
1020

http://journals.tubitak.gov.tr/earth/

Turkish Journal of Earth Sciences Turkish J Earth Sci
(2013) 22: 1020-1032
© TÜBİTAK
doi:10.3906/yer-1204-4

Computation of grade values of sediment-hosted barite deposits in northeastern Isparta 
(western Turkey)

Numan ELMAS1,*, Uğur ŞAHİN2

1Regional Directorate of Public Highways, Investigation Department, Hasdal, İstanbul, Turkey
2Rochester Institute of Technology, Multi-Agent Bio-Robotics Laboratory, Rochester, NY, United States

*	Correspondence: elmasnuman@yahoo.com 

1. Introduction 
Grade estimation of mineral resources is essential for 
economic planning in the mineral industry. The grade 
values are used seriously for production scheduling and 
mine planning. In practice, the true value of an ore body 
is never exactly known until it is mined out. Mining 
investment costs can be decreased using feasible grade 
estimation methods. Grade estimation contains many 
uncertainties, which may be due to the sampling, the 
natural characteristics of an ore deposit, and the analytical 
error of the chemical and mineralogical analyses (Tütmez 
2007). This uncertainty factor in grade estimation leads 
to the need to develop new estimation methodologies 
by which financiers and managers can be assisted in 
evaluating their mining projects with a minimum risk of 
incorrect prediction (Pham 1997).

Dealing with these uncertainties using different 
mathematical methods has been discussed in detail 
(Bardossy & Fodor 2001). A number of methods such 
as geometrical and geostatistical approaches have been 
developed for the purpose of grade estimation. Geometrical 
methods (David 1977) depend on geometrical relationships 
between sample points, while geostatistical methods 
(Journel & Huijbregts 1981; Goovaerts 1997) are based on 

random functions and consider spatial relationship of the 
sample data used in the analysis (Tütmez 2007). The most 
important shortcoming of the geostatistical methods is the 
amount of data. In the case of small deposits, the number of 
boreholes is not sufficient for the calculation of acceptable 
variograms. Therefore, geostatistical methods cannot 
be applied in small deposits. Bardossy and Fodor (2004) 
have also discussed the advantages and disadvantages of 
geostatistical methods for reserve estimation and they 
stressed that geostatistical methods have some limitations. 
Geostatistical calculation needs suitable computer 
programs and a considerable mathematical background. 
Additional limitations of geostatistics were pointed out in 
detail by Diehl (1997). 

On the other hand, the applicability of new 
mathematical methods in geological estimations has 
been discussed in detail by Bardossy & Fodor (2001). 
One of these mathematical methods, fuzzy set and fuzzy 
modeling theory, which provides new tools for describing 
uncertain systems using rule bases and new techniques 
for the inference mechanism, has been applied in reserve 
estimation (Pham 1997; Tütmez 2007; Tütmez & Dağ 
2007). Fuzzy set theory plays an important role in dealing 
with uncertainty when making decisions in applications 
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(Dubois & Prade 1998; Kuncheva et al. 1999; Nauck 
& Kruse 1999). Fuzzy modeling for grade and reserve 
estimation is a very effective method for mining cost 
assessments (Pham 1997; Bardossy & Fodor 2001; Tütmez 
et al. 2007). Integrating geostatistical concepts with fuzzy 
set theory (Bardossy et al. 1990) is a novel direction, and 
the application of fuzzy modeling in reserve estimation 
is very limited. In the literature, Pham (1997) estimated 
unknown ore grades within a mining deposit in a fuzzy 
environment using fuzzy c-means clustering and a fuzzy 
inference system. Galatakis et al. (2002) performed a study 
for lignite quality estimation using a neural-fuzzy system. 
The main shortcomings of these works were that the 
spatial variability of data values could not be used in the 
algorithms. However, the spatial positions of data directly 
connected with data values (grades) are very important 
for reserve estimation (Tütmez 2007). Recently, Luo and 
Dimitrakopoulos (2003), Bardossy et al. (2003), Bardossy 
& Fodor (2005), and Tütmez (2005) have applied the fuzzy 
set theory in resource estimation and mathematically 
evaluated the spatial continuity of ore bodies by using 
fuzzy sets. Similarly, Tutmez et al. (2007) carried out a 
study that tried to combine fuzzy algorithms and spatial 
variability in reserve estimation.

The other technique emerging as an alternative in recent 
times is artificial neural network (ANN) models. ANNs 
have been applied successfully to many problems. Zhang et 
al. (2007) implemented ANNs for coal mining information 
fusion. Al Thyabat (2008) used ANN for the optimization 
of froth flotation. Çilek (2002) investigated the application 
of back propagation (BP) networks in order to predict the 
effect of changing flotation variables on the number of 
cleaning and scavenging stages in a continuous flotation 
circuit. Nakhhei et al. (2012) investigated metallurgical 
performance (grade and recovery) forecasting of pilot 
plant flotation columns by using ANN and multivariate 
non-linear regression (MNLR) models.

