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1. Introduction
The Lower Benue rift is the southern part of the 
intracontinental Benue rift-basin, which extends from 
the Niger Delta northeast towards the southern part of 
Cameroun, a distance of about 1000 km long and 80 km 
wide. Its evolutionary history was traced to the opening 
of the Gulf of Guinea and the South Atlantic during the 
separation of the South American plate from the African 
plate in the Mesozoic era (Burke et al., 1971; Grant, 1971) 
(Figure 1), accompanied by magmatic activities that span 
the Jurassic (Bajocian) to the Tertiary (Umeji, 2000). 

The first report of the existence of intrusive rocks in 
the Lower Benue rift was by Wilson and Bain (1928), 
who described the rocks exposed at Lokpanta during the 
construction of the Port Harcourt–Enugu railway line 
as intrusions (Obiora and Charan, 2010). The intrusive 
and volcanic rocks in the Lower Benue rift have been 
described as intermediate to basic in composition and 

associated with lead-zinc mineralization (Farrington, 
1952; Gunthert and Richards, 1960; Cratchley and Jones, 
1965; Nwachukwu, 1972), as cited by Obiora and Charan 
(2010). 

Burke et al. (1971) described the rocks (volcanic 
and intrusive) around the Abakaliki area (Figure 1) as 
andesite lavas and tuffs and proposed a subduction origin 
for the rocks in the Benue rift. However, Olade (1978, 
1979) reported alkali basalts and tuffs with spilite using 
petrographic and geochemical data and concluded that 
the rocks were within plate ‘hotspot’ basalts. Some others 
(Benkhelil, 1986; Maluski et al., 1995; Obiora and Umeji, 
1995, 1997, 2004; Obiora, 2002) suggested a predominantly 
alkaline character for gabbro, monzonite, diorite, syenite, 
basalts, and trachytes in the lower Benue rift, reflecting 
an extensional and within-plate setting. In addition to 
the predominant alkaline affinity for the intrusive and 
volcanic rocks in the lower Benue rift, Coulon et al. (1996) 
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number (Mg#) (gabbro, 0.47; dolerites, 0.37; dolerites, 0.27) and immobile elements (Y, Zr, Hf, Ti, Nb, and Ta), which are more enriched 
in the intermediate than the basic rocks and similar patterns of spidergrams and rare earth elements (REEs), show that the rocks 
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garnet-lherzolite mantle source. The ratios of La/Nb, Th/La, and Th/Nb and the high ratio of Nb/La (1.18–1.50 for gabbro, 1.37–1.95 for 
dolerites, and 1.21–1.32 for diorites) indicate a high 238U/204Pb (HIMU) mantle source region. There is no evidence of significant crustal 
contamination on the basic and intermediate rocks, which may be related to the rapid ascent of the magmas in an intracontinental rift 
setting similar to the East African rift.
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and Obiora and Charan (2010, 2011a) suggested a high 
238U/204Pb (HIMU) mantle source region for these rocks. 

Generally, the intrusive rocks along the Ishiagu axis 
(Figure 1) in the Lower Benue rift have been relatively 
scarcely studied in detail. Apart from the intrusive 
exposure described in Eziator (boundary between Ishiagu 
and Awgu, Enugu State) by Gunthert and Richards 
(1960), Obiora (2002), and Obiora and Charan (2010), 
there have been no detailed studies on the geochemistry 
of the intrusive rocks in the Ishiagu area. 

This paper presents whole-rock major and trace 
element data of basic to intermediate intrusive rocks in 
the Ishiagu area, petrogenic interpretations, and further 

characterization of the tectonic setting of the Lower 
Benue rift.
1.1. Geological setting and local geology
The Benue rift, the failed arm of the triple junction, was 
formed during the separation of the South American 
plate from the African plate in the Mesozoic times 
through the Gulf of Guinea-South Atlantic-Benue triple 
junction (Burke et al., 1971; Grant 1971), as cited by 
Obiora and Charan (2011a) (Figure 1).The Benue rift is 
subdivided into Upper, Middle, and Lower parts based on 
geographic locations (Petters, 1978; Nwajide, 1990; Idowu 
and Ekweozor, 1993; Obaje et al., 1999) (Figure 1). The 
Benue rift basin is filled mainly by Pre-Santonian (Late 
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Figure 1. Geological map of Lower Benue rift and its position relative to Nigeria and Africa.



429

CHUKWU and CHIKA OBIORA / Turkish J Earth Sci

Aptian to Coniacian) sedimentary rocks that have been 
compressionally folded, faulted, and uplifted in several 
places and have undergone regional burial metamorphism 
at the anchizonal to lower greenschist grade (Benkhelil, 
1986, 1987; Obiora, 2002; Obiora and Umeji, 2004; Obiora 
and Charan, 2011b). The mechanism of triple junction 
rifting involves mantle plume, crustal stretching and 
thinning, block faulting, and igneous activities (Olade, 
1975; Bott, 1976). However, other theories were proposed, 
such as the transform fault mechanism along the northern 
margin of the Gulf of Guinea (Benkehlil, 1986) and the 
membrane stress model, which explains the presence of 
a series of anticlinorium and synclinorium suggesting a 
deformational stage in the evolution of the rift (Obiora 
and Charan, 2011a). Farrington (1952) and Burke et al. 
(1971, 1972) proposed a subduction origin for the Benue 
rift igneous suite due to existence of folds and a wrong 
interpretation of the pyroclastic rocks in the Abakaliki area 
as andesite. However, Obiora and Charan (2010) further 
supported an extensional origin rather than collision. 
The intrusive bodies intruded the folded sedimentary 

