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1. Introduction
Hydrothermal fluid circulation is a very dominant process 
for exchanging the heat between different geological 
units within the earth. It is well known that hydrothermal 
fluid circulation is an extremely efficient mechanism for 
the heat transfer in both the submarine environment 
and the continental environment (Williams and Von 
Herzen, 1974; Sclater et al., 1980; Stein and Stein, 1994; 
Rabinowicz et al., 1998, 1999; Yang et al., 1998; Simms and 
Garven, 2004). Fluid flow is mostly driven by the natural 
thermal gradient or local heat sources for the continental 
environment. In turn, this thermally driven convective 
circulation can strongly affect the subsurface temperature 
field (Yang et al., 1998; Simms and Garven, 2004). This 
is the case particularly for the geothermal fields where 
natural thermal convection arises from unstable variation 
of fluid density due to uneven temperature distribution. 

Due to the complexity of the present problem of 
finding temperature distributions within these geothermal 
areas, multidisciplinary approaches are usually required 
for the solution. Among them, the numerical technique is 
one of the most widely used for the solution; numerical 
computation of fluid flow involves solution of the 
coupled time dependent mass, energy conservation, and 
momentum equations subjected to the temperature and 
fluid flow boundary conditions (e.g., Fehn and Cathles, 
1979; Fehn et al., 1983; Fisher et al., 1990; Lowel et al., 
1995). A number of studies with various numerical 

techniques were conducted to characterize the convection 
in a porous layer heated from below (e.g., Elder, 1967; 
Caltagirone, 1975; Baytas and Pop, 1999; Baytaş, 2000; 
Bilgen and Mbaye, 2001; Saleh et al., 2011). Elder (1967) 
studied free convection in a porous medium uniformly 
heated from below by the finite difference method. The 
results indicated the strong dependency of the solution 
on Rayleigh numbers. Kimura et al. (1986) developed 
a technique for high Rayleigh numbers to accurately 
simulate the convection with the pseudospectral method. 
Baytaş (2000) investigated the natural convection problem 
for a tilted rectangular cavity by using the finite difference 
control volume and alternating direction implicit (ADI) 
method. 

Hydrothermal convection has also been a topic of 
many numerical studies in earth science (Lopez and Smith, 
1995; Yang et al., 1998; Simms and Garven, 2004). Many 
authors have pointed out that existence of fractures within 
geothermal areas can play an important role in shaping 
the fluid flow pattern and smoothing the progress of fluid 
flow (Lopez and Smith, 1996; Yang et al., 1998; Simms and 
Garven, 2004). Free convection in a fault zone was first 
investigated by Murphy (1979). He modeled the fault by 
a vertical porous slot with a 2D high permeability field 
enclosed by impermeable but thermally conductive walls. 
These models indicate that the strength of the convective 
flow is proportional to the Rayleigh number. Convection 
cells that depend on the physical properties of the porous 
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medium and the boundary conditions are controlled by 
the critical Rayleigh number ( ), which is the value 
for an infinite flat-lying porous medium with fixed upper 
and lower boundary temperatures (Nield and Bejan, 
1999). As the Rayleigh number increases, the convective 
circulation pattern shifts progressively from a stable state 
to an unstable state with more complicated spatial and 
temporal behavior (Nield and Bejan, 1999). Numerical 
simulations indicate that the presence of faults alters the 
thermal convective flow pattern by constraining the size 
and location of convective cells (e.g., Lopez and Smith, 
1995; Yang et al., 1998; Simms and Garven, 2004; Yang 
et al., 2004). Even fractures with apertures in the order 
of a few millimeters can convey significant flow rates of 
hot water from an order of depths of a kilometer (Lowell, 
1975). Furthermore, Bixler and Carrigan (1986) presented 
numerical data that indicate that size and distribution of 
a fracture can significantly increase the heat transfer rate, 
which eventually leads to enhanced convection.

