of the 

zircons are > 0.1, consistent with an igneous origin. 

A single zircon has a Th /U ratio of 0.01, suggestive of 

a metamorphic origin (Teipel et al. 2004).

Th e resulting ion-probe U-Pb ages of eighty-nine 

detrital zircons that were analysed range from 551 

Ma (Ediacaran) to 2738 Ma (Neoarchean) (Table 

1). Eighty fi ve percent of the ages are 90–110% 

concordant. Zircon populations cluster at ~550–750 

Ma (28 grains), ~950–1050 Ma (27 grains) and ~2000 

Ma (5 grains), with smaller groupings at ~800 Ma 

and ~1850 Ma (Figure 5). Th e youngest concordant 

zircon age is 551 Ma (Figure 6). 

Magmatic Rocks

Euhedral zircons from the three intrusions show 

marked internal diff erences. In particular, the zircons 

from the Borçak granitoid sample show wider 

oscillation bands (Figure 7a) than those from the 

Küplü granitoid (Figure 7b). In contrast, the zircons 

from the Çaltı metagranitoid exhibit inherited cores 

that are rimmed by fi ne oscillatory zoned domains 

(Figure 7c). Th e rims are relatively dark compared to 

those from the Küplü granitoid.

Th e Çaltı granitoid is dated at 327.2±1.9 Ma 

(Figure 8a, Table 2). Th e inherited core ages are mostly 

discordant except for one that is 99% concordant 

(482 Ma; Tremadocian). Th e Küplü granitoid yielded 

a slightly younger age of 324.3±1.5 Ma (Figure 8b, 

Table 2), compared to the Çaltı granitoid. Th e Borçak 

granitoid, in contrast, yielded a signifi cantly younger 

age of 319.5±1.1 Ma (Figure 8c, Table 2). Th e granitoid 

bodies, therefore, appear to have been emplaced over 

approximately eight million years during late Early 

Carboniferous (Visean to Serpukhovian) time.

Discussion

Age of the Central Sakarya Basement

Th e morphologies of the zircons separated from 

the dated metasedimentary rocks (Figure 5) are 

signifi cant for an interpretation of the age results. 

Some of these are well-rounded to sub-rounded, 

suggesting prolonged sedimentary transport. Th e 

internal structure of these zircons is homogenous, 

patchy and weakly zoned. Th in oscillatory rims are 

seen in some of these grains (Figure 5). Many of the 

well-rounded zircons gave ages of 0.95 to 1.05 Ga, 

whereas some of the other well-rounded grains gave 

ages of ~0.75 Ga and 1.7 Ga. In addition, the sub-

rounded zircons gave ages mainly between 0.6 and 

0.7 Ga, with some from 1.8 to 2.2 Ga and a few from 

0.8 to 1.2 Ga. In contrast, a third group of mostly 

euhedral zircons yielded ages of 0.68 to 0.7 Ga and 

1.8 to 2.1 Ga. Th e euhedral shape is consistent with a 

relatively local source without prolonged sedimentary 
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Figure 6.  Probability density distribution (upper) and concordia diagram (lower) of the 

detrital zircon ages obtained during this study from the country rock schist 

sample. See text for discussion. Th e dark grey field on the probability density 

distribution diagram shows the discordant ages. 206Pb/238U is used for ages < 

1000 Ma and 207Pb/206U for > 1000 Ma in constructing the diagram.
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Ion Probe analysis spots and the corresponding ages are also indicated. (a) Borçak, (b) Küplü and 

(c) Çaltı metagranitoids.
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transport. Th e zircons in this group commonly 
display concentric oscillatory zoning although patchy 
and homogenous varieties also occur (Figure 5). 

Th e maximum depositional age of the 
metasedimentary rock is 551 Ma, based on the 
concordant age of the youngest zircon in the sample. 
Th e 327 Ma (Visean) age of the oldest zircons from 
the granitoid sample further constrains the age of 
deposition as between Ediacaran (551 Ma) and 
Visean (327 Ma); i.e. probably Early Palaeozoic. 

