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1. Introduction 
Determining the characteristics of wind resources 
and developing techniques for accurate assessment of 
wind power potential at a site are increasingly gaining 
importance. This information can enhance economic power 
with advantageous projects in terms of competitiveness. 
Wind energy is often conveniently integrated into regional 
electricity supply systems, but its intermittent character 
creates a significant problem for the energy quality of 
the grid. Furthermore, this variability continues in both 
position and time dimensions on a wide range of scales 
(Burton et al. 2007). Winds that develop near the surface 
are a combination of geostrophic and local winds. These 
can change depending on the geographic region, climate, 
height of the terrain, and surrounding obstacles (Bianchi 
et al. 2007).

Because of the variable nature of wind resources, 
the ability to forecast wind speed is often valuable. Such 
forecasts fall broadly into 2 categories: predicting short-
term turbulent variations over a time scale of seconds to 
minutes ahead, which may be useful for assisting with the 

operational control of wind turbines or wind farms, and 
longer-term forecasts over periods of a few hours or days, 
which may be useful for planning the deployment of other 
power stations on the network (Burton et al. 2007).

Short-term forecasts necessarily rely on statistical 
techniques for extrapolating the recent past, whereas the 
longer-term forecasts can make use of meteorological 
methods. A combination of meteorological and statistical 
forecasts can give very useful predictions of wind farm 
power output (Burton et al. 2007).

Generally, prediction methods are classified into 2 
groups: linear and nonlinear prediction methods. In this 
study, both of these methods are used for performing a 
one-step-ahead prediction. A well-structured predictor 
should preserve the characteristics of the signal. Thus, 
we could check the success of the prediction method by 
comparing the frequency characteristics of the predicted 
and original signals. In this case, similarities between the 
frequency characteristics of both signals can be used as an 
indicator of the success of the prediction method.
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Wind speed distribution has a well-known frequency 
characteristic, which was first proposed by Van der Hoven 
(1957). This characteristic can be used as a good criterion 
for determining the success of a chosen prediction method. 
The relationship between the real and the prediction series 
could give us estimations about the future success of the 
method. Normally, determining the R2 or χ2 values of a 
prediction series or using other similar methods is done 
to assess a prediction method’s success. In this study, a 
comparison of the frequency characteristics of real and 
predicted series is proposed as a new and more advanced 
method for determination of success. This innovation 
could give us a new and very useful tool to determine 
the strength of a prediction method that we would like to 
perform.

Van der Hoven (1957) constructed a wind speed 
spectrum from short-term and long-term wind records 
in Brookhaven, NY, USA. This spectrum has significant 
peaks corresponding to synoptic, diurnal, and turbulent 
effects. He also presented the contribution of oscillations 
at various frequencies to the variance of the wind speed, 
which was found to be proportional to the kinetic energy 
of the wind speed fluctuations.

Furthermore, in a study by Panofsky and McCormick 
(1954), the spectral properties of vertical and horizontal 
turbulence and their cross-spectra were determined at 100 
m above ground level. They specified that the frequency 
at the maximum value of the vertical velocity spectrum 
decreases with increasing height. Griffith et al. (1956) 
explained the procedure and problems of power spectrum 
analysis over large frequency ranges. Their method was 
illustrated by the power spectrum of temperature at 
University Park, PA, USA, covering periods from 2 to 
7300 days. The spectrum was characterized by a major 
peak at 4 days and several minor peaks. Eggleston and 
Clark (2000) calculated a power spectrum for Bushland, 
TX, USA from 13 years of hourly data, 1 year of 5-min 
data, and 2 particularly gusty days of 1-s average data 
at 10 m. They found a few peaks similar to the Van der 
Hoven spectrum for this region. Frye et al. (1972) applied 
the Van der Hoven spectrum for studying the coastal 
area of Oregon. They showed a diurnal and a microscale 

peak corresponding to a period of 24 h and about 50 s. 
Neammanee et al. (2007) used the Van der Hoven power 
spectrum in order to develop a wind simulator based on 
test generators in wind turbines. In this study, a power–
wind speed pattern was generated based on the Van der 
Hoven spectrum to obtain reference signals to be used as a 
torque reference for a torque control inverter. 

