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1. Introduction
In the last few decades, a large number of paleomagnetic 
studies have been carried out in Turkey, with the aim of 
defining the northward latitudinal drift of the different 
microcontinents now amalgamated in the Anatolian 
region (e.g., Van Der Voo 1968; Sanver & Ponat 1981; 
Evans & Hall 1990; Morris & Robertson 1993) and to 
shed light on the role of crustal block rotations along the 
North Anatolian Fault Zone and within the Anatolian 
Block (e.g., Saribudak et al. 1990; Platzman et al. 1994; 
Michel et al. 1995; Tatar et al. 1995; Piper et al. 1996; 
Gürsoy et al. 1997; Piper et al. 1997; Platzman et al. 1998, 
Piper et al. 2010). The role of paleomagnetic rotations 
in the origin and tectonic evolution of curved tectonic 
structures and sedimentary basins has been partially 
investigated in Central and Northern Turkey. Meijers et 
al. (2010) suggested that the curved shape of the central 
Pontides orogenic belt resulted from oroclinal bending 
during the latest Cretaceous to earliest Paleocene times, 
whereas Kaymakçı et al. (2003), on the basis of structural 
and paleomagnetic data, suggested that the Ω-shape 
of the Çankırı Basin (Central Anatolia) resulted from 
opposite rotations along the basin margins, related to 

the indentation of the Kirşehir Block against the Sakarya 
continent. Also from this evidence, Mejiers et al. (2010) 
proposed an overall tectonic model for the evolution of 
Central and North Turkey and suggested that deformation 
was localized in the northern part of the central Pontides 
during Late Cretaceous-Tertiary convergence between the 
different Anatolian blocks, resulting in oroclinal bending 
lasting until the Paleocene. After that period, deformation 
was mainly expressed by thin-skin thrust tectonics, which 
propagated southwards and were concentrated in the 
Çankırı Basin, thus causing the present-day curved shape. 

In this work, we present new paleomagnetic and 
anisotropy of magnetic susceptibility (AMS) data from 
Miocene continental units from the Çankırı Basin, with 
the main objective of further constraining the time and 
spatial distribution of tectonic rotations during Late 
Cenozoic times. In particular, AMS and paleomagnetic 
measurements on the rock collection from the Çankırı 
Basin were carried out with a 2-fold purpose: to define the 
timing of rotation in the Late Miocene sediments and give 
further constraint to the indentation mechanism proposed 
by Kaymakçı et al. (2003); and to determine the fabric of 
the Miocene sediments and to assess whether they have 
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a fabric dominated by sedimentary or tectonic processes. 
Our results show that paleomagnetic rotations in the 
Çankırı Basin do not have a symmetrical distribution 
along the opposite edges of the basin and, when considered 
together with those published by Kaymakçı et al. (2003), 
they do not fit with the indentation model considered to 
be responsible for the Ω-shape of the Çankırı Basin. We 
propose that the complex pattern of tectonic rotations 
measured in the Çankırı Basin is due to strike-slip motion 
along the basin margins, related to activity on the North 
Anatolian Fault. 