Th e possible source area of the metasedimentary 
rock can be inferred by comparison with the reported 
ages of major cratons and peri-Gondwanian terranes. 
In Figure 9, the source ages of major cratons are 
placed to the left , the North African basins in the 
middle, while several Peri-Gondwanan terranes are 
shown to the right of the diagram. Our detrital zircon 
data are shown to the right for comparison.

In our data the most prominent population is 
of late Neoproterozoic age. Th is suggests derivation 
from a Gondwana-related source area, either related 
to the Cadomian-Avalonian magmatic arc, from 
550–650 Ma, or from within the East African orogen 
(equivalent to the Mozambique belt; Stern 1994) from 
550–850 Ma (Nance et al. 2008). Several alternative 
potential source areas were not magmatically active 
during these time periods. Specifi cally, Baltica and 
Siberia (equivalent to Angara) are not believed 
to have been magmatically active during the late 
Neoproterozoic (Meert & van der Voo 1997; Greiling 
et al. 1999; Hartz & Torsvik 2003; Meert & Torsvik 
2003; Murphy et al. 2004a, b; Sunal et al. 2006; see 
Figure 9). Th e Avalonian terranes, additional potential 
source regions, are characterised by Mesoproterozoic 
ages (Figure 9; Nance & Murphy 1994; Winchester 
et al. 2006). However, the absence of 1.2–1.6 Ga ages 
in our data set makes an Avalonian affi  nity unlikely.

Th e second largest population in our data set 
is early Neoproterozoic (0.9–1.0 Ga). Cadomian 
terranes are characterised by a reported absence 
of Grenvillian ages (Fernández-Suarez et al. 2002; 
Gutiérrez-Alonso et al. 2003). Th e presence of 
Kibaran or Grenvillian aged zircons in our data 
set, therefore, diff ers signifi cantly from the known 
age ranges of Cadomian terranes (e.g., Armorican 
Terrane Assemblage; Figure 9). 

An alternative is a source within the Arabian-
Nubian shield of northeast Gondwana. Th is more 
probable because the ‘Minoan terranes’ that are 
believed to have originated from the Arabian-

Figure 8.  Concordia diagrams of Borçak, Küplü and Çaltı 

metagranitoids. See text for discussion.



AGE OF GRANITIC ROCKS IN THE CENTRAL SAKARYA BASEMENT, TURKEY

922

T
ab

le
 2

. 
 

U
/P

b
 is

o
to

p
e 

ra
ti

o
s 

o
f 

zi
rc

o
n

s 
fr

o
m

 m
ag

m
at

ic
 r

o
ck

s 
in

 t
h

e 
st

u
d

y 
ar

ea
. *

 d
en

o
te

s 
th

e 
co

re
 a

n
al

ys
es

 w
h

ic
h

 a
re

 n
o

t 
u

se
d

 in
 c

o
n

st
ru

ct
io

n
 o

f 
th

e 
co

n
co

rd
ia

 d
ia

gr
am

 f
o

r 
th

e 

Ç
al

tı
 g

ra
n

it
o

id
. G

P
S 

lo
ca

ti
o

n
s 

o
f 

th
e 

d
at

ed
 s

am
p

le
s:

 K
ü

p
lü

 g
ra

n
it

o
id

: 0
2

4
5

6
0

9
 4

4
4

2
6

3
4

; B
o

rç
ak

 g
ra

n
it

o
id

: 0
2

6
7

7
6

2
 4

4
4

0
4

8
6

; Ç
al

tı
 g

ra
n

it
o

id
: 0

2
6

6
1

0
0

 4
4

3
7

9
9

8
.

Sa
m

p
le

   

L
-N

o
.