sequence, which is constituted predominantly of shale and 
subordinate alternating shales, sandy-shales, siltstones, 
and mudstones of the Late Aptian to Albian locally known 
as the Asu River Group. On the whole, 11 intrusive 
bodies were studied, as shown in Figure 2, with detailed 
description of their locations given in Table 1. The intrusives 
are grouped into 3 categories based on their modal and 
textural characteristics, namely 7 gabbro intrusive bodies, 
3 dolerite intrusive bodies, and 1 diorite intrusive body. 
The gabbro and diorite occur as stocks while the dolerites 
occur mostly as sills. Generally, the stocks have 10–350 m 
width, 400–600 m length, and 10–60 m height while the 
sills have 50–200 m width, 200–400 m length, and 50 m 
height. The sills have an orientation trending northeast–
southwest. The contacts of the intrusives with the host 
rock (mainly shale) are generally sharp, although baking 
of the host rocks at the contacts is mild, especially where 
exposed by quarry activities (locations 1, 6, 8, and 9). Since 
the age of the host rocks (shale, siltstone, and mudrocks) is 
Albian (Benkhelil, 1986, 1987), the intrusives are probably 
of post-Albian age. In support of the post-Albian, Umeji 
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Figure 2. The geological map of Ishiagu and environs, southeastern Nigeria, showing the locations of the studied intrusive rocks.
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(2000) reported that the intrusives in the Lower Benue rift 
are Cretaceous.

2. Analytical methods
The representative rock samples were collected during 
field work for petrographic and whole-rock geochemical 
analyses. Thin sections used for the petrographic studies 
were prepared at the Thin Section Laboratory of the 
Department of Earth Sciences, Kogi State University, 
Anyigba, Nigeria. The freshest 20 samples were pulverized at 

the geochemical laboratory in the Department of Geology, 
University of Nigeria, Nsukka, Nigeria. A diamond crusher 
machine and agate mortar were used for pulverizing. The 
analyses were performed by inductively coupled plasma 
mass spectrometry at Activation Laboratories, Ontario, 
Canada, for major- and trace-element analyses. The open-
acid digestion method outlined by Roy et al. (2007) was 
adopted for sample preparation. First, 50 mg of the sample 
powder was weighed and 10 mL of acid mixture (210 mL 
of HF, 90 mL of HNO3, and 30 mL of HClO4) was added 

Table 1. Details of the locations of samples of the intrusive rocks in the Ishiagu area.

Sample
no.

Location no. 
(Figure 2) Long. and lat. Location name Name of rock

CA01A

1

07°34′36.4ʺE
05°57′16.4ʺN Crushed Rock Ind.  (medium part) Diorite

CA01B 07°34.822′E
05°57.232′N Amaokwe extension of crushed rock Diorite

CA01C Crushed Rock Ind. (coarse part) Diorite

CA01D Okue extension of crushed rock Diorite

CA01E Ngwogwo extension of crushed rock Diorite

CA01F 07°34′36.4ʺE 
05°57′16.4ʺN Crushed Rock Ind. (fine part) Diorite

CA02 2 07°34.396′E 
05°57.454′N Ngwogwo Amadin Gabbro

CA03
3

07°34′24.9ʺE 
05°57′37.4ʺN Ngwogwo Onuagbo - 1 Gabbro

CA03B Similar Ngwogwo Onuagbo - 2 Gabbro

CA04 4 07°33′00.2ʺE 
05o 57′44.2ʺN Obu-Ugwu Amaeze Gabbro

CA06 5 07°33′43.2ʺE 
05°56′57.2ʺN Ndueze Ihie Dolerite

CA08
6

07°29′44.6ʺE 
05°58′21.3ʺN Setraco Quarry Amaeze - 1 Dolerite

CA08B Setraco Quarry Amaeze - 2 Dolerite

CA09
7

07°31.939′E 
05°59.867′N Eziator (fine part) Gabbro

CA09A Eziator (coarse part) Gabbro

CA10 8 07°28.864′E 
05°56.888′N Crushed Stone Lekwesi Dolerite

CA11B
9

07°33′32.4ʺE 
05°56′51.9ʺN Iyalualu Ihie (fine part) Gabbro

CA11C 07°33.553′E 
05°56.902′N Iyalualu Ihie (coarse part) Gabbro

CA12 10 07°33′19.7ʺE 
05°56′48.4ʺN Amanhoho Amonye Gabbro

CA13 11 07°33′30.8ʺE 
05°54′25.6ʺN Amagu Gabbro
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to each sample in the ratio of 7:3:1. The solution was 
thereafter heated on a hot plate (~150 °C) for up to 1 h to 
liberate the gases to form a crystal paste. Thereafter, 20 mL 
of 1:1 HNO3 and distilled water was added and warmed 
(~70 °C) to dissolve the precipitate, after which 5 mL of 
1 ppm 103Rh was added as an internal indicator/standard. 
The detection limits of the elements analyzed are given 
in Figure 2. They range as follow: major oxides, 0.001–
0.01 wt.%; trace elements, 0.1–30 ppm; and rare earth 
elements (REEs), 0.04–0.10 ppm. The standards used were 
DH-1a, NIST 694, DNC-1, GBW 07113, LKSD-3, TDB-
1, W-2a, DTS-2b, SY-4, CTA-AC-1, BIR-1a, NCS DCN 
86312, ZW-C, NCS DC 70014, NCS DC 86316, NCS DC 
70009 (GBW07241), 0REAS 100a (Fusion), OREAS 101a 
(Fusion), JR-1, NCSDC 86318, SARM3, USZ 25-2006 and 
USZ 42-2006 (for more details, see http://www.actlabs.
com).

