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1. Introduction
Bauxite deposits are formed by alteration and weathering 
of parent rocks rich in alumino-silicate minerals. These 
residual deposits are developed principally in tropical 
to subtropical climatic conditions with annual rainfall 
exceeding 1.2 m and an average temperature of >22 
°C (Bardossy and Aleva, 1990; Mondillo et al., 2011). 
According to Bardossy and Combes (1999), these deposits 
are characterized into 3 major groups: lateritic bauxite 
deposits, karst bauxite deposits, and Tikhvin-type bauxite 
deposits. The first group is the product of in situ and 
direct chemical weathering of alumino-silicate rocks lying 
beneath the surface. The second group is developed on the 
surface of more or less karstified carbonates (limestone 
and dolomite) and scarce marls. The third group is formed 
on the surface of eroded alumino-silicate rocks and is the 
erosional product of lateritic bauxite deposits. Bardossy 
(1982), based upon parameters such as morphology and 
chemical compositions, classified the bauxite deposits 

into 6 distinct groups: Mediterranean type, Kazakhstan 
type, Timan type, Salento type, Tulsk type, and Ariege 
type. Based upon geographical situations, these deposits 
occurred in 7 belts throughout the world: the northern 
Mediterranean coast, Caribbean basin, Urals-Siberia-
Central Asia, East Asia, Irano-Himalaya, Southwest 
Pacific, and North America. 

During the last few decades, geochemical investigations 
proved to have practical applications for determination 
of various aspects of formation and evolution of bauxite 
deposits such as the type of parent rocks; the roles 
of diagenetic, epigenetic, and supergene processes in 
connection to ore-forming mechanisms; physicochemical 
conditions of the environment of the ore formation (e.g., 
pH, Eh, intensity of draining, and climate); the mineral 
controls on distribution, mobilization, and fractionation 
of elements [particularly trace and rare earth elements 
(REEs)] in the course of bauxitization; and tectono-
metamorphic evolutions (Özlü, 1983; Mordberg, 1996; 
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MacLean et al., 1997; Öztürk et al., 2002; Temur and 
Kansun, 2006; Yalcin and Ilhan, 2008, 2013; Esmaeili et al., 
2010; Liu et al., 2010, 2012; Mondillo et al., 2011; Aydoğan 
and Moazzen, 2012; Boni et al., 2012, 2013; Meshram and 
Randive, 2012; Wei et al., 2013). 

There are also many available publications concerning 
distribution and behavior of major elements, trace 
elements, and REEs in various profiles of bauxite deposits 
and/or prospects (e.g., Temur et al., 2005; Temur, 2006; 
Calagari and Abedini, 2007; Laskou and Economou-
Eliopoulos, 2007, 2013; Ma et al., 2007; Mameli et al., 2007; 
Karadağ et al., 2009; Calagari et al., 2010; Hatipoğlu et al., 
2010; Gamaletsos et al., 2011; Hatipoğlu, 2011; Wang et al., 
2012; Abedini and Calagari, 2013a, 2013b, 2013c; Gu et al., 
2013; Hanilçi, 2013; Li et al., 2013; Liu et al., 2013; Wang 
et al., 2013; Wei et al., 2013; Zhang et al., 2013; Babechuk 
et al., 2014; Giorgis et al., 2014; Mongelli et al., 2014). The 
results of these investigations show that consideration of 
factors controlling the distribution and behavior of REEs 
during bauxitization processes is one of more interesting 
geochemical subjects for further research works.