 
 

 
 

 
 

 
 

 
ap

p
ar

en
t 

ag
e 

(M
a)

 

U

(p
p

m
)

Th
 

(p
p

m
)

P
b

 

(p
p

m
)

Th
 

 

U

2
0

6
P

b
 

2
3

8
U

±
1
σ

(%
)

2
0

7
P

b
2

3
5
U

±
1
σ

(%
)

R
h

o
 

2
0

6
P

b
2

3
8
U

±
1
σ

2
0

7
P

b
2

3
5
U

±
1
σ

Ç
al

tı
 g

ra
n

it
o

id
a*

5
1

6
.8

1
8

.4
3

7
.1

0
.0

3
7

0
.6

0
6

2
0

.0
0

7
6

0
.0

7
7

6
0

.0
0

0
9

0
.9

5
3

5
4

8
2

.1
5

.6
4

8
1

.1
4

.8

Ç
al

tı
 g

ra
n

it
o

id
b

1
2

0
2

.0
6

1
.0

1
0

.5
0

.3
1

0
0

.3
8

5
3

0
.0

0
6

3
0

.0
5

2
0

0
.0

0
0

6
0

.7
5

4
1

3
2

7
.0

3
.9

3
3

0
.9

4
.6

Ç
al

tı
 g

ra
n

it
o

id
b

2
3

0
.8

2
8

.0
1

.9
0

.9
3

4
0

.3
8

5
3

0
.0

1
2

8
0

.0
5

2
9

0
.0

0
0

7
0

.4
0

9
8

3
3

2
.1

4
.4

3
3

0
.9

9
.3

Ç
al

tı
 g

ra
n

it
o

id
e*

1
9

2
.5

4
2

.5
1

1
.7

0
.2

2
7

0
.4

8
3

5
0

.0
0

7
4

0
.0

6
2

5
0

.0
0

0
8

0
.8

4
3

8
3

9
0

.9
4

.9
4

0
0

.5
5

.0

Ç
al

tı
 g

ra
n

it
o

id
g*

1
9

0
.7

3
3

.1
1

6
.3

0
.1

7
8

0
.7

3
4

8
0

.0
1

4
2

0
.0

8
8

8
0

.0
0

1
5

0
.8

7
9

6
5

4
8

.6
9

.0
5

5
9

.4
8

.3

Ç
al

tı
 g

ra
n

it
o

id
d

1
3

0
7

.2
4

2
.7

1
5

.2
0

.1
4

3
0

.3
8

4
7

0
.0

0
5

6
0

.0
5

1
9

0
.0

0
0

6
0

.8
4

4
4

3
2

6
.2

3
.9

3
3

0
.5

4
.1

Ç
al

tı
 g

ra
n

it
o

id
c

4
3

.6
2

0
.6

2
.3

0
.4

8
5

0
.3

5
5

4
0

.0
1

4
6

0
.0

5
1

3
0

.0
0

0
9

0
.4

0
2

7
3

2
2

.7
5

.2
3

0
8

.8
1

0
.9

Ç
al

tı
 g

ra
n

it
o

id
d

2
*

9
4

5
.8

1
5

6
.8

4
9

.5
0

.1
7

0
0

.3
9

5
8

0
.0

0
5

5
0

.0
5

4
7

0
.0

0
0

7
0

.8
8

3
2

3
4

3
.4

4
.1

3
3

8
.6

4
.0

Ç
al

tı
 g

ra
n

it
o

id
f

6
0

.5
4

5
.3

3
.5

0
.7

6
9

0
.3

5
7

8
0

.0
1

1
8

0
.0

5
1

8
0

.0
0

0
7

0
.4

1
0

2
3

2
5

.6
4

.3
3

1
0

.5
8

.8

K
ü

p
lü

 g
ra

n
it

o
id

a
3

3
5

.2
1

2
0

.3
1

7
.4

0
.3

6
8

0
.0

5