 The advantages of both artificial neural networks 
and fuzzy logic (FL) are combined in the architecture of 
adaptive neuro-fuzzy inference systems (ANFIS). ANFIS 
uses a hybrid-learning algorithm to identify parameters 
of Takagi–Sugeno-type fuzzy inference systems. It applies 
a combination of the least-squares method and the 
BP gradient descent method for training membership 
function (MF) parameters to emulate a given training 
data set (Soygüder & Alli 2009). Tahmasebi & Hezarkhani 
(2010, 2012) introduced a new neuro-fuzzy method based 
on ANN and FL called coactive neuro-fuzzy inference 
system (CANFIS), which combines the 2 approaches of 
ANN and FL, and was carried out through a case study 
in the Sungun copper deposit located in East Azerbaijan, 
Iran.

The present study investigates the grade estimation of 
barite mineral based on ANFIS and ANN using spatial 

coordinates (UTM) along with borehole geochemical 
input data. The study is the first crucial investigation for 
barite grade estimation in western Turkey. To identify the 
relationship between spatial variability and grade value, 
an ANN and a Takagi–Sugeno type fuzzy model were 
constructed and the parameters were obtained from data 
values that describe the system behavior. A systematic 
data-driven procedure based on spatial variability for grade 
estimation was developed. A case study was conducted 
on the prediction of barite grade values in the western 
Turkey (Isparta) barite deposits. Spatial relationships with 
the grade value are used in each stage of the model. It 
is also suitable for grade estimation of any other type of 
mineral deposits. Mineable and economic reserves can be 
also calculated by the method suggested here. Finally, the 
estimation results can serve as a basis for risk calculations 
of mining investments as well.

2. Depositional characteristics
In the western Turkey (Isparta) barite deposits (Figure 1), 
barite was mainly deposited in 2 sections: northwestern 
and southeastern deposits. The northwestern section 
deposits (Dikmentepe, Ekiztepe, Subaşıpınarı, Cemil 
Yaşar, and Kızıllıktepe) have not been mined due to the 
low-grade values of the barite. However, the southeastern 
section deposits (Kuyucak, Kıpçak, Başkoyak, and Yellice) 
are being mined. The barite deposits consist of layers, 
lensoids, and occasional veins, and are associated with 
carbonate and pelitic host rocks of Cambrian–Ordovician 
age in the Sultan Mountain metamorphic sequences 
(Ayhan 1986). The barite grade is above 90% especially in 
the southeastern part. 
2.1. Geological setting
The barite deposits of the study area (Figure 1) occur 
in Early Paleozoic (Cambrian–Early Ordovician) host 
rocks (Cortecci et al. 1989; Zedef et al. 1995; Sharma et 
al. 2006). The stratigraphic units of Early Paleozoic age 
consist of carbonate and slightly metamorphic rocks. 
The carbonate rocks (Çaltepe Formation) consist of 
dolomite and limestones. The slightly metamorphic rocks 
(Sultandede Formation) are basically divided into 2 units: 
Seydişehir metamorphics (schist, calc-schist, phyllitic 
schist, metalimestone, and metasandstone) and Sariyayla 
limestone (Demirkol 1982; Özgül et al. 1991). Thickly 
layered barites were hosted by the meta-limestone and calc-
schist of the Seydişehir metamorphics (Demirkol 1977; 
Özgül et al. 1991). The Mesozoic Hacıalabaz Formation 
consists of dolomite, limestone, and basic intrusive rocks. 
It does not include barite mineralization (Öncel 1995). 
The Miocene Bagkonak Formation comprises terrestrial 
uncompacted sediments such as gravel, sand, silt, and clay. 
2.2. Grade properties  
Barite grade properties depend on their geological, 
geochemical, and structural characteristics. These barite 
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deposits were rotated by NW–SE faults that formed 
after the mineralization (Koçyiğit 1983). Contaminants 
can penetrate to the ore body by means of faults, folds, 
fractures, etc. (Cortecci et al. 1989; Maynard & Okita 1991; 
Arehart 1998; Bozkaya & Gökçe 2004). Thinly layered 
folded barites and thickly layered fractured, faulted and 
brecciated barites have low BaSO4 grade values because 
of ferric oxide contamination (Zimmerman 1969; Ayhan 
2001). The amount of gangue minerals (Pb, Zn and Cu-
sulfides, Fe-oxides, quartz, Ca-, Cu-, and Fe-carbonates) 
can also reduce the grade values of barite deposits.

The southeastern barite deposits have higher grade 
values than the northwestern barites. The highest grade 
values were estimated in Yellice (97.56%), Başkoyak 
(95.56%), and Kıpçak (94.65%), while minimum grade 
values were estimated in the Dikmentepe deposit (76.08%) 
(Table 1). All of the contaminants cause the reduction of 
grade and quality of the barite ores. Sulfide contaminations 
of barite, primarily in the form of galena and to a lesser 
extent as Cu, Zn, Hg, and As sulfides, are dominantly 
observed in the northwestern deposits. Therefore, the 
mine operators abandoned these mines.