Furthermore, faults can induce convection in 
neighboring units even though the thermal conditions 
are not favorable for the convective flow. This is due to the 
fact that intrinsic permeability of the fault zone may force 
the Rayleigh number to exceed its critical threshold value 
locally. 

Even though hydraulic properties of faults and fractures 
depend upon the geological setting, the state of stress, and 
the temporal evolution of the fault zone (Smith et al., 1991; 
Lopez and Smith, 1996), they can be identified by their 
high permeability compared to that of the neighboring 
geological units. 

The objective of this study is to simulate the evolution 
of the fault-related small-scale circulation pattern by 
numerical modeling. The finite difference control volume 
(Patankar, 1980) and ADI methods are used to obtain the 
spatial changes of hydrothermal circulation under the 
effects of faulting. In the thermal modeling, effects of the 
depth, the thickness, and the number of the faulted zones 
in the fluid flow pattern are investigated. Isotropic and 
anisotropic models are used to represent the permeability 
structure of the fault zones. Several numerical simulations 
are conducted to reveal the nature and the evolution of the 
fault-related small-scale convection pattern in the densely 
faulted hot-water type of geothermal fields. 

2. Mathematical model
A 2-dimensional square porous layer with thickness D 
shown in Figure 1 is considered for the mathematical 
modeling. The vertical boundaries of the system are 
impermeable and adiabatic. Horizontal boundaries of the 
system are isothermal. The porous box is heated from its 
bottom wall while it is cooled from its top wall. Within the 
model box, faults were modeled as a vertical porous layer 

(dashed gray square, Figure 1) with a high permeability 
field.

Information on physical and geometric properties 
such as permeability, spatial distribution, and depth 
extension of the faults is essential in order to simulate the 
fluid flow and temperature distribution in the subsurface. 
Convective circulation can occur when the fault zones have 
higher permeabilities and, depending on the permeability 
contrast between the fault zone and the country rock, 
these convective cells can be steady or unsteady. Previous 
studies showed that the permeability of fault zones can 
be 2 to 100 times greater than that of their surrounding 
host rocks. In this study, therefore, permeability of fault 
zones is considered to be 10 times greater than that of the 
country rock (i.e. permeability of country rock = 10–15 m2, 
permeability of faults = 10–14 m2 ). 

Darcy’s law is assumed to hold, the fluid is considered to 
be a normal Boussinesq incompressible fluid, and inertial 
effects are neglected.  and  are the horizontal and vertical 
Darcy velocities, respectively, which are given as: 

 (1)

 (2)
   

where g is the gravitational acceleration (m/s2),  is the 
kinematic viscosity (m2/s), and  is the density.  and 

 are the horizontal and vertical permeabilities of the 
medium, respectively.

Besides the effects of the permeability contrast between 
the fault zone and the hosted unit, the fluid flow pattern 
can also be modified by anisotropic structures of the faults 
where permeability is direction-dependent. Permeability 
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Figure 1. Model setup for numerical calculations. Size of the 
model is D × D (1000 × 1000 m).
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of faults and fractures is generally quite complex in both 
time and space (Smith et al., 1990; Caine et al., 1999; 
Aydin, 2000). The small-scale variations in permeability 
within a fault can increase/decrease the bulk permeability 
by one order of magnitude. For example, the ratio of 
the maximum principal values to minimum principal 
values of permeabilities is taken as Kmax/Kmin = 5 by 
Durlofsky (1992) and Taylor et al. (1999), where Kmax 
and Kmin are the maximum and minimum principal 
values of permeability, respectively. Thus, in the numerical 
simulations both isotropic and anisotropic cases are 
considered and used to obtain the fluid flow pattern. For 
the saturated porous medium, nondimensional governing 
equations of stream function  and temperature  are 
given as (Holzbecher, 1998):

 (3)

 (4)

where  is the Darcy number,  is the Rayleigh 
number, and  is the dimensionless time.  and  are the 
dimensionless horizontal and vertical components of the 
Darcy velocity, respectively, defined as:

 (5)

where the nondimensional variables are given by:

 (6)
  

here,  is the effective thermal diffusivity of the porous 
medium (m2/s),  is the coefficient of thermal expansion 
(K–1),  is the permeability of the porous layer (m2),  is 
the temperature differences between the hot temperature 
of bottom wall and cold temperature of the top wall (i. e. 