1

3
0

.0
0

0
7

0
.3

7
7

3
0

.0
0

5
6

0
.9

0
4

6
3

2
2

.8
4

.2
3

2
5

.0
4

.1

K
ü

p
lü

 g
ra

n
it

o
id

b
r

2
5

8
.5

8
1

.2
1

3
.3

0
.3

2
2

0
.0

5
1

4
0

.0
0

0
7

0
.3

7
6

0
0

.0
0

6
0

0
.8

3
3

1
3

2
3

.3
4

.2
3

2
4

.1
4

.4

K
ü

p
lü

 g
ra

n
it

o
id

e
5

3
7

.9
1

7
8

.3
2

7
.8

0
.3

4
0

0
.0

5
1

5
0

.0
0

0
7

0
.3

7
5

8
0

.0
0

6
0

0
.8

5
3

1
3

2
3

.8
4

.3
3

2
4

.0
4

.4

K
ü

p
lü

 g
ra

n
it

o
id

g
3

9
8

.6
1

3
2

.9
2

0
.6

0
.3

4
2

0
.0

5
1

4
0

.0
0

0
7

0
.3

7
5

0
0

.0
0

5
6

0
.8

9
0

9
3

2
3

.1
4

.2
3

2
3

.4
4

.1

K
ü

p
lü

 g
ra

n
it

o
id

b
c

3
2

2
.2

1
1

7
.1

1
6

.8
0

.3
7

3
0

.0
5

1
5

0
.0

0
0

7
0

.3
7

3
1

0
.0

0
6

3
0

.7
6

6
2

3
2

4
.0

4
.1

3
2

1
.9

4
.7

K
ü

p
lü

 g
ra

n
it

o
id

fc
4

1
8

.4
1

8
7

.1
2

2
.4

0
.4

5
9

0
.0

5
1

7
0

.0
0

0
7

0
.3

7
6

9
0

.0
0

5
3

0
.9

3
4

3
3

2
5

.2
4

.2
3

2
4

.8
3

.9

K
ü

p
lü

 g
ra

n
it

o
id

c
3

0
4

.4
1

2
8

.9
1

6
.4

0
.4

3
4

0
.3

8
2

6
0

.0
0

6
5

0
.0

5
2

3
0

.0
0

0
7

0
.7

6
9

1
3

2
8

.4
4

.2
3

2
9

.0
4

.8

K
ü

p
lü

 g
ra

n
it

o
id

fr
4

8
3

.7
2

2
8

.3
2

5
.9

0
.4

8
4

0
.3

6
8

1
0

.0
0

9
6

0
.0

5
1

3
0

.0
0

0
7

0
.5

1
7

2
3

2
2

.8
4

.2
3

1
8

.3
7

.1

B
o

rç
ak

 g
ra

n
it

o
id

d
1

0
4

.2
4

8
.0

5
.5

0
.4

7
3

0
.3

6
6

7
0

.0
0

7
8

0
.0

5
0

3
0

.0
0

0
7

0
.6

4
0

2
3

1
6

.6
4

.2
3

1
7

.2
5

.8

B
o

rç
ak

 g
ra

n
it

o
id

e
1

0
6

.6
4

5
.8

5
.5

0
.4

4
1

0
.3

5
4

5
0

.0
0

9
0

0
.0

4
9

9
0

.0
0

0
7

0
.5

1
5

5
3

1
4

.2
4

.0
3

0
8

.1
6

.7

B
o

rç
ak

 g
ra

n
it

o
id

f
2

1
4

.4
1

2
8

.2
1

1
.7

0
.6

1
3

0
.3

6
3

7
0

.0
0

5
2

0
.0

5
0

8
0

.0
0

0
6

0
.8

7
3

7
3

1
9

.6
3

.9
3

1
5

.0
3

.9

B
o

rç
ak

 g
ra

n
it

o
id

gc
2

2
4