Estimation of these spectral characteristics is very 
important to plan production of wind energy. The Van der 
Hoven spectrum indicates that a wind speed signal has 
specific frequency components, and so if a prediction series 
contains similar spectral components, this can create an 
indicator for the adequacy of the prediction method. Thus, 
the first aim of this paper is to construct power spectra of 
surface wind speed measured at İstanbul’s Atatürk Airport 
in order to evaluate the contributions from disturbances 
at various scales on the total spectrum to determine the 
characteristic frequencies. The second aim is to make 
predictions using a linear and a nonlinear method, namely 
the autoregressive (AR) and artificial neural network 
(ANN) models, respectively, of the wind speed data. The 
third aim is to construct power spectra of the predicted 
series to determine the frequency components. As a 
result, the evaluations of the predicted wind speed series 
are presented in terms of how well the prediction series 
represents the characteristic frequency components of the 
real wind series. 

2. Methods and analysis
In this study, the data sets, available for the 5-year period 
from 1 January 2005 to 31 December 2009 with a sampling 
rate of 1 min at international aerodrome standards, 
were taken from an automatic weather observation 
station (AWOS) installed at a height of 10 m at Atatürk 
International Airport. The data sets were organized and 
grouped according to sunrise and sunset times, particularly 
for local daylight saving time, as shown in the Table. 
2.1. Van der Hoven spectrum
The economic return of using short-term forecasting is 
dependent on its accuracy. As the amount of wind energy 
requiring integration into the grid increases, short-term 
forecasting becomes more important for the transmission 

Table. Classification of the datasets according to sunrise and sunset times for summer and winter.

Year Summertime Summertime
sunrise–sunset

Wintertime
sunrise–sunset

2005
2006
2007
2008
2009

27.03.2005–30.10.2005
26.03.2006–29.10.2006
25.03.2007–28.10.2007
30.03.2008–26.10.2008
29.03.2009–26.10.2009

0600–1800 hours
0600–1800 hours
0600–1800 hours
0600–1800 hours
0600–1800 hours

0700–1700 hours
0700–1700 hours
0700–1700 hours
0700–1700 hours
0700–1700 hours
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and distribution operators. Furthermore, wind power 
that will join an electricity network is very significant in 
short-term periods of time, even less than minutes or 
seconds, due to the effects of turbulence on wind turbine 
design and performance (Burton et al. 2007). Power 
spectrum analysis is a measure of oscillations with various 
frequencies that contribute to the variance of a variable. 
The variance is proportional to the kinetic energy of speed 
fluctuations where the wind is variable. As shown in 
Figure 1, the Van der Hoven spectrum shows clear peaks 
corresponding to the synoptic, diurnal, and turbulence 
effects that were recorded in Brookhaven, NY, USA (Van 
der Hoven 1957). The Van der Hoven spectrum suggests 
that there is a substantial amount of wind energy in 1-min 
periodic fluctuations of the wind. There also appears to 
be little energy in a period of once per hour (Straw 2000). 
In this spectrum there is a spectral gap between the daily 
and turbulence peaks for a period of approximately 1 
h. The presence of a broad and deep gap coincides with 
oscillation at 0.1-h and 10-h periods. This gap separates 
the 2 well-formed maxima (at right a micrometeorological 
maximum and at left a synoptic maximum) (Panchev 
1985). There is very little energy in the range between 2 
h and 10 min of the spectrum (Burton et al. 2007). This 
spectrum also suggests that high-frequency gusts may not 
contain large amounts of energy.

A main peak with 0.01 cycles/h coincides with 4-day 
transit periods of large-scale weather systems and this 
peak is usually referred to as the macrometeorological 
peak. The second peak comprises a high-frequency range 
that coincides with turbulence in the boundary layer in 
periods of 10 min and less than 3 s. The peak is located 
in the micrometeorological region. Therefore, the space 
that is bounded by the 2 peaks and where less fluctuation 

is seen is called the spectral gap. In this gap, macro- and 
micrometeorological fluctuations can be analyzed without 
the effects of other influences (Straw 2000). Van der 
Hoven’s study has 2 main consequences: the first includes 
doing a wide-range frequency analysis of wind speed to 
define the important contributions to the total variance, 
and the second is testing the identification peaks and 
spectral gap of the spectrum under different terrain and 
synoptic conditions. 

Generally, 2 methods can be applied to obtain spectral 
estimations in a wide range of frequencies. The first 
method is to collect wind speed data over a small sampling 
frequency for a long time span. This gives us the whole 
spectrum at one time. The second method is to collect data 
in different weather conditions (thunderstorm, fog, etc.) 
for short time periods and combine the spectral analysis 
results of these different data sets. For this study, Van 
der Hoven’s first method was preferred over his second 
method since it is more practical in terms of keeping the 
amount of data consistent. 