   ), and  is the modified Rayleigh number. 
In the numerical simulations, the kinematic viscosity 

is taken as constant, and the density  is supposed to 
decrease linearly with temperature as:

 (7)

where  and  are the reference density and temperature, 
respectively.

In addition to the Rayleigh number, it is useful to 
introduce other global measures of convective vigor 
(Lennie et al., 1998; Cherkaoui and Wilcock, 1999). It 
is well known that the Nusselt number ( ) is used to 
determine the heat flux efficiency of the system. The local 
Nusselt number ( ), which provides a dimensionless 
measure of the heat flux across the porous medium, can be 
obtained from the temperature field as follows:

 (8)

The average Nusselt number is also defined as:

 (9)

and the time-averaged Nusselt number is:

(10)

The initial and boundary conditions for governing Eqs. 
(3) and (4) are:
when  for whole space:

 (11)

when  (12)

 (13)

 (14)

3. Numerical solution procedure
Coupled momentum and energy Eqs. (3) and (4) are 
discretized on the n × n points in a square grid region 
shown in Figure 1 and solved numerically by using the 
finite difference control volume method of Patankar 
(1980) in the Fortran PowerStation 4.0 platform. The 
resulting algebraic equations are then solved by the ADI 
method. Convergency of the present model is tested by 
using 7 sets of uniform grids for the Nusselt numbers for 
the steady-state cases (Table 1). It is found that grid size 
of 52 × 52 provides the optimum results in terms of the 
numerical accuracy, stability, and computational time. As 
a benchmark study, the present model on a 52 × 52 grid 
scheme is compared to previous works in terms of Nusselt 
numbers and maximum values of stream functions at 
different Rayleigh numbers (Table 2). It is apparent that 
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the results of the present study agree well with those of 
Caltagirone (1975) and Bilgen and Mbaye (2001).

A dimensionless time step of 0.001 is taken for this 
investigation. The solution procedure from the initial 
state is iterated until a steady-state is reached by satisfying 
the following convergence criterion with respect to each 
variable (Baytaş, 1996; Baytaş, 1997):

 (15)

where e is the prescribed error, which is taken as 10–5. 

4. Results
Three types of models are used in this study to demonstrate 
the effects of fault structures on the distribution of fluid 
flow and temperature within a geothermal field: 1) model 
without fault, 2) model with single anisotropic fault, and 
3) model with multiple anisotropic faults. These models 
provide some basic knowledge of the fluid flow and related 
temperature distribution with regard to the spatial locations, 
thicknesses, depths and anisotropic characteristics of faults. 

In all models, the model box shown in Figure 1 is used, 
as stated earlier. The top and the bottom temperatures are 
taken as 10 °C and 300 °C, respectively. The model box 
size of D = 1000 m is taken. Thermal diffusivity and the 
thermal conductivity of the fluid saturated medium are α 
= 6.9 × 10–7 and k = 2.3. W/m °C, respectively. The value 

of the Rayleigh number depends on the size of the model 
and was calculated by using the boundary conditions and 
the permeability of faults and hosted unit for given fluid 
properties ( ).  

In the first model, an unfaulted porous layer is 
considered. This model represents the reference state for 
the other models since it does not include any disturbing 
effect of faults on the fluid flow and temperature 
distribution. The fluid flow velocity vectors that form 4 
main contrarotative circulation cells inside the box are 
shown in Figure 2a. Maximum horizontal and vertical 
fluid velocities are 4.4 × 10–8 m/s and 6.9 × 10–8 m/s, 
respectively. The associated temperature distribution, 
which is symmetrical with respect to the center line of the 
model, is given in Figure 2b.