3. Results
3.1. Field and petrographic characteristics of the 
intrusive rocks
The stocks and sills constitute small hills within the 
generally flat sedimentary terrain in the study area. The 
subdivision of the intrusives into gabbro (locations 2, 3, 4, 
7, 9, 10, 11), dolerite (locations 5, 6, 8), and diorite (location 
1) is based on the mineralogy and textural appearances 
from thin section. The gabbroic rocks are medium- to 
coarse-grained, mesocratic to melanocratic, and show 
ophitic to subophitic textures (Figures 3a and 3b). Large 
crystals of clinopyroxenes, (8.38 mm) completely enclose 
laths of plagioclase (1.83 mm). The minerals include 
clinopyroxene (augite) (19%–49%), plagioclase (An43-52 
calcic andesine-labradorite) (46%–69%), altered olivine 
(4%–8%), nepheline (1%–3%), and opaques (1%–6%) 
(Figure 3). Calcite and chlorite crystals occur as secondary 
minerals from the alteration of clinopyroxene. The dolerites 
have similar characteristics as the gabbro; the major 
difference is in their textures. The dolerites are medium-
grained and melanocratic with subophitic textures (Figure 
3c). The mineral constituents are clinopyroxene (augite) 
(26%–31.5%), laths of randomly oriented plagioclase 
(An54, labradorite) (57%–68%), and opaques (magnetite 
and ilmenite) (4%–7.5%). Calcite, sericite, and chlorite 
occur as alteration products. The plagioclase is sericitized. 
The dioritic rocks are medium- to coarse-grained and 
leucocratic to mesocratic, with subophitic textures. The 
mineral constituents are plagioclase (64.5%–71%) of 
andesine composition (An49), hornblende (10%–18%), 
clinopyroxene (11%–22%) (augite), and opaques (1%–4%). 
Biotite (1%–3%) is accessory while quartz is interstitial. 
Calcite (2%) and sericites occur as secondary minerals 
and alteration products of pyroxene and plagioclase. The 
presence of calcites and other alteration minerals that are 

higher in the gabbro and dolerites can be attributed to the 
effect of saline water, which was reported to have existed in 
the past in the area (Umeji, 2000). 
3.2. Whole-rock geochemistry
The major oxides and trace and REE data of the studied 
intrusive rocks are presented in Table 2. The basic rocks 
(gabbro and dolerites) have SiO2 contents ranging from 
42.45 to 50.75 wt.%, whereas the intermediate rocks 
(dioritic stock) have 45.77–61.47 wt.% SiO2. Loss on 
ignition (LOI) of the intrusives is generally high, and 
particularly that of the dolerites and the gabbro, which 
have 4.60–9.28 wt.% and 2.21–10.46 wt.%, respectively. 
However, the diorite stocks have relatively moderate values 
of 1.06–3.44 wt.%. The wide variation in the LOI of the 
intrusives attests to the alteration and probable elemental 
mobility of the intrusives, which reflect contributions by 
secondary hydration. 
3.3. Chemical classification and nomenclature of the rock
The intrusive rocks can be grouped into intermediate 
(diorites) and basic (dolerites and gabbro) rocks based 
on their silica contents (Table 2). In Figure 4, in the Zr/
Ti versus Nb/Y diagram of Winchester and Floyd (1977) 
with fields as modified by Pearce (1996), the gabbroic 
and doleritic rocks predominantly plot within the alkali 
basalt field while the dioritic rocks plot mainly in the 
trachyandesite field. Samples CA09A and CA09 of the 
gabbro from the Eziator plot in the subalkaline (tholeiite) 
section of the diagram. The intrusives have moderate to 
low MgO from the basic to the intermediate rocks. This 
is reflected in the Mg numbers (Mg# = Mg/Mg2++Fe2+ in 
moles), which range from 0.39 to 0.52 (average: 0.42) in 
gabbro, 0.30 to 0.50 (average: 0.37) in dolerites, and 0.19 
to 0.40 (average: 0.27) in diorites. Such values indicate that 
the intrusives do not represent primary melts and may have 
experienced some degree of olivine and clinopyroxene 
fractionation from the primary magma. 
3.4. Multielement diagrams 
The spider diagrams are presented in Figure 5a–5c. They 
consist of concentrations of the incompatible trace elements 
and selected REEs, normalized to the values of primitive 
mantle after Sun and McDonough (1989). Generally, the 
patterns show enrichments in the incompatible trace 
elements that are characteristic of ocean island basalt 
(OIB) (Figure 5). The patterns of the gabbro and dolerite 
samples (Figures 5a and 5b) look similar in their elemental 
distribution. Both rock samples (gabbro and dolerite) 
show relative enrichment in Ba; 3 samples are depleted in 
Rb and K and 1 sample of the gabbro is depleted in Sr. 
In contrast, the dioritic rock samples are depleted in Sr, P, 
and Ti, except for 1 sample (CA01C), which has a similar 
pattern as the gabbro and dolerites (Figure 5c). The Ba, 
Rb, and K anomalies in the gabbro and dolerite samples 
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can be attributed to the alteration effects of the rocks 
while the depletion of Sr, P, and Ti in the diorites indicates 
substantial fractionation of plagioclase, apatite, and Fe-Ti 
oxides (magnetite and ilmenite), respectively, from the 
melt. The absence of Nb-Ta anomaly strongly indicates an 
anorogenic rift environment for the rocks.  