3. Methodology 
In this study, ANFIS and ANN are used for grade 
estimation of sediment-hosted barite deposits in the 
northeastern part of the Isparta ore province, using spatial 
coordinates X (easting), Y (northing), and Z (height) 
along with borehole geochemical data from working and 
abandoned barite mines. This study is the first application 
for the computation of grade values in western Anatolia. 
For the grade estimation study, 47 barite samples were 
collected from the boreholes of the deposits. 
3.1. Neuro-fuzzy modeling 
Neuro-fuzzy (NF) modeling refers to the method of 
applying various learning techniques developed in the 
ANN literature to fuzzy modeling or to a fuzzy inference 
system (FIS). ANNs are able to learn a kind of process 
connection from given examples of input–output data. 
They consist of independent processing units (neurons) 
and simulate the processing principle of biological 
networks like the human brain. A high computation rate 
and a high degree of robustness and failure tolerance are 
the advantages of ANNs. In addition, they have the ability 
to generalize and to learn adaptively (Heine 2008).

Fuzzy logic is another method of artificial intelligence. 
The key idea of fuzzy logic theory is that it allows for 
something to be partly true, rather than having to be either 
all true or all false. The degree of “belongingness” to a set 
or category can be described numerically by a membership 
number between 0 and 1. The variables are “fuzzified” 
through the use of a membership function that defines the 
membership degree to fuzzy sets. These variables are called 

linguistic variables. Membership functions are curves that 
define how each point in the input space is mapped to a 
membership value in the interval {0,1}. It can be of different 
forms including a triangle, trapezium, or Gauss curve. The 
fuzzy rule model operates on an “IF–THEN” principle, 
where the “IF” is a vector of fuzzy explanatory variables 
of premises (input) and “THEN” is fuzzy consequence or 
dependent variable (output). Fuzzy logic allows the user to 
capture uncertainties in data (Chang & Chang 2006). 

The basic structure of an FIS consists of 3 conceptual 
components: a rule base, which contains a selection of 
fuzzy rules; a database that defines the MFs used in the 
fuzzy rules; and a reasoning mechanism, which performs 
the inference procedure upon the rules to derive an 
output. FIS implements nonlinear mapping from its input 
space to the output space. This mapping is accomplished 
by a number of fuzzy if–then rules. The parameters of the 
if–then rules (antecedents or premises in fuzzy modeling) 
define a fuzzy region of the input space, and the output 
parameters (also consequents in fuzzy modeling) specify 
the corresponding output. Hence, the efficiency of the 
FIS depends on the estimated parameters. However, the 
selection of the shape of the fuzzy set (described by the 
antecedents) corresponding to an input is not guided by 
any procedure (Mehta & Jain 2009). However, the rule 
structure of an FIS makes it possible to incorporate human 
expertise about the system being modeled directly into the 
modeling process to decide on the relevant inputs, number 
of MFs for each input, and the corresponding numerical 
data for parameter estimation. In this study, the concept 
of the adaptive network, which is a generalization of the 
common back-propagation neural network, is employed 
to tackle the parameter identification problem in an FIS. 
This procedure of developing an FIS using the framework 
of adaptive neural networks is called an ANFIS (Jang 
1993). As the name suggests, ANFIS combines the fuzzy 
qualitative approach with the neural network adaptive 
capabilities to achieve a desired performance (Chang 
& Chang, 2006). The details of adaptive networks have 
been described by researchers (Jang 1993) and a novel 
architecture and learning procedure for the FIS that uses 
a neural network learning algorithm for constructing a 
set of fuzzy if–then rules with appropriate MFs from the 
stipulated input–output pairs has been introduced (Jang 
1993; Jang & Sun 1995; Mehta & Jain 2009). In this study, 
the well-known adaptive algorithm called ANFIS is used 
with the aid of the Matlab Fuzzy Logic Toolbox.
3.2. Model architecture
1. ANN model: ANNs are computing systems made up of a 
large number of firmly interconnected adaptive processing 
elements (neurons) that are able to perform massively 
parallel computations for data processing and knowledge 
representation. Learning in ANNs is accomplished 
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Table 1. Chemical compositions of the barite samples.