2. Geological setting of the Çankırı Basin
The Çankırı Basin is an important tectonic feature for 
understanding the tectonic history of Central Anatolia, 
due to its tectonic position at the contact between the 
Pontides and the Anatolide-Tauride Block (Figure 1a, 
b). The tectono-sedimentary evolution of the Central 
Anatolia basins has been mainly controlled by the 
progressive closure of the northern Neotethys Ocean, and 
then by the initiation and subsequent deformation on the 
North Anatolian Fault activity (Şengör & Yılmaz 1981). 
During the Late Cretaceous-Paleogene, accretionary 
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Figure 1. Tectonic setting (a) and geological sketch (b) of Eastern Mediterranean area. (c) Geological map of the Çankırı Basin. 
Sampled sites and magnetic lineations from AMS measurements from this work are shown. (d) Simplified geological section cutting 
the Çankırı Basin (its trace is indicated in Figure 1c). NAF, North Anatolian Fault; EAF, Eastern Anatolian Fault; CB, Çankırı Basin; 
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prisms and fore-arc basins developed to be followed in 
Eocene times by piggyback to peripheral basins (Şengör 
& Yılmaz 1981; Rojay 1995; Görür et al. 1998). After the 
closure of the northern Neotethys during the Miocene 
(Gannser 1974; Şengör et al. 1981; Kaymakçı 2000; Şengör 
2003; Rojay et al. 2004), the Central Anatolian region was 
characterized by the formation of narrow continental 
basins (e.g., Ankara and Çankırı Basins) and extensive 
Neogene volcanism (e.g., Galatia and Cappadocia 
volcanic terrains). According to Kaymakçı et al. (2009), 
the Çankırı Basin first developed as a fore-arc basin 
from Late Cretaceous to Middle Paleocene times, and 
then as a foreland basin during the Late Paleocene-Early 
Miocene, straddling the İzmir-Ankara-Erzincan suture 
zone (Figure 1b). The Ω-shaped Çankırı Basin is bounded 
by Cretaceous ophiolitic mélanges at the northern and 
western edges, by a N–S oriented left-lateral strike-slip 
fault overprinted on an imbricated accretionary wedge at 
the western edge, and by the Kırşehir crystalline complex 
in the south (Figures 1c and 1d). The basin is filled with 
4 km of Late Cretaceous to recent deposits, which can be 
grouped into 5 sedimentary sequences (Kaymakçı 2000). 
The oldest sedimentary sequence consists of tectonically 
intercalated Late Cretaceous deep marine sediments 
alternating with mafic volcanic rocks, volcano-clastic 
rocks, proximal regressive shallow marine units, and 
Paleocene littoral red clastic rocks and carbonates, which 
represent the subduction history of the northern Neotethys 
in the region. The second sequence is a Late Paleocene to 
mid-Oligocene, more than 1 km thick, regressive flysch 
to molasse type of succession intercalated with mafic to 
intermediate volcanic rocks and nummulitic limestones. 
The third sequence comprises a very thick (up to 2 km) 
sequence of Late Eocene to mid-Oligocene continental red 
clastic rocks and evaporites. The fourth sequence is up to 
1 km thick and represented by Early Miocene to Pliocene 

fluvio-lacustrine deposits. The Late Pliocene-Quaternary 
alluvial fan deposits and recent alluvium (fifth sequence) 
locally overlie all these units (Kaymakçı 2000).

The main structures that shape the current geometry 
of the Çankırı Basin are the thrust and reverse faults 
delineating its western and northern rims (Figure 1c). 
A belt of NNE-striking folds defines the eastern margin 
of the basin. In the south, the basin infill laps onto the 
basement (Kaymakçı 2000). Other major structures 
affecting the Çankırı Basin are the right-lateral Kizilirmak 
Fault zone (KFZ) and Ezinepazarı–Sungurlu Fault zone 
(ESFZ). These are WSW–ENE oriented and displace the 
ophiolitic rim, the basement, and the basin infill, which 
included Late Miocene units indicating a post-Late 
Miocene tectonic activity (Kaymakçı et al. 2003).

3. Sampling and methods
For this study, we collected 162 oriented cylindrical samples 
from 7 sites (Figure 1c; Table 1). All the sampled sites 
belong to the Miocene continental succession comprising 
fluvio-lacustrine units, frequently in succession with 
evaporites. In particular, sites have been collected from 
the continental Tuğlu, Süleymanlı, and Bozkır Formations 
(Late Miocene), which lie within the fourth stratigraphic 
sequence of Kaymakçı (2000). Four sites have been 
sampled from the Bozkır Formation (MN13–MN15, 
Messinian-Lower Pliocene) which crops out in the central 
(BO01, BO03, and BO04) and western parts of the basin 
(BO02). The sample sites are located on top of a hidden 
thrust fault, which cuts Oligocene sequences and is sealed 
by Middle-Late Miocene units (Figure 1d). At site BO02, a 
90-m-long stratigraphic section (64 samples) was sampled. 
This section corresponds to the lower part of the Bozkır 
Formation, close to the contact with the underlying 
formation (Süleymanlı Formation). The section is formed 

Table 1. List of anisotropy factors computed at each site in the Çankırı Basin.