In the second model, a single permeable anisotropic 
fault (i.e. Kz = 5Kx) with a constant thickness along 
the box depth is used to demonstrate the geometry of 
formed convection cells and their effects on temperature 
distribution. It will be shown that a single fault in the 
model is an efficient way to demonstrate the role of the 
high permeable zone in the vertical heat transfer. In turn, 
efficiency of heat transfer can constrain the locations of 
convection cells. 

Thickness of a fault in the field can range from tens of 
meters to hundreds of meters. Therefore, the numerical 
simulations were performed for a wide range of thicknesses 
of 40, 60, 80, 100, 120, 140,160, and 200 m, but only the 
extreme cases of 40 m (0.04 D), 100 m (0.1 D), and 200 
m (0.2 D) are presented in this paper. In addition to the 
varying fault thickness, varying fault depths of 250 m, 500 
m, and 1000 m (rising from the bottom to the top of the 
model) were also modeled and the extreme case of 1000 m 
(1.0 D) is presented. Figure 3 displays the 2-dimensional 
fluid flow velocities when a single fault with a thickness of 
0.04 D is located in different lateral locations at a time in the 
box system. In Figures 3a–3f, a relatively thin anisotropic 
single fault of 0.04 D is placed on the wall (Figure 3a) 
and then replaced very close to the left wall (Figure 3b). 

Table 1. Accuracy test ( ).

Grid sizes

32 × 32 7.7936
42 × 42 7.8573
52 × 52 7.8570
72 × 72 7.8570
102 × 102 7.8570

Table 2. Comparisons of solutions for various numerical experiments.

Present study Saleh et al., 2011 Bilgen and Mbaye, 2001 Caltagirone, 1975

50 1.451 2.108 1.454 2.116 1.443 2.092 1.45 2.112
100 2.652 5.363 2.654 5.370 2.631 5.359 2.651 5.377
150 3.336 7.372 3.336 7.379 - - - -
200 3.830 8.935 3.830 8.941 3.784 8.931 3.813 8.942
250 4.223 10.248 4.222 10.253 4.167 10.244 4.199 10.253
300 4.551 11.397 4.459 11.400 4.487 11.394 4.523 11.405
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In these cases, 4 main contrarotative circulation cells are 
created. It can be seen that the temperature distribution 
in the box system does not depend on the exact position 
of the fault when a single fault is placed near the left wall 
(Figures 4a and 4b). Figures in the second row (Figures 
3c and 3d and Figures 4c and 4d) illustrate the fluid flow 
pattern and temperature distribution, respectively, when 
a single anisotropic fault is placed at about the midline 
region. Four main contrarotative circulation cells are 
created. Fluid flow velocities and temperature distribution 
inside the box are very different from those of previous 
cases where faults were close to the wall. Fluid flow and 
temperature distribution patterns for a single fault close 
to the right wall (Figures 4e and 4f) are very similar those 
of the single fault close to the left wall (Figures 4a and 
4b), as expected. Maximum horizontal and vertical fluid 
velocities are 5.6 × 10–8 m/s and 7.4 × 10–8 m/s, respectively. 
Those velocities are slightly higher than those observed in 
the unfaulted model.

It is obvious that the existence and the location of a 
single fault strongly influence the fluid and thermal 
characteristics of the geothermal unit. In these models, the 
average Nusselt number is also lower (average Nu = 5.25) 
than in the other single fault models (average Nu = 6.12).