Region 
-sample BaSO4 BaO CaO MgO SrO SiO2 Al2O3 Fe2O3 ZnO PbO Cu Cd As Sb Bi Mo

no % % % % % % % % % % ppm ppm ppm ppm ppm ppm
DT01 76.08 49.98 2.32 0.80 2.3 3.75 0.10 0.38 0.8 9.2 600 300 250 100 45 45
DT21 76.45 50.22 0.75 0.81 2.6 0.79 0.14 0.51 0.9 9.0 610 100 240 95 45 45
DT22 77.25 50.25 1.21 0.92 2.4 2.37 0.17 0.84 1.0 7.8 590 90 250 95 40 40
DT41 78.81 51.77 0.83 0.95 4.2 0.87 0.11 0.85 1.1 7.8 595 95 240 100 40 40
DT45 78.88 51.82 0.35 0.85 3.1 1.62 0.10 0.80 1.0 8.1 600 110 260 95 45 45
DT07 80.87 53.13 1.25 0.83 2.3 1.60 0.10 0.75 1.0 9.1 610 110 260 100 50 40
DT17 80.56 52.92 0.25 0.86 3.2 0.83 0.15 0.85 1.1 6.2 590 95 260 95 45 35
DT23 75.92 50.05 0.75 0.89 3.5 0.95 0.20 0.87 1.2 6.4 620 96 258 98 50 35
DT33 79.12 51.80 0.30 0.85 3.4 0.80 0.20 0.84 1.0 6.1 600 100 250 95 45 40
BE03 87.55 57.52 2.91 0.55 2.1 0.57 0.21 0.70 0.6 2.0 550 80 175 85 95 60
BE11 88.68 58.26 3.93 0.57 4.0 0.45 0.16 0.70 0.6 2.0 550 75 185 85 95 60
BE21 89.25 58.63 2.07 0.63 2.8 0.53 0.28 0.30 0.6 2.0 500 85 180 87 95 65
BE03 90.15 59.22 1.05 0.54 2.8 0.48 0.31 0.60 0.5 1.9 575 90 175 87 90 65
KE14 90.38 59.37 0.85 0.45 3.2 0.67 0.24 0.60 0.5 1.9 550 70 170 82 90 70
KE16 91.32 59.99 1.33 0.58 2.7 0.85 0.11 0.70 0.6 1.8 575 75 170 82 95 65
KE23 90.75 59.62 1.45 0.45 3.4 1.13 0.12 0.70 0.6 2.0 575 85 165 86 95 60
KE04 91.85 60.34 1.02 0.52 3.3 1.32 0.10 0.60 0.7 2.1 500 90 190 87 85 60
SP01 83.38 54.78 0.74 0.94 4.2 2.05 0.26 0.80 0.7 4.5 700 75 190 120 115 90
SP12 84.37 55.43 0.82 0.91 4.1 2.35 0.20 0.80 0.7 4.5 710 70 190 110 110 95
SP22 88.12 57.93 0.95 1.08 4.6 2.69 0.27 0.81 0.6 5.6 700 72 195 120 120 90
SP33 83.80 61.21 0.88 0.90 4.2 2.36 0.24 0.80 0.7 4.8 720 70 190 125 115 95
CY01 85.86 56.41 2.85 0.95 4.3 0.75 0.07 0.70 0.7 3.6 720 70 195 110 110 95
CY02 86.82 57.04 1.96 0.97 4.5 3.18 0.08 0.70 0.6 4.5 720 68 185 120 110 90
CY03 84.70 60.35 2.15 0.95 4.6 2.88 0.09 0.75 0.7 4.5 730 70 185 120 115 95
CY13 87.67 57.59 1.18 0.95 4.3 1.28 0.10 0.80 0.7 4.5 710 72 185 125 115 85
KT01 89.69 58.92 0.78 0.85 4.7 2.12 0.15 0.85 0.8 4.6 700 74 190 125 115 80
KT21 88.18 57.93 0.55 0.90 4.1 0.86 0.12 0.85 0.8 4.5 710 68 180 120 115 95
KT 31 88.36 58.25 0.70 0.85 4.5 1.95 0.18 0.82 0.8 4.2 700 75 195 125 115 90
KT 41 88.45 58.30 0.75 0.85 4.5 1.90 0.20 0.85 0.8 4.2 700 73 190 125 120 85
KT 51 87.65 57.95 1.00 0.90 4.0 1.90 0.25 0.85 0.9 4.1 720 75 190 125 120 85
Y011 97.15 63.82 2.83 0.05 0.8 0.25 0.18 0.80 0.4 0.2 400 25 100 65 80 45
Y025 96.47 63.38 1.82 0.08 1.2 0.08 0.68 0.70 0.5 0.5 450 45 120 75 70 40
Y030 96.80 63.42 1.80 0.08 1.1 0.08 0.70 0.70 0.5 0.5 450 45 120 75 70 40
Y035 95.92 62.15 1.00 0.06 1.2 0.09 0.70 0.70 0.5 0.5 450 45 120 75 70 40
Y012 97.56 63.88 2.01 0.05 1.0 0.09 0.75 0.70 0.5 0.5 450 45 120 75 70 40
B001 95.56 62.78 0.71 0.04 1.6 0.93 0.05 0.90 0.3 0.4 400 36 110 70 70 45
B002 94.80 62.20 0.75 0.05 1.5 0.95 0.05 0.95 0.4 0.4 450 38 115 70 70 45
B003 94.72 62.18 0.75 0.05 1.6 0.95 0.05 0.95 0.4 0.4 450 40 110 75 70 45
KP02 94.65 62.18 0.83 0.02 1.4 0.85 0.07 0.95 0.3 0.5 375 37 95 60 85 45
KP22 94.58 62.13 0.97 0.03 1.0 0.25 0.09 0.75 0.5 0.5 390 15 95 65 65 35
KP25 94.26 61.85 0.95 0.04 1.2 0.32 0.08 0.75 0.5 0.5 420 15 95 60 70 40
KP30 95.52 62.58 0.65 0.04 1.5 0.65 0.09 0.80 0.6 0.5 450 25 90 55 75 45
KU12 92.76 60.94 1.02 0.08 1.1 3.32 0.31 0.82 0.3 0.2 350 28 100 60 90 38
KU14 91.48 60.10 0.63 0.03 0.8 3.63 0.64 0.75 0.3 0.4 400 35 110 65 90 45
KU25 90.08 59.18 0.99 0.03 1.4 2.05 0.69 0.75 0.4 0.6 425 40 115 65 85 45
KU27 94.15 61.75 0.95 0.05 1.3 1.80 0.59 0.70 0.3 0.6 400 40 110 60 85 45
KU31 93.28 60.85 0.95 0.05 1.4 1.65 0.50 0.80 0.4 0.8 450 40 115 65 85 45
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through special training algorithms developed based 
on learning rules presumed to mimic the learning 
mechanisms of biological systems. ANNs can be trained 
to recognize patterns and the nonlinear models developed 
during training allow neural networks to generalize 
their conclusions and to make applications to patterns 
not previously encountered (Haykin 1994; Chaudhuri & 
Bhattacharya 2000).