Site n/N Km L F P’ T S0 D, I (Kmin) D, I (Kmax) e1,2

TU01 24/24 465 1.006 1.010 1.017 0.195 40°, 20° 259, 55 22, 21 8.0
SU01 8/10 1265 1.003 1.014 1.019 0.569 variable 197, 85 57, 4 34.8
SU02 12/12 442 1.007 1.014 1.022 0.328 348°, 10° 184, 84 36, 5 9.7
BO01 18/18 245 1.002 1.018 1.022 0.768 320°, 10° 222, 80 58, 10 27.4
BO02 64/64 121 1.003 1.026 1.032 0.759 variable 114, 77 22, 0.4 29.7
BO03 13/13 1170 1.007 1.070 1.086 0.791 178°, 27° 352, 60 253, 5 16.8
BO04 23/23 293 1.003 1.035 1.043 0.827 sub-horiz 118, 86 11, 1 44.3

n/N = measured/sampled samples; Km = (Kmax + Kint + Kmin) / 3 (mean susceptibility, in 10–6 SI units); L = Kmax /Kint; F = Kint /Kmin; Pj = 
exp {2[(η1 – η)2 + (η2 – η)2 + (η3 – η)2]}1/2 (corrected anisotropy degree; Jelinek, 1981); Tj = 2(η2 – η3) / (η1 – η3) – 1 (shape factor; 
Jelinek 1981); S0 = bedding attitude (azimuth of the dip and dip values); η1 = lnKmax; η2 = lnKint; η3 = lnKmin; η = (η1 + η2 + η3) / 3; e1-2: 
semiangle of the 95% confidence ellipses around the principal susceptibility axes.
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by grayish clays and silty clays interbedded with thick layers 
of gypsum. Two sites (SU01–SU02) have been sampled in 
the northwestern part of the basin from the Messinian 
(MN13) Süleymanlı Formation to the south of a thrust 
belt where the Cretaceous ophiolitic mélange is thrust 
onto Eocene and Oligocene red clastics, and Miocene red 
clastics are steeply tilted (Figure 1d). Finally, a stratigraphic 
section (TU01) has been sampled in the northeastern part 
of the basin. The section is composed of fluvio-lacustrine 
sediments formed by clays and sandy clays intercalated 
with sandy layers from the Tuğlu Formation (Tortonian, 
MN9–12).

At each site, cores were drilled with an ASC 280E petrol-
powered portable drill and oriented in situ by a magnetic 
compass, corrected to account for the local magnetic 
declination according to the NOAA National Geophysical 
data center. From each core, 1 to 3 standard (25 mm in 
diameter × 22 mm in height) cylindrical specimens were 
cut. All magnetic measurements were carried out at the 
Roma Tre University and Istituto Nazionale di Geofisica e 
Vulcanologia (INGV, Rome) paleomagnetic laboratories. 
In order to identify the main magnetic carriers in these 
sediments, rock magnetic analyses on selected specimens 
were carried out, which included: 

1) The measurement of hysteresis properties using 
a MicroMag alternating gradient magnetometer (AGM 
model 2900, Princeton Measurements Corporation) 
with a maximum applied field of 1 T. From hysteresis 
cycles, after subtraction of the paramagnetic high-field 
susceptibility after saturation, we calculated the coercive 
force (Bc), the saturation remnant magnetization (Mrs), 
and the saturation magnetization (Ms). 

(2) Stepwise acquisition of isothermal remanent 
magnetization (IRM) and subsequent backfield DC 
demagnetization (both in a succession of fields up to 1 T), 
measured on the same samples on the Micromag AGM. 
The coercivity of remanence (Bcr) was computed from the 
backfield demagnetization curves. 

(3) The measure of the variation of susceptibility with 
temperature in some representative specimens. 

The natural remanent magnetization (NRM) was 
analyzed using 2G Enterprises DC-SQUIDs cryogenic 
magnetometers, installed within a magnetically shielded 
room. The NRM of one specimen per core was measured 
following progressive stepwise demagnetization using 
thermal and alternating field (AF) procedures. The thermal 
demagnetization was carried out using small temperature 
increments (50 °C up to 300 °C and 30 °C above 300 °C) 
until the NRM decreased below the limit of the instrument 
sensitivity or random changes of the paleomagnetic 
directions were observed. Stepwise AF demagnetization 
was carried out using a set of 3 orthogonal AF coils 
mounted inline on the 2G Enterprises system, with steps 

of 5–10 mT up to 100 mT. The characteristic remanent 
magnetization (ChRM) was resolved from the orthogonal 
vector projections and their equivalent directions were 
calculated by principal component analysis (Kirschvink 
1980). For each site, the mean direction was computed 
using standard analysis (Fisher 1953).