Figures 5a–5e and 6a–6e demonstrate the effects of 
the spatial location of the 0.2 D thick anisotropic fault on 
fluid flow and temperature, respectively. For a larger fault 
thickness, a greater effect of the fault on the convection 
system was observed. For this model, maximum horizontal 
and vertical fluid velocities are 7.1 × 10–8 m/s and 8.9 × 
10–8 m/s, respectively (Figure 5). Overall average fluid 
velocities are higher than in the model presented in Figure 
3. Furthermore, as the fault thickness increases, heat 
flux efficiency is also increasing, yielding higher Nusselt 
numbers. Thicker faults result in more visible differences 
in the fluid flow pattern and temperature contours, as well 

(Figures 5 and 6). When the fault is located at the center 
of the system, 2 main fluid flow cells and 2 side cells are 
placed symmetrically at the side of the fault zone (Figure 
5c). The size of the cells and their senses of rotation vary 
throughout the flow field. 

In the third model, the aim is to illustrate the effects 
of distance between the multiple faults on the fluid 
flow patterns and the temperature distributions. For 
simulation, 2 faults with a thickness of 0.1 D each were 
introduced to the model box, and the distance between 
2 faults was decreased gradually from 0.9 D to 0.04 D, as 
shown Figures 7a–7d).

The vertical fractures inside the faults lead to less 
hydraulic resistance in the vertical direction. The vertical 
component dominates the transport phenomena inside 
the fault and in the vicinity of the fault. It can be seen 
from Figures 7a, 7b, and 7d that when the directions 
of the velocities are the same within both faults, the 
circulation patterns are symmetrical with respect to the 
vertical centerline, and they are antisymmetrical when 
the velocities are in the opposite direction, as in Figure 
7c. Since the heat is mainly transported by fluid flow, in 
the box far from the faults, the horizontal and vertical 
components of the fluid flow are evenly accountable for 
the heat transfer. Figure 8 demonstrates the associated 
temperature field for this model.

Figures 9 and 10 show the same model, except 
that the faults have different permeability ratios. The 
permeability ratio of the left fault (Kz/Kx = 2) is kept the 
same, but the right fault is decreased by 10-fold (i.e. Kz/
Kx = 0.2). Contrary to the previous case (Figures 7 and 
8), no symmetry is seen in either velocity or temperature 
distribution in this case, as expected.

The influences of the anisotropic structure of the faults 
on the hydrothermal field are investigated by using various 
orders of the permeability ratio for a single centrally 
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Figure 5. Fluid flow field with respect to the lateral location of fault. Fluid flow models were calculated for a single 0.2 
D thick anisotropic fault.

Figure 6. Temperature distribution in the presence of a single 0.2 D thick anisotropic fault.
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Figure 7. Calculated fluid flow pattern illustrating the effects of distance between 
the multiple anisotropic faults on fluid flow pattern. Anisotropy ratio for both 
faults is taken as 2 (Kz/Kx = 2).
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Figure 8. Calculated temperature field related to distance between the multiple 
anisotropic faults.
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Figure 9. Calculated fluid flow pattern illustrating the effects of distance 
between the multiple anisotropic faults on fluid flow pattern. Anisotropy ratios 
for left and right fault are taken as 2 and 0.2, respectively.

0.1

0.10.1

0.2

0.20.2

0.3

0.30.3

0.3

0.4

0.4

0.4

0.4

0.4

0.5
0.5

0.5
0.5 0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.8 0.9
0.9

0 0. 2 0. 4 0. 6 0. 8 10

0. 2

0. 4

0. 6

0. 8

1

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.
0.4

0.5

0.5
0.5

0.5

0.5
0.5

0.6

0.6
0.6

0.6

0.6
0.6

0.7

0.7
0.7

0.7

0.80.8

0.8

0.8

0.9

0.9

09
0 0. 2 0. 4 0. 6 0. 8 10

0. 2

0. 4

0. 6

0. 8

1

0.10.1 0.2

0.2

0.2

0.2

0.3
0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4 0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.6
0.6