Based upon the world’s geographical distribution of 
bauxite deposits (Bardossy, 1982), the bauxite deposits in 
Iran belong to the Irano-Himalayan karst bauxite belt. They 
are mostly similar to Mediterranean-type karst bauxites 
(Calagari and Abedini, 2007; Abedini and Calagari, 2013a, 
2013b, 2013c). Northwestern Iran is one of the important 
bauxite-bearing regions along the Irano-Himalayan karst 
bauxite belt. In this region, the bauxite deposits were 
temporally developed in 4 periods: the Permian, Permo-
Triassic, Triassic, and Triassic-Jurassic. The Kanigorgeh 
area in the northwest of Iran contains 2 bauxite-bearing 
horizons of Permian and Permo-Triassic ages. The 
development of the titanium-rich bauxite ores and the 
formation of the ferruginous bauxite ores are the most 
outstanding characteristics of the Permian and Permo-
Triassic horizons, respectively. Geological, mineralogical, 
and geochemical characteristics of the ferruginous bauxite 
ores in the Permo-Triassic horizon were investigated in 
detail by Abedini and Calagari (2013b). No geochemical 
studies, however, on Permian Ti-rich bauxite horizon 
have been undertaken so far. It seems that geochemical 
studies on these extraordinary and unique ores can 
contribute to the exploration and identification of new 
high-Ti content bauxite prospects in other parts of the 
Irano-Himalayan karst bauxite belt in particular, as well 
as in other bauxite belts in general. To achieve this goal, 
we have endeavored in our research to conduct field 
observations as well as petrographic, mineralogical, and 
geochemical investigations to consider the factors affecting 
the distribution, mobilization, and fractionation of REEs 
and the potential causes of Eu and Ce anomalies in the Ti-
rich bauxite ores in the Kanigorgeh area.

2. Geological setting
Consideration of regional geology in northwestern Iran 
shows that there is good and distinct coexistence between 
Permian carbonate rocks and bauxitic-lateritic deposits 
in the Bukan and Mahabad districts. Geological features 
of these districts are shown in Figure 1. Five residual 
deposits in relation with Permian carbonates have been 
recognized in the Bukan and Mahabad districts so far. The 
residual deposits in the Mahabad district (Sheikh-Marut 
and Hossein-Abad) have chiefly lateritic composition, 
while the Bukan district (Kanigorgeh, Kanisheeteh, and 
Shahindezh) possess mainly bauxitic composition. The 
locations of these deposits are also shown in Figure 2.    

  The Kanigorgeh area is located about 20 km northeast 
of Bukan, West Azerbaijan Province, NW Iran. Based 
upon classification of structural domains of Iran (Nabavi, 
1976), the area is a part of the Khoy-Mahabad structural 
zone (Figure 1). The characteristics of regional geology of 
the bauxite deposits in this area were explained in detail by 
Kamineni and Efthekhar-Nezad (1977) and Abedini and 
Calagari (2013b). The oldest lithologic units in this area 
are sandstone and shale of the Dorud Formation (Lower 
Permian), which are overlain by carbonates (limestone 
and dolomite) of the Ruteh Formation (Upper Permian) 
and dolomitic rocks of the Elika Formation (Triassic). 
The latter is covered by a series of arenaceous-argillaceous 
(sandstone, shale, and conglomerate) and carbonate 
rocks of Cretaceous age. The above sequence is overlain 
by Miocene limestone (Qom Formation) and Quaternary 
alluvial sediments (Figure 3). 

Depositional cessation during Permian and Permo-
Triassic times brought about the development of 2 distinct 
bauxitic horizons in this area. The Permian bauxitic horizon 
consists of 4 discontinuous stratified layers and/or lenses 
and has a sharp boundary with the enclosing carbonates 
(limestone and dolomite) of the Ruteh Formation. This 
horizon extends over 1 km and has varying thicknesses 
(2–11 m) and trends (N-S, NE-SW, and NW-SE) (Figure 
3). The host rocks contain plenty of calcite microveinlets 
and cherty bands and nodules. The bauxitic horizon of 
the Permo-Triassic relative to that of the Permian is more 
widespread and consists of 8 discontinuous stratified layers 
and lenses. This horizon runs lengthwise over 3.2 km and 
has varying thicknesses (5–17 m). Lithostratigraphically, 
this horizon is developed along the contact of the Upper 
Permian carbonates (Ruteh Formation) and Triassic 
dolomite (Elika Formation) and has varying trends 
(N-S and NW-SE) (Figure 3). Both horizons along with 
their enclosing rocks were severely folded (Abedini and 
Calagari, 2013b). The Permian horizon is thicker in karstic 
sinkholes and depressions than in the high lands. Locally, 
the Permian horizon is cut and becomes offset (~50 m) by 
strike-slip and thrust faults (see Figure 3), resulting in the 
development of a cataclastic texture within the ores.
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On the basis of color, 3 types of ores were recognized 
in the Permian horizon, which are, from top toward the 
bottom, greenish gray, dark green, and red to brownish 
red (Figure 4). The common characteristics of all these 
types of ores is the development of manganese dendrites 
on the rock surface. Limonitization, development of 
ferruginous nodules, and hematite microveinlets are the 
most important mesoscopic characteristics of the red 
and brownish red ores. The dark gray and greenish gray 
ores are characterized by soapy feel, conchoidal fracture 
surfaces, and presence of spherical features in an aphanitic 
matrix.