Power-spectrum analysis is a measure of the 
contribution of oscillations with continuously varying 
frequencies to the variance of a variable. Where wind 
speed is the variable, the variance is proportional to the 
kinetic energy of the wind speed fluctuations (Van der 
Hoven 1957). The computation of power spectra is based 
on a theorem by Wiener (1930) and autopower spectral 
density (APSD) is defined by Eq. (1):
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Figure 1. Van der Hoven spectrum (1957).
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2.2. Time series analysis
Understanding the time series dynamics of wind speed 
is an essential element in many types of wind energy 
applications. For example, the design of wind turbines 
requires the characterization of several wind processes 
including wind speed. Models of wind speed are 
important in the operation of wind farms. For example, 
the characteristics of wind speed are important factors in 
the determination of the cut-in and cut-out wind speeds 
of wind turbines. Wind speed models will likely become 
an important factor in renewable energy markets having 
growing popularity. Furthermore, time-domain models 
account for predicting wind speeds in a region. In addition, 
studies on system characterization attempt to determine 
fundamental properties, such as the number of degrees of 
freedom in a system or the amount of randomness with 
little or no a priori knowledge (Gershenfeld & Weigend 
1994). The aim of forecasting is to accurately predict 
the short-term evolution of a system, while the goal of 
modeling is to find a description that accurately captures 
features of the long-term behavior of the system. The 
prediction methods mainly fall into 2 groups: linear and 
nonlinear algorithms. Linear time series models have 2 
particularly desirable features: they can be understood 
in great detail and they are straightforward to implement 
(Kaya et al. 2010). 

Broadly speaking, a time series is said to be stationary 
if there is no systematic change in mean (no trend), if there 
is no systematic change in variance, and if strictly periodic 
variations have been removed. Most of the probability 
theory of time series is concerned with stationary time 
series, and for this reason time series analysis often requires 
turning a nonstationary series into a stationary one so as 
to use this theory. For example, it may be of interest to 
remove the trend and seasonal variation from a set of data 
and then try to model the variation in the residuals by 
means of a stationary stochastic process (Chatfield 1996).
2.3. Time series forecasting
Time series forecasting (prediction) methods can be 
divided into 2 categories. The first is the physical method, 
which uses a lot of physical considerations to reach the best 
prediction precision. The second is the statistical method, 
like the AR model, which aims at finding relationships 
in the measured data. However, this classification is not 
absolute. In recent years, some new methods based on 
artificial intelligence, like the ANN model, have been 
developed and are being widely used (Lei et al. 2009).
2.3.1. AR model
The AR model is a widely used method because of its 
simplicity and the presence of efficient algorithms used to 
determine the model coefficients. The most widely used 
model selection criteria in AR models are the Akaike 
information criterion (AIC) and final prediction error 
(FPE) (Akaike 1969, 1974).

2.3.2. ANNs
The fact that some time series cannot be obtained by 
linear approximation (such as a logistic equation that can 
be generated with simple functions) has pointed to the 
need for a more general theoretical framework for time 
series analysis and prediction. One of the most interesting 
developments in this respect is the use of ANNs for time 
series prediction (Gershenfeld & Weigend 1994). Neural 
networks have been widely used as time series forecasters. 
Most often these are feed-forward networks that employ 
a sliding window over the input sequence (Frank et al. 
2001). The standard neural network method of performing 
time series prediction is to induce the function f using any 
feed-forward function approximating neural network 
architecture, such as a standard multilayer perception 
model, a radial basis function architecture, or a cascade 
correlation model (Gershenfeld & Weigend 1994), using a 
set of N-tuples as inputs and a single output as the target 
value of the networks. This method is often called the 
sliding window technique as the N-tuple input slides over 
the full training set. Figure 2 gives the basic architecture of 
this method.

As noted by Dorffner (1996), this technique can be seen 
as an extension of AR time series modeling, in which the 
function f is assumed to be a linear combination of a fixed 
number of previous series values. Such a restriction does 
not apply with the nonlinear neural network approach, as 
such networks are general function approximators (Frank 
et al. 2001).

3. Climate characteristics of İstanbul
Atatürk Airport (40°58′N, 28°48′E) is located to the west 
of İstanbul. Figure 3 shows the İstanbul region.