6

0.6
0.6

0.6

0.6

0.70.7

0.7

0.7 0.80.8

0.8 0.90.90.9
0 0. 2 0. 4 0. 6 0. 8 10

0. 2

0. 4

0. 6

0. 8

1

0.1

0.1 0.20.20.2

0.3

0.3

0.3

0.3

0.3

0.40.4

0.4

0.4

0.4

0.4

0.4 0.5

0.5

0.5

0.5

0.5
0.5

0.6

0.6

0.6

0.6
0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7 0.8

.8

0.8

0.8 0.90.90.9
0 0. 2 0. 4 0. 6 0. 8 10

0. 2

0. 4

0. 6

0. 8

1

x

z

a b

dc

000

00000.003333
000.0044444444

005

0.008888

0000.001

0.002222

00000.008888

00000.00
000.555555..

00000.00666666
000.0066666 00000..0000 0.0077777776666 7

000.88888880..

0.001

00000.002222222

0222.200

0000.003333333

0000.0033333
0.004444

00000.666666660..7777799999977779

0.00555555

0.0066666

00000.00777777

0022222222

00000.003333333
000.003333333

000044400

000000.004444444

000.0055555

00000555

000.00666666
0000066666666

00000.0077777

0000000.00999999999

000.00222222

00000.003333

0000 2033333333333.30000
0004444

Figure 10. Calculated temperature field related to distance between the multiple 
anisotropic faults.
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located fault (Figures 11 and 12). The permeability ratio 
of the vertical direction to the horizontal direction is 
assumed to vary from 0.1 to 10 (i.e. Kz/Kx = 0.1 to 10). It 
can be clearly seen that when the ratio of Kz/Kx increases, 
the magnitude of the horizontal components of the field 
velocities within the faults diminishes; however, that of 
the vertical components of field velocities increases as 
expected (Figure 11). Increase in the permeability ratio 
causes an increase in the magnitude of velocities, and the 
formation of new symmetrical vortex-type patterns in the 
geothermal field becomes apparent. The isotherms in the 
fault itself are flat when the permeability ratio is small; 
however, they become plume-like curves when the ratio 
is greater than 2 (Figure 12). As an example, isotherm 0.7 
for different permeability (Kz/Kx) ratios is given in detail 
in Figure 13. This can be attributed to the fact that heat 
is transported by the fluid flow, whose direction (Figure 
9) may determine the shape of isotherms. The isotherms 
in the geothermal box far from the fault seem to have a 
similar pattern to those in the unfaulted model, which is 
particularly the case for high permeability ratios. However, 
the isotherms near the fault are greatly influenced by the 
presence of the fault.

Temperature distribution and fluid flow field at a 
high Rayleigh number ( ) in a geothermal field 

with faults are obtained by using various fault models. 
The simulations presented here lead to the following 
conclusions:

1) Introducing a permeable zone into a geothermal 
unit significantly boosts the efficiency of heat flux, yielding 
high Nusselt numbers within the model. Both the fluid 
flow patterns and the magnitude of vertical and horizontal 
components of velocities are strongly related to the 
location, size, and number of faults. 

2) Efficiency of heat flux is also proportional to the 
distance between faults for the multifaulted geothermal 
units. 

3) Highly fractured geothermal areas are likely to 
have very efficient heat transfer processes, which was also 
experimentally proven by Bixler and Carrigan (1986).

4) Changes in the fault-related short-scale circulation 
patterns in the geothermal field strongly depend on the 
ratio of Kx/Ky, which defines the anisotropic/isotropic 
nature of the faults.

Vertically oriented porous faults of 2-dimensional 
models are the only ones that were considered in this study 
since the existent porous faults in geothermal fields are 
generally vertically oriented. The modeling and simulation 
of 3-dimensional geothermal fields with 3-dimensional 
anisotropic faults are, therefore, intended as future work.
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Figure 12. Effects of single anisotropic fault having various Kz/Kx ratios on temperature field.

Figure 13. Isotherm 0.7 for various Kz/Kx ratios.
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