A multilayer perceptron (MLP) has features such as 
the ability to learn and generalize, smaller training set 
requirements, fast operation, and ease of implementation, 
which make it the most commonly used neural network 
architecture. Currently, the most widely used ANN type is 
a MLP that has been playing a central role in the application 
of neural networks. The MLP is a nonparametric technique 
for performing a wide variety of detection and estimation 
tasks. In the MLP, each neuron j in the hidden layer sums 
its input signals xi after multiplying them by the strengths 
of the respective connection weight wji and computes its 
output yj as a function of the sum

( )y f w xj ji i= R  	 (1)

where  f  is the activation function that is essential to 
transform the weighted sum of all signals mapping onto 
a neuron. The activation function (f) can be a simple 
threshold function, or a sigmoid, hyperbolic tangent, or 
radial basis function. The sum of the squared differences 
between the desired and actual values of the output 
neurons E is defined as

2
1 ( – )E y y 2

j dj j= R  	 (2)

where ydj is the desired value of output neuron j and yj is 
the actual output of that neuron. Each weight wji is adjusted 
to reduce  E  as rapidly as possible. How wji  is adjusted 
depends on the training algorithm adopted (Basheer & 
Hajmeer 2000; Guler & Ubeyli 2005; Zhihong & Zhizeng 
2008).

Usually, a network consists of 1 input layer, 1 output 
layer, and 1 or 2 hidden layers. Each connection is associated 
with a connection weight. During the learning phase, the 
network is presented with a set of known input and output 
values called patterns. Using an optimal learning algorithm 
(a gradient descent back-propagation algorithm for this 
study), the weights are modified iteratively, and after a 
number of iterations they get adjusted in such a way that 
when the input values are presented, the network produces 
outputs that are close to their actual output values.

2. ANFIS model: To present the ANFIS architecture, 
let us consider 2 fuzzy rules based on a first order Sugeno 
model:

1: ( ) ( )
: ( ) ( )

Rule if x is A and y is B then f p x q y r
Rule if x is A and y is B then f p x q y r2

1 1 1 1 1 1

2 2 22 2 2

= + +
= + +

The ANFIS architecture to implement these 2 rules 
is shown in Figure 2. Note that a circle indicates a fixed 
node whereas a square indicates an adaptive node (the 
parameters are changed during adaptation or training). In 
the following presentation, Oli denotes the output of node  
i in layer 1.

Layer 1: All the nodes in this layer are adaptive nodes. 
The output of each node i is the degree of membership of 
the input to the fuzzy MF represented by the node:

( ), ,
( ), 1,2

O x i
O x i

3 4
1,

1,

i Ai

i iB 2= =
= =n

n -

Ai and Bi can be any appropriate fuzzy sets in parameter 
form. For example, if the Gauss MF is used, then

( )x e ( )
Ai a

x c 2

i

i

=n -
-

where ai and ci are the parameters for the MF.
Layer 2: The nodes in this layer are fixed (not adaptive). 

They are labeled M to indicate that they play the role of a 
simple multiplier. The outputs of these nodes are given by:

(x)O w (x), i ii i A B2 n= = n 	 i = 1,2,

A 1

A 2

B 1

B 2

M

M

N

N

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

x

y

f

w1 w1
w1 1f

w1 2f
w2 w2 

S

Figure 2. ANFIS architecture. A circle indicates a fixed node whereas a square indicates 
an adaptive node (the parameters are changed during adaptation or training).
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The output of each node in this layer represents the 
firing strength of the rule.