.1
9

7
.2

1
2

.1
0

.4
4

5
0

.3
7

7
8

0
.0

0
8

0
0

.0
5

2
5

0
.0

0
0

7
0

.6
2

1
5

3
2

9
.8

4
.2

3
2

5
.4

5
.8

B
o

rç
ak

 g
ra

n
it

o
id

gr
2

2
2

.3
7

3
.7

1
1

.6
0

.3
4

0
0

.3
7

5
2

0
.0

0
7

5
0

.0
5

1
8

0
.0

0
0

7
0

.6
8

0
2

3
2

5
.9

4
.3

3
2

3
.5

5
.5

B
o

rç
ak

 g
ra

n
it

o
id

h
2

6
9

.3
1

6
6

.5
1

4
.9

0
.6

3
4

0
.3

7
2

5
0

.0
0

6
3

0
.0

5
1

2
0

.0
0

0
7

0
.8

1
6

8
3

2
1

.7
4

.3
3

2
1

.5
4

.6

B
o

rç
ak

 g
ra

n
it

o
id

i
1

6
4

.2
1

0
8

.6
9

.2
0

.6
7

8
0

.3
7

9
4

0
.0

0
7

3
0

.0
5

1
1

0
.0

0
0

7
0

.6
7

8
3

3
2

1
.0

4
.1

3
2

6
.6

5
.3

B
o

rç
ak

 g
ra

n
it

o
id

k
2

2
2

.6
7

1
.2

1
1

.1
0

.3
2

8
0

.3
6

9
1

0
.0

0
6

5
0

.0
5

0
0

0
.0

0
0

6
0

.7
3

4
9

3
1

4
.4

4
.0

3
1

9
.0

4
.8

B
o

rç
ak

 g
ra

n
it

o
id

l
2

3
4

.2
1

4
2

.5
1

3
.0

0
.6

2
4

0
.3

7
5

9
0

.0
0

6
9

0
.0

5
1

5
0

.0
0

0
7

0
.7

1
3

0
3

2
3

.8
4

.1
3

2
4

.0
5

.0

B
o

rç
ak

 g
ra

n
it

o
id

m
8

2
.6

3
2

.6
4

.3
0

.4
0

4
0

.3
6

4
8

0
.0

0
7

8
0

.0
5

1
1

0
.0

0
0

7
0

.6
7

8
3

3
2

1
.1

4
.5

3
1

5
.8

5
.8

B
o

rç
ak

 g
ra

n
it

o
id

n
1

7
4

.2
5

8
.7

8
.9

0
.3

4
6

0
.3

7
0

8
0

.0
0

7
1

0
.0

5
0

7
0

.0
0

0
7

0
.7

1
2

7
3

1
8

.8
4

.2
3

2
0

.3
5

.2

B
o

rç
ak

 g
ra

n
it

o
id

n
1

3
4

.2
5

1
.4

6
.9

0
.3

9
3

0
.3

7
4

1
0

.0
0

8
3

0
.0

5
0

2
0

.0
0

0
7

0
.5

8
8

1
3

1
5

.6
4

.0
3

2
2

.7
6

.1

B
o

rç
ak

 g
ra

n
it

o
id

o
2

7
3

.2
9

3
.0

1
4

.1
0

.3
4

9
0

.3
7

2
6

0
.0

0
5

9
0

.0
5

1
2

0
.0

0
0

7
0

.8
1

1
3

3
2

1
.6

4
.0

3
2

1
.5

4
.3

B
o

rç
ak

 g
ra

n
it

o
id

p
1

1
4

.0
4

8
.7

5
.9

0
.4

3
9

0
.3

7
2

0
0

.0
0

8
4

0
.0

4
9

8
0

.0
0

0
7

0
.6

0
3

9
3

1
3

.4
4

.2
3

2
1

.1
6

.2



P.A. USTAÖMER ET AL.