3.5. REE patterns
The REEs (Table 2) were normalized using values from 
Sun and McDonough (1989). The chondrite-normalized 
REE patterns for the rocks are presented in Figure 6. 
The patterns are similar for the gabbro, dolerites, and 
diorites, implying a common origin. They generally show 
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Table 2. Major oxides (wt.%), trace elements (ppm), and rare earth elements (ppm) analysis of the Ishiagu intrusive rocks. Dl = detection 
limit.

 
                          Diorites Dolerites

CA01A CA01B CA01C CA01D CA01E CA01F CA06 CA08 CA08B CA10

SiO2 55.03 60.25 45.77 61.47 60.24 56.7 42.5 43.4 48.64 44.66
TiO2 1.88 1.313 3.955 1.034 1.256 1.522 4.62 3.53 4.424 2.986
Al2O3 15.12 15.43 14.98 15.01 15.52 15.26 14.8 14.1 15.64 14.08
Fe2O3(t) 9.64 7.72 12.33 6.55 7.55 8.25 13.6 13.6 15.19 12.39
MnO 0.171 0.147 0.15 0.129 0.151 0.153 0.15 0.17 0.092 0.195
MgO 2.21 1.32 4.59 0.84 1.24 1.58 7.62 3.28 4.54 3.24
CaO 4.7 3.28 8.5 2.53 2.83 4.07 8.45 9.48 1.22 9.52
Na2O 5.31 5.95 3.91 5.65 5.99 5.54 3.1 3.06 4.67 2.57
K2O 2.15 2.8 0.96 3.14 2.92 2.45 0.24 0.93 0.08 0.19
P2O5 0.62 0.35 0.55 0.24 0.34 0.45 0.45 0.86 0.73 0.95
LOI 2.12 1.06 3.44 3.35 1.25 1.99 4.6 7.47 4.61 9.28
TOTAL 98.96 99.63 99.14 99.95 99.28 97.97 100 99.8 99.82 100
Na2O+K2O 7.46 8.75 4.87 8.79 8.91 7.99 3.34 3.99 4.75 2.76
Sc 10 8 20 6 8 9 16 17 18 13
Be 3 4  <1 5 5 4 1 2 <1 2
V 81 29 247 20 29 44 252 227 287 152
Cr 50 70 60 180 140 110 180 40 50 30
Co 13 6 31 5 6 8 52 36 89 22
Ni 240 310 240 940 690 550 330 200 260 170
Cu  <10 <10 40  <10 <10 <10 30 20 20 <10
Zn 130 130 110 120 130 110 120 150 120 270
Ga 28 30 22 30 29 28 22 25 28 25
Rb 39 48 19 57 51 45 5 13 <2 3
Sr 494 243 1167 413 443 442 700 591 499 584
Y 48 57 29 53 58 53 24 38 25 41
Zr 543 695 250 734 743 629 238 367 316 413
Nb 71 81 37 78 78 76 30 47 42 53
Mo 2 6 <2 5 6 4 <2 3 <2 3
Ag 1.9 5.4 2 5.6 5.6 4.8 1.8 2.7 2.2 3
Sn 5 8 3 9 9 7 3 4 4 3
Cs <0.5 <0.5 <0.5  <0.5  <0.5 <0.5 0.8 0.9  <0.5 2.5
Ba 481 507 627 580 599 486 213 552 83 206
Hf 11.4 15.4 5.9 15.4 16.4 14.2 5.5 8.1 6.9 8.9
Ta 4.6 5.3 2.6 5.1 5.2 4.9 2.2 3.2 2.9 3.5
W <1 1 <1 3 1 1 <1  <1 <1 <1
Pb <5 <5 <5 8 <5  <5 <5 <5 <5 9
Th 6.1 8.4 2.6 8.7 8.8 7.9 2.1 3 2.3 3.3
U 1.8 2.5 0.8 2.6 2.7 2.4 0.7 1 0.5 1.1
La/Nb 0.76 0.82 0.81 0.79 0.82 0.82 0.71 0.73 0.51 0.71
Th/Nb 0.086 0.1 0.07 0.11 0.11 0.1 0.07 0.06 0.05 0.06
Th/La 0.11 0.13 0.09 0.14 0.14 0.13 0.1 0.09 0.11 0.09
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Gabbro  
CA02 CA03 CA03B CA04 CA09 CA9A CA11B CA11C CA12 CA13 Dl