Layer 3: Nodes in this layer are also fixed nodes. They 
are labeled N to indicate that they perform a normalization 
of the firing strength from the previous layer. The output of 
each node is given by:

O w
w w

w
3,i

1 2

1= =
+

		  i = 1,2,

Layer 4: All the nodes in this layer are adaptive 
nodes. The output of each node in this layer is simply the 
product of the normalized firing strength and a first order 
polynomial (for a first order Sugeno model):

wO f w (p x q y r)4,i i i i i i= = + + 	 i = 1,2,

where pi, qi, and ri are design parameters (referred to as 
consequent parameters since they deal with the “then” part 
of the fuzzy rule).

Layer 5: This layer has only 1 node labeled S to indicate 
that it performs a simple summing function. The output of 
this single node is given by:

O w f
w

w f
5,i i i

i i

i i

i
i= =R
R

R
		  i=1,2,

The ANFIS architecture is not unique. Some layers 
can be combined and still produce the same output. 
In this ANFIS architecture, there are 2 adaptive layers 
(layers 1 and 4). Layer 1 has 2 modifiable parameters (ai 
and ci) pertaining to the input MFs. These parameters are 
called premise parameters. Layer 4 also has 3 modifiable 
parameters (pi, qi and ri) pertaining to the first order 
polynomial. As mentioned earlier, these parameters are 
called consequent parameters. The task of the training or 
learning algorithm for this architecture is to tune all the 
modifiable parameters to make the ANFIS output match 
the training data. If these parameters are fixed, the output 
of the network becomes:

f

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ff
w w

w
w w

w

w f w f w p x q y r w p x q y r

w x p w y q w r

w x p w y q w r

1 2

1
1

1 2

1
2

1 1 2 2 1 1 1 1 2 2

1 1 1 1 1 1

2 2 2 2 2 2

=
+

+
+

=

+ = + + + +

= + + +

+ +

which is a linear combination of the modifiable 
parameters. Therefore, a combination of gradient descent 
and the least-squares method can easily identify the 
optimal values for the parameters pi, qi and ri. However, 
if the MFs are not fixed and are allowed to vary, then 
the search space becomes larger and, consequently, the 
convergence of the training algorithm becomes slower 
(Jang 1992). A hybrid algorithm combining the least-

squares method and the gradient descent method was 
adopted to solve this problem. The hybrid algorithm is 
composed of a forward pass and a backward pass. The 
least-squares method (forward pass) is used to optimize 
the consequent parameters with the premise parameters 
fixed. Once the optimal consequent parameters are found, 
the backward pass starts immediately. The gradient descent 
method (backward pass) is used to optimally adjust the 
premise parameters corresponding to the fuzzy sets in 
the input domain. The output of the ANFIS is calculated 
by employing the consequent parameters found in the 
forward pass. The output error is used to adapt the premise 
parameters by means of a standard back-propagation 
algorithm. It has been proven that this hybrid algorithm 
is highly efficient in training the ANFIS (Jang 1993; Jang 
& Sun 1995). Therefore, in this study, the proposed ANFIS 
model was trained with the back-propagation gradient 
descent method in combination with the least-squares 
method.

4. Results and discussion
4.1. Application for barite grade estimation
For grade estimation using a neural network, 3D spatial 
coordinates were used as input variables, and grade 
attribute was used as an output variable for the respective 
data sets. The complex spatial structure between input and 
output patterns is captured through a network via a set of 
connection weights that are adjusted during the training 
of the networks. The network captures an input–output 
relationship through training and acquires a certain 
prediction capability so that for a given input the network 
produces an output (grade).

The network consisted of an input layer containing 
3 input nodes (for the 3 spatial coordinates), an output 
layer consisting of an output node corresponding to 
grade attribute, and a hidden layer composed of 11 nodes. 
Logistic activation was used in both the hidden and output 
nodes. It can be noted that while the numbers of input 
and output nodes for a given problem are fixed, the user 
has the flexibility to change the number of hidden nodes 
according to the neural network performance. After trial 
and error testing, 11 hidden nodes were chosen, which 
resulted in the minimum average error rates in the testing 
set.

The best network geometry was chosen according to 
the highest correlation and the lowest root mean square 
error (RMSE). When the training was completed, the 
network was tested for its learning and generalization 
capabilities. The test for generalization ability was carried 
out by investigating its capability to predict the output sets 
that were not included in the training process. For this 
purpose, about 7 new data had been selected. The results 
of the agreement between the measured and predicted 
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values of the output nodes and the prediction error values 
are shown in Figure 3. The proposed model demonstrated 
the ability of a feed-forward BP neural network to predict 
the grade value with sufficient accuracy. The model 
performed quite well in predicting not only the efficiency 
of the treatment of the data used in the training process, 
but also that of test data that were unfamiliar to the neural 
network.

For the fuzzy model, various NF model architectures 
were tried and the appropriate model structure was 
determined by comparing them all using the same 
statistical parameters, which are given in Table 2. It is 
possible to estimate the grade from the spatial variables 
X, Y, and Z. The spatial coordinates were normalized to a 
0–1 interval. 

For each input variable, gaussian-type MFs were used 
and the range of the inputs was divided into the 6 fuzzy 
subsets VL = very low, L = low, M = medium, FM = fairly 
medium, H = high, and VH = very high, after trying other 
alternatives for the MF number (Figure 3). 