The measurement of the low-field AMS was also carried 
out. AMS represents a cheap, rapid, and nondestructive 
technique for the characterization of the mineral fabric 
of rocks (Hrouda 1982). AMS is defined by a second-rank 
tensor and approximated geometrically by an ellipsoid 
with principal axes Kmax, Kint, Kmin, in which the highest 
intensity of magnetization is induced along the long axis 
(Kmax) and the weakest intensity along the short axis (Kmin). 
A range of parameters has been defined quantifying the 
magnitude of anisotropy and for defining the shape of 
the ellipsoid (see Table 1; Jelínek 1981; Hrouda 1982). 
The magnitude of lineation L of the ellipsoid is defined as 
Kmax/Kmin, and the magnetic foliation F is defined by Kint/
Kmin. The anisotropy degree and the shape parameter are 
expressed by parameters P’ and T, respectively. AniSoft 
software (Chadima & Jelinek 2009) was used for these 
calculations.

4. Results 
4.1. AMS results
The distribution of magnetic susceptibility values (Km) 
indicates a range of 100–500 × 10–6 SI for the majority 
of the specimens (Figure 2a). This suggests a significant 
paramagnetic contribution of the clay matrix to the bulk 
susceptibility. However, some specimens show higher 
susceptibility values (up to 2400 × 10–6 SI in site SU01), 
suggesting a major ferromagnetic content in these samples. 
The L parameter ranges between 1.002 and 1.007, whereas 
the F parameter ranges between 1.01 and 1.07 (Figure 2b; 
Table 1). P’ values are less than 1.1 and T values are all 
positive (Figure 2c). The shape of the ellipsoid is mainly 
oblate with a well-developed magnetic foliation recognized 
by well-grouped Kmin axes in most cases (Figure 3). The 
main magnetic susceptibility directions for each site are 
generally tightly grouped (Figures 3b–3g), with only TU01 
characterized by a girdle distribution of Kint and Kmin axes 
(Figure 3a).

At the site scale, a tectonic control on the magnetic 
fabric is well recognizable, even when the primary 
sedimentary fabric is still preserved, as is the case in 
most of the sites (Figure 3). A well-defined magnetic 
lineation is defined, which parallels the main structural 
trends documented in the area (Figure 1c). The central 
part of the basin is characterized by ENE-WSW trending 
magnetic lineations, parallel to the main fold axes that 
characterize this area. In the western border, magnetic 
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lineations are oriented NNE-SSW and reflect the change 
in fold axis orientation, which in this area is NNE-SSW. In 
the eastern part of the basin, magnetic lineation is NNE-
SSW–oriented, which is almost parallel to the trend of the 
thrusts in this area. Collectively, these data suggest that 
the magnetic fabric developed in a compressional tectonic 
setting and that magnetic lineations follow the geometry 
of the main thrust faults in the basin.  
4.2. Magnetic mineralogy and demagnetization of the 
NMR 
Representative examples of hysteresis loops are shown in 
Figure 4. Results from these analyses indicate magnetic 
saturation (Ms) values from 0.001 to 0.1 Am2/kg. In some 
samples, a paramagnetic contribution due to the clay 
matrix was observed (gray curves in Figures 4a, 4c, and 
4d). Figure 4a shows a hysteresis loop weakly developed, 
indicating the presence of low coercivity minerals, such as 
magnetite. Figure 4b shows a typical wasp-waisted shape, 
which suggests the occurrence of a mixture of 2 minerals 
with different coercitivity values. Loops in Figures 4c 
and 4d are characterized by a well-developed hysteresis 
and a more open shape, which suggest the presence of a 
mineral with higher coercivity, probably hematite. IRM 
curves (Figure 4e) confirm the presence of ferromagnetic 
minerals with different coercivity. Some samples (SULE18, 
SULE31, SULE19, TUGLU10) reach 90% saturation values 

between 0.2 and 0.3 T, suggesting the dominance of a 
low coercivity ferromagnetic mineral such as magnetite, 
whereas other samples (TUGLU32, TUGLU37) do not 
saturate at 1 T, suggesting the coexistence of low coercitivity 
(magnetite) and a high coercivity ferromagnetic mineral 
such as hematite. These results are also confirmed by 
thermomagnetic analyses, which show a sharp decrease in 
magnetic susceptibility between 400 and 600 °C, indicative 
of the presence of magnetite, and a small tail in magnetic 
susceptibility above this temperature indicating the 
presence of hematite (Figure 4f).