3. Sampling and laboratory methods
3.1. Sampling
In this study, a profile perpendicular to the strike of bauxitic 
layers was selected (see Figure 3) and 20 systematic and 
representative samples with varying intervals (25–80 cm) 
were collected (see Figure 4) from an exploratory pit. Of 
these, 8 samples belonged to the greenish gray ores, 4 to 
the dark green ores, and 8 to the red and brownish red 
ores.
3.2. Mineralogical analyses
Laboratory works began with preparation of thin 
and polished sections from all 20 samples and their 

examination under microscope. For determination of the 
major rock-forming minerals in the ores, 8 samples were 
randomly selected for X-ray diffraction (XRD) analysis 
using a SIEMENS model D-5000 diffractometer with 
CuKα radiation, graphite monochromator, voltage 40 
kV, beam current 80 mA, continuous scanning, scanning 
speed 8°/min, scan range 2°–70°, slit DS = SS = 1°, ambient 
temperature 18 °C, and humidity 30% in the facilities of 
the Geological Survey of Iran.
3.3. Chemical analyses
Whole-rock samples were crushed to 200-mesh size 
particles using an agate mill. All 20 samples were prepared 
for chemical analyses in the laboratories of ALS Chemex, 
Canada. Quantitative values of major and minor elements, 
trace elements, and REEs were determined by using 
inductively coupled plasma-atomic emission spectrometry 
and inductively coupled plasma-mass spectrometry 
analyzing methods, respectively. Loss on ignition (LOI) 
values were determined by weight loss of a 1-g sample after 
heating at 950 °C for 90 min. Detection limits were for major 
elements and LOI 0.01%: for Cr, 10 ppm; for V, Ni, and Cu, 
5 ppm; for Co, Y, Ba, Tl, La, and Ce, 0.5 ppm; for Nb, Rb, 
and Hf, 0.2 ppm; for Sr, Ta, Ga, Nd, and Lu, 0.1 ppm; for 
Cs, Tb, Ho, and Tm, 0.01 ppm; for Th, 0.04; for U, Gd, and 
Dy, 0.05 ppm; for Zr, 2 ppm; and for Pr, Sm, Eu, Er, and Yb, 

Sanandaj-Sirjan 

Central Iran

Khoy-Mahabad

Hezar Masjed-Kopet Dagh

Binaloud 

Gorgan-Rasht

Alborz-Azerbaijan

Makran

Lut block

Nahbandan-Khash

Arabic platform

Persian Gulf

Caspian  Sea

Oman Sea

Zagros fold belt

Study area

High Zagros

Colored melange 

N

2500 500 km

Scale

45 48 51 54 57 60 63° ° ° ° ° ° °

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25°

°

°

°

°

°

°

°

°

°

°

°

°

°

° Legend
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studied area is marked by asterisk. 
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0.03 ppm. Furthermore, for determining the relationship 
between elements in the selected bauxitic profile, attempts 
were made to calculate the Pearson correlation coefficients 
among selected elements by using SPSS 16.

4. Results
4.1. Mineralogy and texture
Because they were fine-grained, identification of minerals 
in the bauxite ores under a microscope was not possible. 
Therefore, petrographic examinations were principally 
focused on textural features of the ores. Based on these 
studies, spherical and dumbbell-shaped features along 
with a microgranular and pelitomorphic matrix are the 
major texture-forming components in the ores (Figures 
5a–5f). The spherical grains are often ooids and pisoids, 
whose presence within the ores testifies to the original 
heterogeneity of colloids that resulted from alteration and 

weathering of parent rocks. The various shapes and sizes of 
ooids and pisoids along with elongate and oblate nodules 
indicate redepositional conditions during the evolution of 
this deposit. The fractures within the spherical components 
of the ores are observable in 2 different forms. Some are in 
radial and irregular shapes and are often limited to within a 
component (Figure 5a), while some others cross the border 
of components and extend into the matrix of the ores. The 
presence of both types of fractures indicates contraction of 
gels during the ore formation and the subsequent effects 
of epigenetic processes on the ores. Hematite is the most 
important identifiable nucleus in the spherical component 
(Figure 5f). The presence of hematite microveinlets within 
the matrix testifies to the redistribution of iron in the 
weathered profile. Considering the mode of distribution 
of texture-forming components and matrix, various kinds 
of textures such as pelitomorphic, microgranular, ooidic, 
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pisoidic (Figure 5b), nodular, and collomorphic-fluidal 
(Figure 5e) developed within the ores.