923

Nubian Shield, close to the Afro-Arabian margin, are 

characterised by Grenvillian/Kibaran ages (Zulauf et 

al. 2007). Th e Arabian-Nubian Shield is interpreted 

as a collage of arc-type and ophiolitic terranes that 

were amalgamated during the assembly of eastern 

Gondwana (Be’eri Shlevin et al. 2009 and references 

therein).

Cambrian–Ordovician sandstones were deposited 

on the northern periphery of the Arabian-Nubian 

Shield (e.g., Elat sandstone), as exposed in Jordan 

and Israel (Avigad et al. 2003). Sandstones of this age 

are also known more locally in the Geyikdağ Unit of 

the Tauride-Anatolide Platform (i.e. the Seydişehir 

Formation; Dean & Monod 1970), although no 

zircon age dating is currently available for these. Th e 

zircon populations in the Elat sandstones (Kolodner 

et al. 2006) are notably similar to our results from the 

Central Sakarya basement (Figure 9), as highlighted 

by a density probability diagram (Figure 10). Th e 

sediments from both our area and the Elat sandstones 
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are characterised by the Late Neoproterozoic (0.5–

0.75 Ga; 0.8 Ga) and Early Neoproterozoic/late 

Mesoproterozoic (0.9–1.1 Ga) ages. Both areas are 

also characterised by similar magmatically quiescent 

periods. In addition, the two large zircon populations 

(Figure 11) in both the Central Sakarya and Elat 

source regions exhibit very similar peak magmatic 

periods (550 Ma–1.1. Ga). Specifi cally, peak magmatic 

periods are dated at 571, 622, 684, 742, 965 and 1041 

Ma for the Central Sakarya basement, whereas those 
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Figure 10.  Relative probability histograms of detrital zircon 

ages from the Central Sakarya basement, compared 

with those from the Cambrian and Ordovician 

sedimentary rocks in Jordan (Kolodner et al. 

2006). Note the similarity of the histograms, with 

overlapping peaks of similar ages. See also Figure 11.
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for the Elat sandstone are 574, 638, 678, 750, 974 and 
1051 Ma (Kolodner et al. 2006).

Th e Kibaran ages (0.9–1.1 Ga) from the Cambro–
Ordovician Elat sandstone have been considered 
to be enigmatic because of an apparent absence 
of any suitable nearby source area (Avigad et al. 
2003; Kolodner et al. 2006). A Kibaran-aged zircon 
population becomes more pronounced upwards in 
the Elat sandstone succession. Kibaran-aged zircons 
are very marked in our sample, forming ~35% of 
the total zircon population. Th ere are two diff erent 
interpretations about these zircons, either that they 
are very far travelled or more locally derived. A source 
area >3000 km to the south of the Levant region has 
been suggested, either Burundi-Rwanda (Cahen 
et al. 1984; Kolodner et al. (2006), or the fl anks of 
Mozambique belt in southeast Africa (Kröner 2001). 
In this scenario, Neoproterozoic glaciers could have 
transported large amounts of detritus northwards, 
followed by fl uvial reworking and fi nal deposition as 
the Cambro–Ordovician Elat sandstone (Avigad et 
al. 2003; Kolodner et al. 2006). Alternatively, a much 
more proximal source of sand existed. For example, 
suitable protoliths exist in the Negash-Shiraro and 
Sa’al units of the present-day Sinai Peninsula, which 
then formed part of the northeastern margin of the 
northwest Gondwana continent (Be’eri Shlevin et 
al. 2009). Our Kibaran-age zircon grains are mostly 
well rounded, consistent with either fl uvial or aeolian 
transport (either single or multi-cycle erosion/
deposition). Purely glacial transport can be excluded 
as this would not by itself result in well-rounded 
zircons. Texture alone cannot distinguish relatively 
local (up to hundreds of kilometres) from remote 
(~3000 km) sources. However, a relatively local 
source (e.g., Taurides/Levant) seems probable.