The intensities of the NRM vary by more than 3 orders 
of magnitude. In some samples, NRM was found to be too 
weak to measure accurately (NRM < 10–5 A/m) or unstable 
after the first demagnetization steps. These samples were 
excluded from further paleomagnetic evaluation (Table 
2). Most of the samples are characterized by a single 
component of magnetization with both normal (Figures 
5a–5d) and reversed (Figures 5e–5h) polarity. The normal 
polarity ChRM has been isolated between 180 and 630–
670 °C (Figures 5a, 5b, and 5c) or between 10 and 100 
mT (Figure 5d), suggesting the presence of both hematite 
and magnetite. Reversed polarity samples are generally 
characterized by a normal polarity viscous component, 
which is completely removed at 180–230 °C (Figure 5f), 
or at 10 mT (Figure 5g), and by ChRM, which has been 
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isolated between 280 and 630–670 °C (Figures 5f and 5h) 
or at 10–100 mT (Figure 5g).

Site-mean paleomagnetic directions are illustrated in 
Figures 6a–6g and listed in Table 2. All the sites have a 
well-defined mean direction with α95 < 11.3°. Sites BO01, 
BO02, BO03, and TU01 have normal polarity, whereas 
sites SU01 and SU02 show reversed polarity. In geographic 

coordinates, all the sites have a mean direction distinct 
from the geocentric axial dipole (GAD) magnetic field 
direction (D/I = 0/56.5° and D/I = 180/-56.5° for normal 
and reversed directions, respectively), which suggests that 
they have not undergone recent overprint. At site BO02, 
both normal and reversed polarities were observed. Data 
from this section do not pass the bootstrap reversal test 
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(Tauxe et al. 1991), indicating that normal and reverse 
polarities are not antipodal (Table 2). We interpret this to 

be due to a viscous component acquired during a more 
recent period superimposed onto the normal polarity 
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directions, which has not been possible to isolate. For this 
reason, we do not include the normal polarity samples in 
the calculation of the mean direction for site BO02. When 
all sites are considered together, mean paleomagnetic 
direction from the basin is better grouped after bedding 

correction (Dec. = 3.4°, Inc. = 52.4°, k = 24.76, α95 = 
12.4°) than before bedding correction (Dec. = 6.3°, 
Inc. = 56.8°, k = 21.31, α95 = 13.4°) (Figure 6h). These 
results, together with the presence of both normal and 
reversed polarity sites, permit consideration of the ChRM 

BO0313B

E,

S

W, Down

N

 Up

Horizontal
Unit = 1.05 e-02 A/m

10 mT

100 mT

BO0423

E,

S

W, Down

N

 Up

Unit = 1.04 e-03 A/m
Horizontal

180°C

670°C

BO0419

E,

S

W, Down

N

 Up

Unit = 1.12 e-03 A/m

630°C

180°C

Horizontal

BO0255B

N

E

S, Down

W

, Up

Unit = 1.23 e-04 A/m
Horizontal

100 mT

10 mT

E

BO0410

N,

S, Down

W

 Up

Unit = 8.78 e-04 A/m
Horizontal

180°C

630°C

SU0204

E

S

W, Down 

N

, Up

Unit = 1.86 e-04 A/m
Horizontal

280° C

630° C

a) b) c)

d)

SU0102

N

E

S, Down

W

, Up

Unit = 6.07 e-04 A/m
Horizontal

230°C

670°C

f)

BO0217B

N

EW
Down

S

Up

Unit = 7.11 e-05 A/m
Horizontal

10 mT

100 mT

e)

g) h)

Figure 5. Vector component diagrams (Zijderveld diagrams, in geographic coordinates) for the progressive thermal and AF 
demagnetization of representative samples (demagnetization step values are in °C and mT, respectively). Empty and solid symbols 
represent projection on the vertical and horizontal planes, respectively.