The XRD analyses show that diaspore is the main 
mineral phase of the ores (Table 1; Figure 6). Kaolinite 
is present both as a major mineral phase in certain ores 

and as minor in some others. Minerals such as boehmite, 
smectite, illite, rutile, anatase, hematite, goethite, chlorite, 
quartz, and plagioclase occurred as minor mineral phases 
in the ores (Table 1; Figure 6).
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4.2. Geochemistry
The analytical values of major, minor, trace, and rare earth 
elements in 20 ore samples collected from the studied 
profile are listed in Table 2.

The distribution pattern of major and minor 
elements normalized to upper continental crust (UCC) 
(Rudnick and Gao, 2004) illustrates that with increasing 
concentration values of Al, Ti, Mn, and P, the values of 
Na, K, Ca, and Mg decrease. Iron, however, displays dual 
(decrease-increase) behavior during the progression of 
bauxitization processes (Figure 7). Bivariate plots among 
oxides demonstrates that there exist good and strong 
correlations between pairs of Al2O3–TiO2 (Figure 8a) and 
SiO2–K2O (Figure 8b) and negative correlations between 
pairs of Al2O3–Fe2O3 (Figure 8c) and TiO2–Fe2O3 (Figure 
8d) in the studied ores.   

The correlation coefficients between pairs of Al2O3–
TiO2 (r = 0.95), SiO2–CaO (r = 0.91), and SiO2–K2O (r = 
0.77) are strongly positive, while between pairs of Al2O3–
Fe2O3 (r = – 0.89) and TiO2–Fe2O3 (r = –0.78) they are 
strongly negative. Using ternary plots of Al2O3–Fe2O3–
SiO2 (Schellamnn, 1986; Beavais, 1991; Aleva, 1994) 
unveils some important points concerning the chemical 

characteristics of the bauxite ores. The Kanigorgeh data 
points on these plots show that the ores have bauxite to 
kaolinitic bauxite compositions (Figure 9) and formed 
during moderate lateritization processes (Figure 10). 
Deferrugenization was the only important controlling 
mechanism during the evolution of the ores (Figure 11).

Comparison of the mean chemical composition of 
certain selective oxides and REEs in the Permian bauxite 
ores at Kanigorgeh with those of some known bauxitic-
lateritic deposits in the world (Iran, Turkey, India, Greece, 
Venezuela, Madagascar, and Italy) (Table 3) reveals that 
despite the low values of REEs, the ores at Kanigorgeh 
possess high contents of TiO2 and MnO relative to most 
well-known bauxitic-lateritic deposits in the world.

The distribution pattern of trace elements normalized 
to the UCC (Rudnick and Gao, 2004) reveals that, parallel 
to the increase of concentration values of V, Cr, Co, Ga, Zr, 
Nb, Mo, Hf, Ta, W, and Tl, the values of Ni, Cu, Zn, Rb, Y, 
Cs, and Pb decrease. However, Sn, U, and Th depict 2 trends 
of increase and decrease in the course of evolution of the 
ores (Figure 7). Bivariate plots among trace elements and 
certain minor oxides exhibit other interesting geochemical 
aspects of the ores. Shown on these bivariate diagrams are 
the positive and strong correlations between pairs of K2O–
Rb, K2O–Cs, K2O–Ba, and K2O–Sr (Figures 8e–8h); pairs 
of Fe2O3–U, Fe2O3–Th, and Fe2O3–Co (Figures 8i–8k); and 
pairs of MnO–Mo, MnO–Ni, MnO–Zn, and MnO–Tl 
(Figures 8l–8o). 