In the parameter estimation process performed by 
ANFIS, the 47 data values recorded in different sections 
of the region (Figure 4) were divided into 3 independent 
subsets: training, verification or checking, and testing. The 
training subset included 29 data points, the verification 

subset had 11, and the testing subset had the remaining 
7. First, the training subsets were repeatedly used to 
build a NF model and to adjust the connected weights 
of the constructed networks. Afterward, the verification 
subset was used to simulate the performance of the built 
models to check their suitability for generalization, and 
the best fuzzy model was selected for further use. The 
testing data values were then used for final evaluation of 
the selected network performance. It is worth mentioning 
that the testing values must be unseen by the model in 
the training and verification phases. All data values were 
selected randomly. Statistically, 47 data values are enough 
to deduce scientifically significant conclusions but the 
number of data depends on the event and the model used 
as well. For instance, the greater the serial correlation, the 
lower is the amount of data needed in any model study. On 
the other hand, in some investigations the data cannot be 
obtained easily or economically, which does not mean that 
the model cannot be constructed. This last statement is 
particularly valid for ANN and FL modeling. In the ANN 
approach, the system is trained in such a manner that the 
available data are digested by the system weightings with a 
minimum total square error. In FL modeling, the number 
of data points required can be even smaller because the 
spread of odd data domain is covered by membership 
functions (Figure 5). 

Inputs Inputs mf
rule Output mf

Output

x

y

z

Grade value

Figure 3. The structure of an ANFIS model for grade value, trained for 200 epochs.

Table 2. Evaluation of the ANFIS and ANN model performances.

ANFIS ANN

Training data Testing data Training data Testing data

CC 0.97 0.95 0.94 0.92
VAF 0.93 0.89 0.87 0.84

RMSE 1.07 2.17 2.18 2.71
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Additionally, linguistic information can also be used 
in the rule base, which reduces the level of the data 
requirement. Although in general there is a disadvantage 
to using a limited database, it is less problematic in ANN 
and especially FL modeling where the rule base covers 
many deficiencies of the database. The MFs for input 
variables are shown in Figure 5, and the rules related to the 
proposed model can be given as follows in the rule base. 
4.2. Rule base 
The result estimations from the ANN and ANFIS models 
for the measured data samples are compared in Table 3. 
The first 6 rules were obtained by applying the ANFIS 
procedure. The formed ANFIS model was trained for 200 
epochs and the structure of the ANFIS model is presented 
in Table 4. However, the NF model gave unacceptable 
values for the Quaternary and Mesozoic regions. Therefore, 
the last 3 rules were added for this region by using expert 
knowledge. 

To obtain an objective perspective of the performance 
of both models, RMSE, correlation coefficients (CC), 

and variance accounted for (VAF) statistics were used as 
evaluation criteria. 

The ANFIS and ANN models were compared according 
to performance and the results are summarized in Table 
2. It appears that the ANFIS models are accurate and 
consistent in different data subsets, where all the values of 
the RMSE are smaller than the ANN values, all CCs are 
also very close to unity, and the VAF value is higher than 
the ANN value. These results might also suggest that the 
ANFIS has a greater ability to learn from the input–output 
patterns, which show the coordinates are lumped effects 
on grade estimation, than the ANN ones. 

Figures 6a and 6b show the success of matching the 
measured and estimated grade values computed with the 
ANFIS and ANN models in terms of a scatter diagram 
with respect to combined training–validation data sets and 
testing phases, respectively. The figures nicely demonstrate 
that the NF model performance is generally accurate, as 
all data points roughly fall onto the line of agreement. As 
seen from the fit line equations and scatter plots in Figure 
6 (the equation is in the form of y = a0x + a1), the a0 and 
a1 coefficients for the NF model are, respectively, closer 
to 1 and 0 with the determination coefficient (R2) value of 
0.9418 for the training–validation samples and 0.908 for 
the testing samples. The spatial variation of the observed 
grade value of the barite deposit and the estimates by using 
the fuzzy techniques for all the samples are plotted in Figure 
6. It can be seen from these graphs that the fuzzy estimates 
follow the observed values very closely. Figure 7 shows 
both ANFIS and ANN performance for the measured 
values. In addition, the 3D variogram of the ANFIS model 
suggests that grade estimation values of the barite samples 
are consistent with the measured values (Figure 8). The 
3D variogram also indicates the consistency of the grade 
estimation model with depositional characteristics and 
grade values of barite. 

5. Conclusions
This paper has shown how a neuro-fuzzy and artificial 
neural network system can be developed to model ore 

Easting (x)

)y( gni htr o
N

Training data Testing data
376000

372000
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364000

360000

356000
4206000 4212000 4218000 4224000 4230000

Figure 4. The parameter estimation process performed by 
ANFIS. The 47 data values recorded in different sections of the 
region are divided into training, verification or checking, and 
testing subsets.
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Figure 5. The MFs for input variables and the rules related to the proposed model.
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Table 3. Comparison of both models’ performances.