786

LUCIFORA et al. / Turkish J Earth Sci

magnetic components isolated in the Çankırı Basin as a 
primary magnetization, and therefore suitable for tectonic 
interpretation. Eurasia is not believed to have significantly 

rotated during the last 10 Ma (Besse & Coutillot 2002). For 
this reason, as reference direction we adopt the GAD field 
direction (in both normal and reversed polarity states), 
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assuming a negligible difference between Tortonian and 
present times. The resulting paleomagnetic rotations are 
reported in Figure 7 and Table 2, together with previous 
results from Çankırı Basin published by Kaymakçı et al. 
(2003), and will be discussed in the following section.

5. Discussion 
Analysis of AMS can be used to establish the sedimentary 
and tectonic history in weakly deformed sediments 
(Tarling & Hrouda 1993). In the last 50 years, numerous 
studies have shown that AMS can be related to mineral and 
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tectonic fabrics and that it can be successfully employed 
in the field of structural geology as a powerful tool for 
fabric analysis in different rock types (e.g., Graham 1954; 
Goldstein 1980; Kligfield et al. 1983; Housen & Van der 
Pluijm 1991; Tarling & Hrouda 1993; Borradaile & Henry 
1997; Porreca et al. 2003; Cifelli et al. 2005; Porreca et al. 
2006; Archanjo et al. 2008; Debacker et al. 2009; Cifelli 
et al. 2012). The AMS fabric has distinctive character in 
extensional and compressional tectonic settings, and for 
this reason the orientation of Kmax (magnetic lineation) 
represents a useful structural parameter for integration 
with the classic strain markers in order to define the 
deformation pattern, especially in sedimentary sequences 
(Mattei et al. 1997; Cifelli et al. 2004, 2007). In particular, 
in weakly deformed fine-grained sediments, such as 
those analyzed in this work, where deformation is poorly 
developed or absent at the outcrop scale, AMS may be 
used to reconstruct the deformation pattern of sediments 

(Kissel et al. 1986; Lee et al. 1990; Parès 2002; Cifelli et 
al. 2005, 2009). AMS data from the Çankırı Basin show 
a magnetic foliation subparallel to the bedding (Figure 
3h), which suggests a primary sedimentary magnetic 
fabric (e.g., Graham 1966; Kissel et al. 1986; Lee et al. 
1990; Sagnotti & Speranza 1993; Scheepers & Langereis 
1994; Mattei et al. 1999). Magnetic lineations show 2 main 
trends: WSW-ENE in the central part of the basin and 
NNE-SSW in the western and eastern basin edges (Figure 
3i). Such magnetic lineations in sedimentary rocks can 
be of depositional (related to depositional currents) or of 
tectonic origin. However, at all sites measured in this study, 
the trend of the magnetic lineation is maintained through 
sequences that differ in sedimentological characters and 
age. Furthermore, the distribution of magnetic lineation 
directions parallels the trend of thrust faults along the 
Ω-shaped tectonic boundary of the basin. All of these 
observations support a tectonic origin of the magnetic 
lineation in the Çankırı Basin.

Table 2. Paleomagnetic directions in the Çankırı Basin.

Site n/N Age S0 DBTC IBTC k α95 DATC IATC k α95 Rot (°) Err (°)

BO01 7/18 Upp. Miocene 320, 10 330.9 49.7 50.4 8.6 329.2 39.8 50.3 8.6 –30.8 11
BO02_n* 21/64 Upp. Miocene Variable 15.7 44.7 34.8 5.5 356.9 45.7 44.1 4.8 –3.1 7
BO02_r 8/64 Upp. Miocene Variable 182.5 –76.7 12.6 16.2 152.9 –57.1 25.1 11.3 –26.1 21
BO03 13/13 Upp. Miocene 178, 27 10.8 35.1 17.9 10.1 19.9 60.9 17.9 10.1 19.9 21
BO04 20/23 Upp. Miocene Sub-hor. 6.9 45.7 31.7 5.9 6.9 45.7 31.7 5.9 6.9 8
SU01 8/8 Upp. Miocene Variable 205.3 –53.9 110.4 4.6 201.7 –48.6 110 4.6 25.8 22
SU02 9/12 Upp. Miocene 348°, 10° 196.9 –56.7 60.6 6.7 191.2 –47.7 60.5 6.7 11.2 10
TU01 23/24 Upp. Miocene 40°, 20° 11.5 71.5 19.9 7 25.6 52.8 19.8 7 25.6 12