Timing of Rift ing from Source Continent

Th ere are two alternatives for the time of rift ing of the 
Central Sakarya basement terrane, assuming a source 
area in northeast Gondwana near the Arabian-
Nubian shield. 

Th e fi rst involves Early Palaeozoic rift ing; i.e. 
relatively early compared to the ‘Minoan terranes’ of 
the Eastern Mediterranean region (e.g., Menderes, 
Crete, Bitlis) that rift ed in Permo–Triassic time. 
In this case the Central Sakarya basement drift ed 

northwards and accreted to the south-Eurasian 
margin, resulting in the observed amphibolite facies 
metamorphism during the Late Palaeozoic Variscan 
orogeny. Th e Early Carboniferous granitoids might 
then have formed in response to slab break-off  or 
delamination. Orogenic collapse or erosion could 
then have allowed shallow-marine sediments to be 
deposited on the Central Sakarya basement during 
Late Carboniferous–Permian time. Similar clastic 
sediment are inferred to unconformably overlie the 
paragneiss of the Pulur and Artvin basement units 
in the Eastern Pontides (A.I. Okay & Şahintürk 
1997) from which zircon age populations similar to 
ours have been reported (T. Ustaömer et al. 2010). 
Northward subduction of Palaeotethys beneath 
the Sakarya Continent then allowed the Karakaya 
subduction-accretion complex to be assembled along 
the southern margin of the Sakarya Continent. Th e 
arrival of continental fragments and seamounts 
resulted in regional deformation and metamorphism 
during latest Triassic time (Pickett & Robertson 
1996; A.I. Okay 2000; Robertson & Ustaömer 2011). 
Th is was, in turn, followed by the deposition of Early 
Jurassic to Upper Cretaceous cover units (Y. Yılmaz 
et al. 1997).

In a second model, rift ing from the Arabian-
Nubian Shield was delayed until Late Palaeozoic 
or Early Mesozoic time. In this case, the Early 
Carboniferous granitoids could represent arc 
magmatism along the north-Gondwana margin 
(Göncüoğlu et al. 1996; Kibici et al. 2010). Th e 
Carboniferous amphibolite facies metamorphism 
could then be attributed to an (unspecifi ed) 
collisional event. Th is would have followed by rift ing, 
drift ing and accretion to the south-Eurasian margin, 
either during Permian or Triassic time, prior to 
or during the assembly of the Karakaya Complex. 
However, there are several problems with the second 
model. First, there is no known Permian subduction-
accretion complex to the north of the Central Sakarya 
basement, as implied by this interpretation. Secondly, 
there is no evidence of comparable Carboniferous 
Barrovian-type metamorphism in other ‘Minoan 
terranes’ in the region (e.g., Bitlis massif; Anatolide-
Tauride platform).

In summary, we favour the fi rst tectonic model 
involving rift ing from northeast Gondwana during 
the Early Palaeozoic, followed by accretion to Eurasia 
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by Late Palaeozoic time. More data are needed to 
chart the path of the Sakarya terrane in more detail.

Comparison with Neighbouring Terranes

Th e adjacent İstanbul terrane in the northwest 
Pontides (Figures 1 & 2) has been inferred to have 
a source in the ‘Amazonian-Avalonian’ region of 
Gondwana (Kalvoda 2001; Kalvoda et al. 2003; 
Oczlon et al. 2007; A.I. Okay et al. 2008b; Winchester 
et al. 2006; Bozkurt et al. 2008; P.A. Ustaömer et al. 
2011). Th is prompts a comparison of our zircon data 
set from the Sakarya basement.