Sample X (Easting) Y (Northing) Z (Height) Grade ANFIS ANN

DT23 0.99991 0.96428 0.95808 75.97 78.09 77.56
DT01 1.00000 0.96226 0.95808 76.08 78.07 78.09
DT41 0.99991 0.96300 0.92814 78.81 77.41 80.91
DT33 0.99994 0.96410 0.95808 79.12 78.09 77.62
DT07 0.99995 0.96302 0.98204 80.87 79.16 79.17
SP12 0.99948 0.97278 0.81437 84.37 86.86 87.21
CY03 0.99937 0.97162 0.77844 84.70 85.23 86.96
CY02 0.99940 0.97183 0.83234 86.82 87.54 88.66

2.  BE03 0.99970 0.97332 0.89222 87.55 89.53 93.46
CY13 0.99937 0.97166 0.80838 87.67 86.15 88.58
SP22 0.99949 0.97299 0.82036 88.12 87.20 87.30

KT 21    0.99918 0.97347 0.80838 88.18 87.04 88.97
KT 31 0.99932 0.97504 0.86826 88.36 87.91 89.49
BE11 0.99970 0.97392 0.86826 88.68 88.98 91.84
KU25 0.99667 0.99745 0.92814 90.08 89.72 91.64
BE03 0.99962 0.97299 0.89820 90.15 89.74 92.40
KE23 0.99970 0.97282 0.88024 90.75 90.02 92.91
KE16 0.99967 0.97104 0.89820 91.32 91.34 93.33
KU14 0.99665 0.99820 0.89820 91.48 91.59 89.65
KE04 0.99973 0.97166 0.89222 91.85 91.02 94.51
KU27 0.99675 0.99946 1.00000 94.15 94.49 93.13
KP25 0.99642 0.99941 0.94611 94.26 94.85 93.80
KP02 0.99639 1.00000 0.99401 94.65 95.01 94.47
B003 0.99704 0.99098 0.86826 94.72 94.72 94.53
B002 0.99692 0.99196 0.83832 94.80 94.80 94.72
KP30 0.99645 1.00013 0.98802 95.52 95.62 95.88
Y025 0.99640 0.99973 0.97605 96.47 96.81 96.36
Y030 0.99640 0.99962 0.98204 96.80 96.28 96.08
Y012 0.99643 0.99944 0.97904 97.56 96.59 96.22
DT21 0.99995 0.96312 0.95808 76.45 78.08 77.92
DT45 0.99992 0.96243 0.97605 78.88 78.89 79.20
DT17 0.99995 0.96308 0.97605 80.56 78.89 78.67
SP33 0.99950 0.97466 0.83832 83.80 88.23 87.07
CY01 0.99946 0.97162 0.83832 85.86 88.16 88.86
KT 41 0.99905 0.97461 0.79641 88.45 87.30 88.83
BE21 0.99966 0.97254 0.89820 89.25 90.13 93.03
KE14 0.99970 0.97097 0.86826 90.38 91.51 93.54
KU12 0.99665 0.99836 0.95808 92.76 96.92 95.05
KP22 0.99637 0.99949 0.96407 94.58 97.53 95.77
B001  0.99698 0.99123 0.86826 95.56 94.77 93.85
DT22 0.99997 0.96426 0.98802 77.25 79.44 79.80
SP01 0.99949 0.97332 0.80838 83.38 86.88 86.60

KT 51 0.99901 0.97445 0.77844 87.65 86.75 88.44
KT 01       0.99912 0.97461 0.83832 89.69 88.32 90.78
KU31 0.99673 0.99906 0.98802 93.28 95.78 95.48
Y035 0.99632 0.99981 1.00599 95.92 93.75 89.17
Y011 0.99637 0.99995 0.98802 97.15 95.64 95.55
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Figure 6. Comparison of the ANFIS and the ANN model estimations in the form of a scatter diagram. 

Figure 7. ANFIS and ANN performance for measured grade values.

Figure 8. 3D variogram of the ANFIS model.  Grade estimation values of the barite samples are consistent with measured values.
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Table 4. ANFIS model structure for the grade estimation (Gauss 2mf-6).

ANFIS parameters Values
Number of nodes 54

Number of linear parameters 24
Number of nonlinear parameters 36

Total number of parameters 60
Number of training data pairs 29

Number of fuzzy rules   9
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grade spatial variability and then be used to estimate ore 
grades in unknown locations. 

The system’s architecture was explained and its main 
components were analyzed. The results obtained from 
the system have shown clearly the potential of both 
approaches, even in the case of such a complex deposit as 
the barite ores used in this paper. Also, it can be seen that 
the ANFIS application was more successful than the ANN 
model tested by both simulated and measured data. 

The ANFIS method can be efficiently used for tenor 
estimation of deposits having tabular bodies or bodies that 
do not show significant thickness and content variation. 
It should also be noted that the system was developed 
without performing any statistical analysis on the dataset 
and without using any information on its geological 
background, which shows some of the advantages over 
geostatistics.
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