UR 6/? Upp. Miocene ? 353.1 34.9 58.8 8.8 356.5 43.9 58.8 8.8 –3.5 12
ESK 7/? Upp. Miocene ? 296.9 37.8 60.4 7.8 297.4 39.2 60.4 7.8 –62.6 10
KUC 7/? Mid. Miocene ? 161.8 –56.2 102.4 6.0 178.5 –59.8 102.4 6 –1.5 12
HAL1 5/? Mid. Miocene ? 198.5 6.1 55.3 10.4 196.9 –21.8 55.3 10.4 16.9 18
KAL 6/? Oligocene ? 357 12.5 88.3 7.5 353.5 33 88.3 7.2 –6.5 9
YES 6/? Oligocene ? 53.8 –17.9 83.5 7.4 51.6 22.2 83.5 7.4 51.6 8
DAN 5/? Oligocene ? 347.9 37.6 20.4 17.3 356.3 29.2 20.4 17.3 -3.7 20
GUV 7/? Oligocene ? 120.9 –45.8 378.8 3.1 144.1 –35.6 378.8 3.1 –35.6 3,8

HAM3 5/? Oligocene ? 184.8 –44.8 103.9 7.5 178.1 –28.1 103.9 7.5 –1.9 8
INC3 7/? Oligocene ? 15.6 19.7 35.4 10.3 18.6 44.3 35.4 10.3 18.6 14

HAM2 7/? Oligocene ? 331.7 15.7 72.4 7.1 326.6 14.4 72.4 7.1 –33.4 7
SUN 8/? Eocene ? 153.1 16.4 51.8 7.8 152.9 –12.6 51.8 7.8 –27.1 8
INC2 4/? Eocene ? 207.3 20 187.1 6.7 208.7 –12.5 187.1 6.7 28.7 7

n/N = number of stable directions/total number of demagnetized samples at each site; D, I = site-mean declinations and inclinations 
calculated before (DBTC, IBTC) and after (DATC, IATC) tectonic correction; k and α95 = statistical parameters after Fisher (1953); S0 = bedding 
attitude (azimuth of the dip and dip values). Sites with asterisk have been discarded because of magnetic overprint; ? refers to missing 
information from original paper of Kaymakçı et al. 2003.
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Based on paleomagnetic and structural evidences, 
Kaymakçı et al. (2003) proposed an indentation model 
to explain the tectonic evolution and Ω-shape of the 
Çankırı Basin. Due to the irregular nature of the indenting 
Kırşehir Block in its northern part, intense deformation 
resulted both within the Sakarya continent and in the infill 
of the Çankırı Basin. This resulted in thrusting and strike-
slip faulting, which caused the rotation of the rims of the 
Çankırı Basin and the acquisition of its characteristic 
Ω-shape. According to this model, counterclockwise 
rotations should have occurred in the western margin of 
the basin and clockwise rotations in the eastern sector 
during Eocene and Oligocene times, whereas during the 
Miocene no significant rotations should be expected in 
the basin. Our paleomagnetic data come from Miocene 
sedimentary sequences outcropping in the northern 
and central part of the basin. These data add to those 
published by Kaymakçı et al. (2003), both in terms of 
age and geographic distribution, and they increase the 

paleomagnetic dataset available for constraining the 
tectonic evolution of the Çankırı Basin. The collective 
pattern of paleomagnetic rotations is shown in Figure 7 
and in Table 2. In the following discussion, we evaluate 
these results in terms of geographic and age distribution 
of the paleomagnetic rotations to test the reliability of the 
indentation model proposed by Kaymakçı et al. (2003).