SiO2 46.09 48.04 46.91 45.22 50.75 47.32 45.77 47.01 46.81 44.42 0.01
TiO2 4.662 3.663 4.146 4.263 2.316 1.872 4.516 3.904 3.484 4.001 0.001
Al2O3 15.02 15.76 14.69 16.05 13.26 13.18 15.17 15.27 16.82 14.53 0.01
Fe2O3(t) 12.08 11.16 12.48 12.27 10.58 9.53 12.58 12.59 10.5 13.31 0.01
MnO 0.146 0.144 0.163 0.144 0.149 0.122 0.149 0.158 0.13 0.156 0.001
MgO 4.98 4.42 4.62 4.39 6.36 3.83 4.73 4.56 3.79 7.52 0.01
CaO 8.54 7.75 7.95 9.13 4.81 10.7 7.92 8.8 8.53 6.79 0.01
Na2O 3.25 4.12 4.04 3.91 5.32 2.3 3.27 3.83 3.6 3.73 0.01
K2O 1.38 1.55 1 1.1 0.05 0.13 1.42 1.11 1.81 0.37 0.01
P2O5 0.58 0.63 0.59 0.49 0.29 0.21 0.61 0.56 0.47 0.5 0.01
LOI 3.22 3.22 2.7 3.44 4.94 10.46 2.53 2.21 2.27 4.41 --
TOTAL 99.95 100.5 99.31 100.4 98.82 99.65 98.66 99.99 99.75 100.4 --
Na2O+K2O 4.63 5.67 5.04 5.01 5.37 2.43 4.69 4.94 5.41 4.1  
Sc 20 19 20 20 23 24 18 23 19 17 1
Be 1 1 1 1 <1 1 1 1 1 1 1
V 258 224 253 280 190 176 260 282 237 252 5
Cr 110 70 40 80 150 230 80 30 30 210 20
Co 32 27 31 31 29 31 34 33 26 48 1
Ni 440 350 160 410 270 390 280 200 190 420 20
Cu 30 30 30 50 60 50 30 40 50 30 10
Zn 110 100 120 100 80 50 120 110 90 120 30
Ga 22 22 23 22 20 18 23 24 24 21 1
Rb 22 30 13 24 <2 4 23 21 38 10 2
Sr 731 1274 735 617 106 256 745 721 892 571 2
Y 30 34 34 26 22 71 29 30 27 25 2
Zr 289 317 326 256 162 124 299 302 281 241 4
Nb 39 40 41 34 16 12 40 36 34 30 1
Mo <2 2 <2 <2  <2 <2 2 <2 <2 <2 2
Ag 2.1 2.4 2.5 1.7 1.2 <0.5 2.2 2.1 2 1.7 0.5
Sn 4 3 4 3 3 2 4 3 3 3 1
Cs <0.5 <0.5  <0.5 0.6 <0.5 1.4 0.6 0.5 0.9 1.2 0.5
Ba 878 1216 532 322 68 206 939 440 570 178 3
Hf 6.5 7.3 7.3 5.9 2.8 8.9 6.8 6.8 6.3 5.6 0.2
Ta 2.7 2.7 2.8 2.3 1 0.8 2.9 2.5 2.4 2.2 0.1
W <1 <1 <1 2 <1 <1 <1  <1 <1 <1 1
Pb <5 <5 <5 <5 <5 9  <5  <5 <5  <5 5
Th 2.4 2.7 2.6 2 1.6 1.2 2.5 2.5 3 2 0.1
U 0.8 0.8 0.8 0.6 0.5 0.3 0.8 0.8 0.8 0.7 0.1
La/Nb 0.67 0.76 0.7 0.68 0.85 0.84 0.67 0.71 0.74 0.73
Th/Nb 0.06 0.07 0.06 0.06 0.1 0.1 0.06 0.06 0.09 0.07
Th/La 0.09 0.09 0.09 0.09 0.12 0.12 0.09 0.1 0.12 0.09

Table 2. (continued).
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CA02 CA03 CA03B CA04 CA09 CA9A CA11B CA11C CA12 CA13 Dl

La 26 30.4 28.7 23.1 13.6 10.1 26.9 25.4 25.2 22 0.1
Ce 61 71.2 67.7 53.8 30.2 23.8 64.7 60.4 59.8 52.6 0.1
Pr 8.16 9.53 8.8 7.21 3.83 3.03 8.36 8 7.69 6.92 0.05
Nd 38.3 42.9 41.9 34.3 19.1 13.3 38.9 37.4 35.5 32.1 0.1
Sm 9.5 10.4 10.1 8.8 5.3 4.1 9.4 9 8.7 8.1 0.1
Eu 3.15 3.47 3.31 2.93 1.95 1.38 3.06 3 2.79 2.68 0.05
Gd 8.8 10 10.2 7.9 5.9 4.3 8.7 8.6 7.8 7.4 0.1
Tb 1.3 1.5 1.4 1.2 0.9 0.7 1.3 1.3 1.3 1.1 0.1
Dy 6.6 7.7 7.4 6.1 4.7 3.6 6.7 6.8 6.1 5.6 0.1
Ho 1.2 1.4 1.4 1.1 0.8 0.7 1.2 1.2 1.1 1 0.1
Er 3 3.5 3.5 2.8 2.2 1.8 3.2 3 2.7 2.5 0.1
Tm 0.41 0.48 0.46 0.37 0.3 0.25 0.43 0.41 0.39 0.35 0.05
Yb 2.4 2.8 2.8 2.2 1.9 1.5 2.6 2.5 2.4 2.1 0.1
Lu 0.37 0.43 0.41 0.35 0.29 0.21 0.39 0.37 0.34 0.33 0.04
∑ REE 167.04 192.2 184.8 149.2 89.02 67.39 172.78 164.38 159.02 142.1
∑LREE/
∑HREE 5.94 5.91 5.7 5.78 4.24 4.16 6.05 5.8 6.19 5.97

Lan/Ybn 7.77 7.79 7.35 7.53 5.13 4.83 7.42 7.29 7.53 7.52
Tbn/Ybn 2.46 2.44 2.27 2.48 2.15 2.12 2.27 2.36 2.46 2.38
Dy/Yb 2.75 2.75 2.64 2.77 2.47 2.4 2.58 2.72 2.54 2.67
Eu/Eu* 1.06 1.05 1 1.08 1.07 1.01 1.04 1.05 1.04 1.06