U-Pb detrital zircon data are available for 
clastic sedimentary rocks of Early Ordovician and 
Early Carboniferous (Tournesian–Visean?) ages, 
representing the lower and uppermost parts of 
the Palaeozoic stratigraphy of the İstanbul terrane 
(P.A. Ustaömer et al. 2011; N. Okay et al. 2011). 
Th e Lower Carboniferous turbidites of the İstanbul 
terrane display two zircon populations; one Late 
Neoproterozoic and the other Late Devonian–Early 
Carboniferous. Th e Central Sakarya basement 
is unlikely to be the source of the Carboniferous 
sediments of the İstanbul terrane because 0.9–1.2 
Ga-age zircons, the largest zircon population in the 
Central Sakarya basement, are totally absent from the 
İstanbul terrane. Th us, two diff ent terranes should 
have existed, one inferred to have an Amazonian-
Avalonian source region (İstanbul terrane) and the 
other a northeast African source region (Sakarya 
terrane). During Early Carboniferous time, the two 
terranes were presumably located along diff erent 
parts of the south Eurasian margin or were separated 
by unspecifi ed oceanic or continental units. N. Okay 
et al. (2011) infer that the İstanbul terrane was located 
along the southern margin of Europe to the west of 
its present position, within central Europe, during 
Early Carboniferous time. An arc terrane derived 
from the Armorican source continent is inferred to 
have collided with the Eurasian margin in this area, 
resulting in the Early Carboniferous (Tournaisian) 
turbidites being deposited. Th e İstanbul terrane 
subsequently migrated eastwards to the Black Sea 
area, reaching its present position by the Cretaceous 
when the Western Black Sea basin rift ed. In contrast, 
the Sakarya terrane and its counterparts further east 
(Pulur and Artvin units), although also Gondwana 
derived, accreted further east along the Eurasian 

margin compared to the position of the İstanbul 
terrane and subsequently remained in this region.

 

Conclusions

Th e age and tectonic history of crystalline basement 
units in the Sakarya Zone, N Turkey is constrained 
utilising fi eld, petrographic and ion-probe studies.

Detrital zircons separated from a metasedimentary 
sillimanite-garnet schist range from 551 Ma 
(Ediacaran) to 2738 Ma (Neoarchean). Th e zircon 
populations cluster at ~550–750 Ma, ~950–1050 Ma 
and ~2000 Ma, with smaller groupings at ~800 Ma 
and ~1850 Ma. Th e presence of a Kibaran (0.9–1.1 
Ga) zircon population suggests an affi  nity with 
the Arabian-Nubian Shield. Th e detrital zircon 
age spectrum of the Cambrian–Ordovician Elat 
sandstone that was deposited on the northern 
periphery of the Arabian-Nubian Shield is similar to 
that of the Sakarya basement.

Th e Central Sakarya metamorphic basement 
is cut by a number of granitic intrusions (~ Söğüt 
magmatics), three of which were dated during 
this study. An alkali feldspar-rich granite (Küplü 
granitoid) yielded an age of 324.3±1.5 Ma, while 
a biotite granite (Çaltı granitoid) was dated at 
327.2±1.9 Ma. Another granitic body with biotite 
and amphibole (Borçak granitoid) yielded a 
signifi cantly younger age of 319.5±1.1 Ma. Late Early 
Carboniferous granitic magmatism could, therefore, 
have been active in the Central Sakarya terrane for 
up to ~8 Ma. Th e granitic magmatism is likely to 
relate to subduction or collision of a Central Sakarya 
terrane with the Eurasian margin.

Th e Central Sakarya basement terrane is 
interpreted as a peri-Gondwanan ‘Minoan terrane’ 
that rift ed from northeast Africa. Rift ing probably 
took place during the Early Palaeozoic in contrast to 
other terranes that rift ed during the Early Mesozoic. 
Th e Central Sakarya terrane accreted to the Eurasian 
margin during the Early Carboniferous, where 
it underwent Barrovian-type amphibolite facies 
metamorphism during the Variscan orogeny. Post-
collisional felsic melts intruded the terrane during 
early Late Carboniferous time. Th e zircon age 
population of the Central Sakarya terrane diff ers 
from the İstanbul terrane in that 0.9–1.2 Ga-age 
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