The age distribution of paleomagnetic rotations is 
shown in Figure 8a. In this diagram, we report the amount 
of paleomagnetic rotations (indicated by the modulus of 
rotation, without any distinction between CW and CCW 
rotations) versus the age of the sampled sites. The mean 
rotation values calculated for Eocene, Oligocene, and 
Miocene sites provide no evidence for any progressive 
decrease in the amount of paleomagnetic rotations between 
Eocene and Miocene times. In fact, when all the data are 
considered together, the mean rotations for Eocene and 
Late Miocene sites are 28° and 22°, respectively, which 
indicates that significant paleomagnetic rotations occurred 
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after Late Miocene times. In the model of Kaymakçı et al. 
(2003), the indentation started before Eocene and ended 
before Miocene times. However, our results indicate that 
the deformation processes were still active at the end of 
the Late Miocene and imply that the timing of the tectonic 
processes in this area requires revision.

The geographic distribution of the paleomagnetic 
rotations is also evaluated along 2 different profiles. The 
first is NNW-SSE oriented (Figure 8b), whereas the second 
is WSW-ENE oriented (Figures 8c and 8d). In the NNW-
SSW profile, large paleomagnetic rotations have been 
observed in almost all the sites (the ones included in the 
gray area in Figure 7) from the central and northern sector 
of the basin, whereas no paleomagnetic rotations have 
been measured in most of the sites from the southern part 
of the basin, with the exception of those sites located close 
to the western and eastern margins (not included in the 
Figure). In the southern profile (Figure 8c), 2 different 
sectors can be observed. These comprise: 1) the central 
part of the basin, where no significant paleomagnetic 
rotations have been measured, and 2) the western and 
the eastern tectonic margins, with each characterized 
by opposite tectonic rotations within very narrow 
areas. Conversely, in the northern transect (Figure 8d), 
significant paleomagnetic rotations have been observed 
at almost all the sites, indicating that in this portion of 
the basin, tectonic rotations have been more important 
compared to the southern part. These paleomagnetic data 
suggest an alternative model for the tectonic evolution of 
the Çankırı Basin since the late Miocene. 

Along the ENE-WSW–oriented northern margin of 
the basin, clockwise paleomagnetic rotations have been 
measured in most of the paleomagnetic sites (Figure 7). 
This margin developed parallel to the main strand of the 
right-lateral North Anatolian Fault (NAF), suggesting 
that the measured CW rotations could be due to localized 
deformation related to a post-Late Miocene right-lateral 
reactivation of this basin tectonic boundary. At the same 
time, counterclockwise rotations, measured along the 
N-S–oriented western margin of the basin, appear to 
be related to a left-lateral motion of the main tectonic 
elements, which form the basin margin in this area. 
These observations suggest that, since the Late Miocene, 
paleomagnetic rotations in the Çankırı Basin have been 
mainly controlled by strike-slip motions along the basin 
margin, probably connected with the formation and 
activity of the NAF. Moreover, paleomagnetic rotations do 

not seem to be related to the indentation of the Kırşehir 
Block against the Sakarya continent, which resulted in the 
Ω-shape of the Çankırı Basin. In fact, the large curvature of 
the tectonic structures that define the margins of the basin 
does not correspond to large, opposite, paleomagnetic 
rotations within the basin. One possible explanation could 
be that the Çankırı Basin, located in the thrust footwall, 
was not involved in major paleomagnetic rotations (Figure 
6h); during the indentation process these could have been 
concentrated along the hanging wall of the ophiolitic 
thrusts that form the main tectonic boundary of the basin.

6. Conclusion
Paleomagnetic data from the Çankırı Basin show that the 
timing and geographic distribution of tectonic rotations 
are not compatible with the indentation model proposed 
by Kaymakçı et al. (2003). In fact, the distribution of 
tectonic rotations is not symmetrical within the basin and 
they also influenced Late Miocene continental sediments, 
and they are therefore younger than originally supposed 
by Kaymakçı et al. (2003). Furthermore, paleomagnetic 
rotations appear to increase from the southern portion of 
the basin toward the north and from the central part toward 
the basin margins. This geographic and age distribution 
can be reasonably explained in terms of post-Late Miocene 
reactivation of the Çankırı Basin margins, possibly related 
to the activity on the right-lateral North Anatolian strike-
slip fault. With this tectonic interpretation, the complex 
pattern of paleomagnetic rotations appears to be connected 
with a local block-rotation mechanism due to the activity 
of faults with the strike-slip component of motion along 
the tectonic margins of the Çankırı Basin.
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