  CA01A CA01B CA01C CA01D CA01E CA01F CA06 CA08 CA08B CA10

La 53.7 66.1 30.1 61.7 64.3 62.2 21.2 34.2 21.5 37.5
Ce 121 143 67.4 135 141 136 51 82 53.2 90.6
Pr 14.3 16.5 8.54 15.7 16.4 16.5 6.66 10.7 7.08 11.9
Nd 60.8 68.1 38.4 63 69.8 67.7 30.9 50.3 32.2 55.8
Sm 13.4 14.9 8.7 14 15.3 15.2 7.7 12.2 7.9 13.4
Eu 4.09 4.19 3.06 3.55 4.16 4.28 2.45 3.85 2.12 4.24
Gd 12.3 13.7 8.8 12.5 13.8 14.1 7 11.7 7.5 12.1
Tb 1.9 2.2 1.3 2.1 2.2 2.2 1 1.7 1.1 1.8
Dy 9.9 11.4 6.5 10.8 11.7 11.6 5.3 8.3 5.5 8.8
Ho 1.8 2.2 1.2 2.1 2.3 2.1 1 1.5 1 1.6
Er 4.8 5.7 3.1 5.5 5.9 5.7 2.4 3.8 2.7 4.2
Tm 0.66 0.82 0.4 0.8 0.84 0.83 0.32 0.51 0.36 0.56
Yb 4 5.3 2.4 5 5.2 5 2 3.1 2.2 3.3
Lu 0.62 0.77 0.35 0.76 0.75 0.73 0.3 0.46 0.33 0.49
∑REE 299.18 350.69 177.2 329 349.49 339.9 136.8 220.5 142.57 242.05
∑LREE/
∑HREE 7.32 7.33 6.37 7.32 7.19 7.04 6.08 6.1 5.89 6.37

Lan/Ybn 9.63 8.94 8.99 8.85 8.87 8.92 7.61 7.91 7.01 8.15
Tbn/Ybn 2.16 1.89 3.36 1.91 1.92 1.9 2.27 2.49 2.43 2.48
Dy/Yb 2.48 2.15 2.71 2.16 2.25 2.32 2.65 2.68 2.5 2.67
Eu/Eu* 0.99 0.91 1.07 0.82 0.87 0.89 1.03 0.99 0.85 1.02

Table 2. (continued).

Table 2. (continued).
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enrichment in the light REEs (LREEs) relative to the 
heavy REEs (HREEs). The enrichment in the LREEs is a 
characteristic of OIB (Figure 6) and shows the presence of 
residual garnet in the source.

The ratios of LREEs to HREEs of the intrusives 
(approximately 5–8 in the gabbro, 7–8 in the dolerites, 
and 9–10 in the diorites) are moderately enriched. This is 
reflected in the values of (La/Yb)n, which range from 5 to 
8 in the gabbro, 7 to 8 in the dolerites, and 9 to 10 in the 
diorites approximately. Eu/Eu* values for the intrusives 
generally range from 0.82 to 1.07 (gabbro: 1.00–1.08, 
dolerites: 0.85–1.03, and diorites: 0.82–1.07) (Table 2); this 
indicates the absence of positive/negative Eu-anomaly in 
the rock samples, except for 1 dioritic sample that shows 
mild negative anomaly (Eu/Eu* value of 0.82, approximately 
0.8). This is consistent with the absence of negative Eu-
anomaly in the REE patterns (Figure 6) with the exception 
of 1 dioritic rock sample, in which mild negative anomaly 
reflects fractionation of feldspars from the melt. 

4. Discussion
4.1. Possible alterations of the rocks   
It is generally reported that igneous rocks with LOI of 
greater than 2 wt.% are regarded as altered (e.g., Burianek  

et al., 2008). Hence, the studied rocks have undergone 
some degree of alteration, with the gabbro having the 
highest alteration LOI (2.21–10.46), followed by the 
dolerites (LOI: 4.60–9.28) and then the dioritic rock, with 
only 3 samples altered (LOI: 2.12–3.44). This is supported 
by the greater contents of well-developed calcite crystals 
along with ilmenite as a result of the breakdown of the 
clinopyroxene in the basic rocks relative to the dioritic 
rocks. The involvement of a fluid phase may have caused 
the depletion and enrichment of some elements in the 
spider diagrams of the studied rocks. The depletions in 
the large-ion lithophile elements (Ba, Rb, and K) in Figure 
5 could be attributed to the presence of an aqueous fluid 
phase, which is commonly concentrated in the continental 
crust (Rollinson, 1993). 
4.2. Magma source region
The ratio of La/Ta (7.41–13.60) of the studied rocks 
indicates an asthenospheric mantle source (Table 3). 
According to Fitton et al. (1988), Leat et al. (1988), and 
Thompson and Morrison (1988), La/Ta ratios have been 
used to distinguish between asthenospheric magma 
sources for rift-related environments and an index 
of crustal contamination. Leat et al. (1988) suggested 
that rocks with La/Ta ratios of <22 are derived from an 
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asthenospheric source, whereas Thompson and Morrison 
(1988) proposed that La/Ta ratios between 10 and 12 
originate from an asthenospheric source while values of 
>30 indicate crustal contamination. The presence of garnet 
as a residual phase in the melt source region is inferred 
from the (Tb/Yb)n ratio (Sayıt and Göncüoglu, 2009). The 
enrichment in LREEs relative to HREEs in the intrusives, 
which is reflected in the low (Tb/Yb)n ratios (2.12–2.48 in 
gabbro, 2.27–2.49 in dolerites, and 1.89–3.36 in diorites), 
indicates a garnet-bearing source. The Dy/Yb ratios, which 
range from 2.40 to 2.77 in gabbro, 2.5 to 2.68 in dolerites, 

and 2.15 to 2.48 in diorites, also suggest a garnet-bearing 
lherzolite source (Sayıt and Göncüoglu, 2009). According 
to Kearey and Vine (1990), the upper mantle has the 
composition of peridotite, containing abundant olivine 
and less than 15% garnet. Garnet in the residual melt 
suggests a depth of at least 80 km (Wilson, 1989), which 
indicates that the magma generation should have occurred 
within the asthenosphere.