Synoptic weather systems with different origins affect 
the İstanbul region. Low-pressure systems originating in 
Iceland, Mediterranean nomadic cyclonic systems, and 
associated frontal systems move in from the west and 
southwest, and Siberian high-pressure systems move in 
from the north in fall. The effects of these systems continue 
until the middle of the spring. In late spring local factors 
become important, depending on terrestrial warming. 
In summer, tropical low-pressure systems originating in 
Africa and Arabia from the south and Azores high-pressure 
systems from the northwest affect the region. Local-scale 
systems (sea and land breezes) also have an impact along 
with the synoptic scale systems in this season.

x(t)

x(t-1)

x(t-2)

x(t+1)

Figure 2. The standard method of performing time series 
prediction using a sliding window with 3 time steps.
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4. Results
In this study, wind data that were obtained from an AWOS 
at Atatürk Airport between the years of 2005 and 2009 (at 
10 m of height and 1-min sampling intervals) were used. 
Initially, a Van der Hoven spectrum was created using this 
data, followed by linear and nonlinear prediction spectra. 
The AR and ANN models were applied to the time signal 
for wind speed prediction.

The prediction performance was evaluated by 
comparing the prediction series Van der Hoven spectra 
obtained from the AR and ANN models with the real 
signal’s Van der Hoven spectrum.
4.1. Spectral power density analysis
Spectral power density is given in Figure 4. To retain the 
property that the variance contributed with a frequency 
range that is given by the area under the spectral curve, 
the original spectral estimates must be multiplied by the 
frequency (Panofsky 1954; Griffith 1956; Van der Hoven 
1957). 

As seen in Figure 4, the first and second maximum peak 
of the Van der Hoven spectrum represent synoptic scale 
pressure systems that influence the fluctuations in wind 
speed. In general, the passage of a synoptic scale system 
over a region lasts 1–3 days. The spectral band contains 
a third peak that corresponds to semidaily changes in 
wind speed. Maxima seen at around 2–7 min indicate 
wind motion close to the surface and always represent 
turbulence or gusts. In addition, since the measurement 
site is at an airport, different characteristics of turbulence 
are seen owing to the airplane activities. Another feature of 
the spectrum is the spectral gap, which has very low energy 
between about 10 min and 4 h. This gap is associated with 

the absence of continuously moving systems within this 
time interval in the atmosphere.

A 4-day peak and 1-day peak have been seen at Atatürk 
Airport with a maximum power of 4.00 m2/s2 and 10.89 
m2/s2, respectively. These peaks are related to the effects 
of synoptic-scale pressure patterns and frontal systems. 
Particularly starting in fall, these systems are especially 
influential on this region from the north, northwest, and 
south. Moreover, these systems lead to significant changes 
in direction and speed of wind and wind speed increases 
during their passage. This transition continues until the 
middle of spring.

The spectral band has a third peak that has the 
maximum spectral power density (2.50 m2/s2). This third 
peak corresponds to a period of 11.6 h, which corresponds 
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to daily variations. İstanbul is surrounded by sea to the 
north and south and has a hilly topography, so this peak 
may indicate the impact of the breezes that develop due 
to the difference between the daytime and nighttime 
temperatures in the city (Menteş 2007; Ezber 2009). Other 
peaks show the effects of convective motion in the region 
during the day. Occasionally, thunderstorms, which are 
very rare events, have a significant energy contribution on 
a wider range of time scale. Some thunderstorm activity 
can occur in the region during the second half of spring 
and early period of summer and the second half of fall and 
winter, respectively, because of convectivity and frontal 
passage systems.

The power density spectrum of the Atatürk Airport-
İstanbul region is similar to Van der Hoven’s spectrum in 
that there is a spectral gap with very low energy of 0.30 
m2/s2 within a time range of a few hours. The peaks with 
lower energy indicate turbulence, as seen in Figure 4. 
Additionally, the day and night variations of the wind speed 
spectral density in winter and summer were evaluated 
due to the seasonal difference of synoptic-scale systems’ 
and local-scale systems’ effects on this region. Figures 5 
and 6 show the change of wind speed spectral density in 
night and day during winter and summer. It can clearly 
be seen that the total spectral energy is higher in winter 
than in summer. In the power spectrum, 2-day or 3-day 
periods have higher energy in winter than summer. This 
shows that the synoptic-scale pattern is more influential 
in winter. Moreover, in both figures, semiday peaks are 
significant for each season. The temperature difference 
between day and night in summer is greater than in 
winter; therefore, semiday peaks are more dominant in 
summer. In the seasonal plot, peaks at a few hours have 
significant energies according to the Van der Hoven 
spectrum (Figures 5 and 6).