Distribution patterns of REEs normalized to the UCC 
(Rudnick and Gao, 2004) indicate various degrees of 
depletion of these elements relative to the UCC in most 
studied samples (Figure 7). According to the results of 
chemical analyses, the anomalous levels of REEs in the 
bauxite ores are ∑REELa-Lu = 8.91–200.38 ppm, ∑LREELa-

Nd = 7.63–167.46 ppm, ∑MREESm-Ho = 0.95–25.53 ppm, 
∑HREEEr-Lu = 0.33–9.71 ppm, and La/Y = 0.09–6.11 (Table 
4). The calculation of Eu and Ce anomalies obtained from 
the following equations (Taylor and McLennan, 1985) 
shows that the anomaly values have ranges of 0.42–0.65 
and 0.21–3.23, respectively (Table 4): 

Eu/Eu* = EuN / (√SmN × GdN), 
Ce/Ce* = 2CeN / (LaN + PrN),     

where N stands for the normalization of REEs to chondrite.

5. Discussion
5.1. Mobilization, distribution, and fractionation of REE 
in the bauxite profile
Plotting of concentration variations of light REEs (LREEs; 
La–Nb), middle REEs (MREEs; Sm–Ho), heavy REEs 
(HREEs; Er–Lu), and REEs (La–Lu) of the ore samples 
against depth in the studied profile elucidates 2 important 
points for distribution of REEs (Figures 12a–12d): the 
distribution patterns of LREEs, MREEs, HREEs, and 
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Figure 4. Stratigraphic column across a selected profile of the 
Permian bauxite horizon at Kanigorgeh (for position, see Figure 
3) with indication of analyzed samples.
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Figure 5. Photomicrographs of some bauxite ores at Kanigorgeh. (a) Spherical features (ooids and pisoids) (XPL). 
(b) Ooids and pisoids with various shapes and sizes (XPL). (c) Dumbbell-shaped pisoids (formed by epigenetic 
processes) set in a pelitomorphic matrix (XPL). (d) A pisoid (at center) with conspicuous concentric bands 
(XPL). (e) Collomorphic-fluidal texture (XPL). (f) Elliptical and dumbbell-shaped hematite in an aphanitic 
matrix (polarized reflective light).

Table 1. Constituent minerals (identified by XRD analyses) in the bauxite ores at Kanigorgeh.

Minerals identifiedSample no.
MinorMajor 
Rutile, anatase, illite, quartz, boehmiteDiaspore, kaolinite R-1
Smectite, illite, rutile, chloriteDiaspore, kaoliniteR-4
Boehmite, smectite, hematite, anatase, kaoliniteDiaspore, kaoliniteR-7
Kaolinite, rutile, anatase, hematite, goethite, Diaspore, kaoliniteR-10
Boehmite, kaolinite, illite, goethite, hematite, rutile, anatase, smectite, quartzDiasporeR-12
Boehmite, kaolinite, illite, goethite, hematite, rutile, anatase, smectite, chlorite, plagioclaseDiasporeR-16
Kaolinite, goethite, hematite, rutile,DiasporeR-18
Kaolinite, illite, hematite, rutile, anatase,DiasporeR-20
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REEs in the upper and middle parts of the profile exhibit 
irregular and zigzag shapes, and they show elevated values 
in the lower parts. In this study, for interpretation of causes 
of REE variations in the sampled profile, attempts have 
been made to calculate the La/Y values in the ores. La/Y 
proved to be a suitable parameter for determination of 
pH in the environment of ore formation, so values of <1 
and >1 are indicative of acidic and alkali environments, 
respectively (Crinci and Jurkowic, 1990). This ratio at 
Kanigorgeh ranges from 0.09 to 6.11. The environment 
of ore formation from the surface to a depth of about 6.5 
m had chiefly acidic conditions, but it gradually changed 
to basic toward deeper parts (6.5–10 m) (Figure 13). The 
prevalence of acidic conditions in the upper and middle 
parts of the profile and basic in the lower parts led us 
to infer that the percolating acidic solutions caused the 
leaching of REEs from the upper and middle parts and 
then their deposition (due to the buffering of weathering 
solutions near the carbonate bedrocks) in the lower parts. 
In fact, this mechanism brought about redistribution and 
hence concentration of REEs in the lower parts of the 
profile. It seems that the main effective factor for irregular 
distribution of REEs in the upper and middle parts of the 
profile was the discrepancy in the degree of resistance 
of the primary REE-bearing minerals against meteoric 
percolating solutions. Furthermore, according to the high 
similarity of the concentration trends of LREEs, MREEs, 
and HREEs, it can further be deduced that the REEs as 
a whole did not experience a considerable fractionation 
after deposition of ores into karstic holes at Kanigorgeh.