The presence of garnet in the mantle source for the 
studied rocks is comparable to Hawaiian alkali and 
tholeiitic basalts, which are considered to be generated 
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from a garnet-bearing lherzolite mantle source (Moghazi, 
2003). Obiora and Charan (2010, 2011a) reported a similar 
range of REE ratios for intrusive and extrusive rocks in 
other parts of the Lower Benue rift.

The intrusive rocks have elemental ratios (La/Nb = 
0.74, Th/La = 0.11, and Th/Nb = 0.07 on average) similar to 
the HIMU (that is, high 238U/204Pb) mantle source reservoir 
characterized by ratios of 0.72, 0.12, and 0.09, respectively 
(Tatar et al., 2007). The Nb/La ratios of 1.18–1.50 for 
gabbro, 1.37–1.95 for dolerites, and 1.21–1.32 for diorites 
further indicate a HIMU mantle source reservoir in the 
asthenospheric mantle (Fitton et al., 1991). This is because 
high Nb/La ratios of approximately >1 indicate an OIB-like 

asthenospheric mantle source for basaltic magmas while 
lower ratios of approximately <0.5 indicate a lithospheric 
mantle source (Abdel-Fattah et al., 2004) [see Figures 7a 
and 7b after Menzies and Kyle (1990, as cited in Mojgan, 
2008) and Fitton et al. (1991), respectively].
4.3. Crustal contamination
The Ti/Yb ratios (Table 3) are indicators of crustal 
contamination in basalts, since the upper and lower 
continental crust has low concentrations of Ti; high ratios 
of Ti/Yb, usually in the thousands, indicate little to no 
crustal contamination, whereas low ratios are inconclusive 
(Hart et al., 1989). The Ti/Yb ratios for the studied rocks 
range from 1240 to 9880 (average: 3116) for the diorite 
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rocks and 5425 to 13,837 (average: 9501) for the gabbro 
and dolerites, suggesting little or insignificant crustal 
contamination (Table 3). 

According to Mojgan (2008), La/Nb of >1.5 indicates 
crustal contamination. Likewise, La/Nb ratios in the 
studied rocks ranged from 0.51 to 0.86 (average: 0.74), 
implying further evidence of less crustal contamination 
(Table 3). 

La/Ta ratios have been used as an indicator of 
crustal contamination (Fitton et al., 1988; Leat et al., 
1988; Thompson and Morrison, 1988). Leat et al. (1988) 
suggested that rocks with La/Ta ratios of <22 are derived 
from an asthenospheric source and have undergone little 
to no contamination from the continental crust or mantle 
lithosphere. Thompson and Morrison (1988) proposed 
that La/Ta ratios between 10 and 12 originate from an 

asthenospheric source and values of >30 indicate crustal 
or lithospheric contamination. The La/Ta ratios of the 
studied rocks range from 7.41 to 13.6, with an average 
of 10.9, therefore supporting an asthenospheric mantle 
source devoid of contamination.

Using all these parameters, it is clear that crustal 
contamination did not play a major role in the evolution 
of the studied rocks. Furthermore, insignificant crustal 
contamination indicates that the magma ascent may have 
been fast enough from the source. 
4.4. Fractional crystallization and partial melting
The consistent decrease in the values of magnesium 
number (Mg#) of the intrusives (gabbro, 0.47 average; 
dolerites, 0.37 average; and diorites, 0.27 average) and the 
similar patterns of the gabbro, dolerites, and diorites in 
spider diagrams and REEs (Figure 5 and 6) show that the 
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Table 3. Comparison of ratios of major and trace elements in the Ishiagu igneous rocks with average contamination ratios.

CA01A CA01B CA01C CA01D CA01E CA01F CA06 CA08 CA08B CA10 CA02

La/Ta 11.67 12.47 11.58 12.1 12.37 12.69 9.64 10.7 7.41 10.7 9.63
La/Nb 0.76 0.82 0.81 0.79 0.82 0.82 0.71 0.73 0.51 0.71 0.67
Ti/Yb 2818 1485 9880 1240 1448 1825 13837 6825 12056 5425 11646

CA03 CA03B CA04 CA09 CA9A CA11B CA11C CA12 CA13 Average LCON*

La/Ta 11.3 10.25 10.04 13.6 12.63 9.28 10.16 10.5 10 10.9 <22
La/Nb 0.76 0.7 0.68 0.86 0.84 0.67 0.71 0.74 0.73 0.74 <1.5
Ti/Yb 7843 8877 11617 7308 7482 10413 9362 8903 11422 7585.6 >1000

*LCON = Little to no contamination values after Hart et al. (1989), Fitton et al. (1988), Leat et al. (1988), Thompson and Morrison 
(1988), Hawkesworth (1986), and Mojgan (2008).
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basic and intermediate rocks are coeval. The differentiated 
product diorite has higher concentrations of the high 
field-strength elements (HFSEs; Zr, Nb, Y, Hf and Ta) 
than gabbro (early crystallized rocks), which indicates 
clearly that they are coeval. The (Ta/Th)n versus (La/Sm)n 
variation diagram of Dupuis et al. (2005) (Figure 8) shows 
that the major controlling factor in the evolution of the 
rock suite in this study was fractional crystallization, and 
not assimilation and fractional crystallization, with a trend 
of E-MORB-OIB-LCC (lower continental crust).