4.2. AR model results
In prediction of wind data using the AR model with 
AIC, the optimal model order was calculated as 11. The 
coefficients of the model were determined by using the 
Yule–Walker method (Yule 1927; Walker 1931). Calculated 
AIC values for all data from 1 to 100 model orders are 
given in Figure 7. For time series obtained with model 
order 11, the goodness of fit R2 was found to be 0.4795. 
Calculated prediction series with the AR model, original 
signal, and error series are shown in Figure 8. Results from 
the Van der Hoven spectrum using an AR model are given 
in Figure 9.
4.3. ANN results
The ANNs were arranged in the same order as the AR model 
to allow for direct comparison. In the ANN architecture, 
there were 11 nodes in the input, 1 hidden layer, and 1 
neuron in the output. The preferred ANN architecture is 
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triangle reduction geometry. Therefore, half of the sum of 
the input nodes and the output neuron (6) was selected as 
the number of neurons in the hidden layer of the ANN. 
The ANN was trained using the Levenberg–Marquardt 
algorithm (Levenberg 1944; Marquardt 1963) in 500 steps. 
A logarithmic sigmoid activation function was used in 
both the hidden layer and the output layer of the ANN. 
For time series obtained with ANN, the goodness of fit R2 
was found to be 0.99965. Calculated prediction series with 

ANN, original signal, and error series are shown in Figure 
10. The Van der Hoven spectrum that was formed from 
ANN results is given in Figure 11.

5. Conclusions
In this study, an evaluation of wind speed predictions was 
done using linear and nonlinear methods such as AR and 
ANN models using the İstanbul Atatürk Airport wind data 
sampled at 1-min intervals. Comparing real and predicted 
time series’ power spectral densities has presented a new 
approach for defining the success of one-step-forward 
wind speed prediction.

The general characteristics of temporal wind 
distribution change due to local factors as well as global-
scale flow patterns. The most important success criterion 
of wind speed energy prediction methods is to see the 
same power spectral density in both the real and predicted 
series. In this study, 2 prediction methods (AR model 
as a paradigm of linear prediction methods and ANN 
for nonlinear methods) were used at Atatürk Airport in 
İstanbul. The success of the predictions performed using 
these 2 methods is defined by comparing the similarity 
between the Van Der Hoven spectra of the real and 
predicted series.

First of all, wind speed data were sampled at Atatürk 
Airport in İstanbul with a 1-min sampling period at a 
height of 10 m between 2005 and 2009. The autopower 
spectrum of this signal was calculated using a fast Fourier 
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transform algorithm. This spectrum indicated significant 
peaks corresponding to synoptic, diurnal, and turbulent 
effects. The areas under these peaks are proportional to the 
kinetic energy of the wind speed fluctuations according to 
Parseval’s theorem (Griffith 1956).

The results of power spectral density analysis gave a 
similar structure to the classic Van der Hoven spectrum. 
In the total spectrum, the values of the first 2 consecutive 

peaks cover periods of 1–3 days. This is associated with the 
passage of active synoptic systems in this region. The third 
peak of the spectral band corresponds to daily variations. 
The effects of convectivity and frontal passage systems are 
seen in the third peak. Moreover, a spectral gap with a very 
low energy of 0.30 m2/s2 for a few hours’ width and also 
turbulence peaks can be seen in the spectrum.

In addition, as shown in Figures 5 and 6, night and day 
variations of wind speed spectral density in winter and 
summer were studied. The total spectral energy is higher 
and the synoptic-scale pattern is more influential in winter 
than in summer. In both seasons, semiday peaks and a few 
hour peaks can be distinctly seen.

The success of the prediction methods was determined 
by looking at the similarity between the spectral densities 
of the real and predicted time series based on having a 
similar structure to the classic Van der Hoven spectrum 
in this region.

For that purpose, the AR and ANN models were applied 
to predict the wind speed. The results of predictions were 
evaluated in terms of how well the characteristic frequency 
components in the predicted time series represented the 
real series. The best results were obtained by the ANN. The 
AR model reflects the spectral characteristics only up to a 
point.

In addition to performance criteria such as R2, the 
existence of the basic spectral characteristics of the Van 
der Hoven spectrum in the prediction series provides a 
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Figure 10. Wind signal prediction obtained using the ANN model and error series.
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further assessment for the success of prediction. For both 
the linear and nonlinear prediction studies, the basic 
criterion for the achievement of successful forecasting is 
how many frequency characteristics exist in the prediction 
series. 

It is found that the spectrum of the prediction 
series is close to the spectrum of the actual signal for 
ANN forecasting, but the AR model does not show this 
characteristic sufficiently. The AR model shows relatively 

low performance because the wind speed signal does not 
include enough white noise characters.

For the wind speed prediction, the best results were 
provided by the ANN model. In addition to having high 
performance, ANNs do not need the average value of 
the signals to be removed. Therefore, the ANN model is 
preferred to linear time series models. The only problem in 
the ANN-based models is the lack of methods such as AIC 
or FPE to determine the optimal order.
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