Experiments have shown that tholeiitic OIBs are 
generated in comparable degrees of partial melting to 
mid-ocean ridge basalt (MORB; 20%–30%), whereas 
alkalic OIBs may represent smaller degrees of melting 
(5%–15%), possibly at greater depths (Wilson, 1989). 
The stronger enrichment in LREEs in the alkaline rocks 
(gabbro, dolerite, and diorite samples) relative to the 
tholeiites (gabbroic stock, CA09 and CA09A) indicates 
that the alkaline rocks in this study have lower partial 
melting than the tholeiites (gabbroic stock, CA09 and 
CA09A). Wilson (1989) showed that degrees of magma 
generation and overall magma production rates are higher 
in areas with thinner lithosphere and lower in areas with 
thicker lithosphere. Therefore, tholeiitic magmas that have 
higher degrees of partial melting are produced in areas 
with thinner lithosphere in contrast with alkaline magmas, 
which are produced in areas with thicker lithosphere 
(Wilson, 1989). This is the case of Hawaii and the Canary 
Islands, which range from a thin to thick lithosphere at 
the Canary Islands off the northwestern coast of Africa 
in the Atlantic Ocean and have more alkaline rocks with 
sparse tholeiites (Wilson, 1989). This shows that the 
studied area of the Lower Benue rift, characterized by 
predominant alkaline rocks with sparse tholeiitic affinity, 
is probably thicker than the Hawaiian islands, which have 
predominant tholeiitic rather than alkaline rocks.
4.5. Tectonic setting
The predominantly alkaline and sparse tholeiitic affinity 
of the studied rocks may suggest an extensional tectonic 
setting because alkaline and tholeiitic (within-plate) 
rock suites are typically formed in extension regions or 
anorogenic settings, commonly within continental or 
oceanic plates such as rifting centers (Obiora and Charan, 
2011a). In contrast, calc-alkaline rocks are known in 
subduction zones. Alkaline rocks occur in subduction 
zones, but towards the end of subduction, farther away 
from the trench, as a result of extensional stress (Nelson et 
al., 1995). The studied rocks reveal a within-plate tectonic 
setting as shown by the discrimination diagram using the 
less mobile HFSEs (Figures 9a). Besides, they are similar 
to those of the intracontinental Kenyan rift within the East 
African rift system as indicated on the La/10-Y/15-Nb/8 
diagram of Cabanis and Lecolle (1989) (Figure 9b). On 

the discrimination diagrams of 2Nb-Zr/4-Y (Meschede, 
1986) (Figure 9c), the alkaline rocks plot in the field of 
within-plate alkaline basalts while the 2 tholeiitic samples 
(gabbro, CA09 and CA09A) plot in the field of within-plate 
tholeiites. Although the earlier work of Farrington (1952) 
and Burke et al. (1971, 1972) suggested a convergent 
setting for the Benue rift, this work supports the views of 
Olade (1979), Hoque (1984), Obiora and Umeji (1995), 
and Obiora and Charan (2010, 2011a), who supported an 
extensional setting for the Benue rift.

Petrographic and geochemical study of the intrusive 
rocks in the study shows that the rocks are alkali gabbro, 
dolerites, and diorites. The gabbro and diorites occur 
as stocks while the dolerites occur as sills. The gabbro 
and dolerites consist of clinopyroxenes, plagioclase 
(labradorite), and altered olivine, while the diorites consist 
of clinopyroxene, plagioclase (andesine), and hornblende. 
The dolerite is differentiated from the gabbro by medium 
grain sizes and doleritic textures; in contrast, the gabbro has 
ophitic to subophitic texture. The high LOI of the intrusive 
rocks shows that they are relatively altered, confirmed by 
the alteration of clinopyroxene to large crystals of calcite 
and ilmenite as observed in thin section. However, critical 
examinations using more dependable immobile elements 
in discrimination diagrams, spider diagrams, and REEs 
clearly show that the rocks are predominantly alkaline. 
The ratios of La/Nb, Th/La, Th/Nb, and Nb/La suggest 
that the rocks may have been associated with the HIMU 
mantle region. The elemental ratios (La/Nb, La/Nb, and 
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Ti/Yb) indicate that crustal contamination did not play 
a significant role during magma evolution. Magnesium 
number (Mg#), spider diagrams, and REE patterns clearly 
indicate that the intrusives are coeval and high ratios of 
(Ta/Th)n and (La/Sm)n indicate that the major controlling 
factor in the magma evolution is fractional crystallization. 
The rocks were formed in a within-plate setting of the 
intracontinental rift-type, similar to the Kenyan rift and 
Grand Canary northwestern coast of Africa in the Atlantic 

Ocean. The predominantly alkaline affinity, within-plate 
intracontinental rift (extensional) setting, and HIMU 
mantle source reservoir are consistent with the results 
obtained from igneous rocks in other parts of the Lower 
Benue rift.
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