In this study, for quantitative consideration of the 
fractionation degrees between REEs, various ratios of 
REEs like LaN/YbN, LaN/SmN, and GdN/YbN were used. LaN/
YbN establishes the degree of fractionation of LREEs from 
HREEs during geochemical processes (Aubert et al., 2001; 

Yusoff et al., 2013), while the other 2 ratios determine the 
degree of fractionation between LREEs and MREEs and 
between MREEs and HREEs (Yusoff et al., 2013). The 
values of those ratios have ranges of LaN/YbN = 0.44–1.85, 
LaN/SmN = 0.80–5.15, and GdN/YbN = 0.14–3.18 (Table 
4), which are indicative of relatively weak fractionations 
between LREEs and MREEs as well as HREEs during 
bauxitization. Moreover, the distribution pattern of REEs 
normalized to chondrite (Taylor and McLennan, 1985) 
also demonstrates weak fractionations of REEs along with 
occurrence of both positive and negative anomalies for Ce 
and negative anomalies for Eu (Figure 14). The correlation 
coefficients among REEs show varying ranges of 0.75–0.99 
(among La to Nd), 0.81–0.99 (among Sm to Ho), and 0.97–
0.99 (among Er to Lu) (see Table 5). The deduction can be 
made from data in Table 5 that HREEs have the stronger 
intrinsic correlations among themselves relative to MREEs 
and LREEs. These explanations demonstrate that the 
fractionations among LREEs and MREEs were greater 
than those of HREEs in Kanigorgeh Ti-rich bauxite ores.
5.2. Controlling factors on Ce and Eu anomalies
The values of Ce anomalies have a range of 0.21–3.23. 
Plotting of the Ce anomalies against depth shows that 
these values are positive from the surface up to a depth 
of ~6.5 m and then gradually become considerably 
negative in the deeper parts (Figure 15a). The studied 
ores, on the basis of REE values and Ce anomalies, can 
be divided into 2 distinct parts. Those in the upper part 
(from the surface to a depth of ~6.5 m) that is actually a 
leached zone contain positive Ce anomalies (1.62–3.23) 
with low values of REEs (8.91–133.98 ppm) (Figure 16). 
The lower part that lies beneath the leached zone is in 
fact an enrichment zone and has negative Ce anomalies 
(0.24–0.61) and high REE values (151.04–200.38 ppm) 
(Figures 12a and 13). In view of concentration trends 
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of REEs and their relations with Ce anomalies, the ores 
at Kanigorgeh have high similarity to the mineralization 
of REEs in Thailand (at Phuket) (Sanematsu et al., 2013) 
and southern China (Bao and Zhao, 2008; Chi and Tian, 
2009). Although concentration values of REEs in the ores 
at Kanigorgeh are less than those of these 2 areas, the 
positive anomalies of Ce in the upper parts of the profile at 
Kanigorgeh indicate that Ce was fixed as Ce4+ under acidic 
and oxidizing conditions. Noting the prevalence of alkaline 
conditions in the lower parts of the profile (Figure 13), the 
only logical and acceptable factor for the generating of 
negative anomalies for Ce in the lower part of the profile 
is coupled complexation of Ce4+ with carbonate ligands 
and its leaching during bauxitization processes (Karadağ 
et al., 2009). The Eu anomaly values range from 0.42 to 
0.56 (Table 4). This relatively narrow range may act as 
conservative index during bauxitization processes (Figure 
15b). By considering the good and positive correlation 
between Eu/Eu* and CaO (r = 0.97) (Figure 17a) and 
between Eu/Eu* and Na2O (r = 0.96) (Figure 17b), it can 
be inferred that the degree of plagioclase alteration was the 
important controlling factor for the minor variation in Eu 
anomalies in the ores at Kanigorgeh.
5.3. Mineral controls on the REE distribution
The secondary minerals like phosphates along with oxides 
and hydroxides of Fe and Mn are important scavengers for 
REEs (Aubert et al., 2001; Karadağ et al., 2009; Abedini 
and Calagari, 2013a; Yusoff et al., 2013). In this study, for 
determination of potential host minerals for REEs in the 
ores at Kanigorgeh, attempts have been made to calculate 
Pearson correlation coefficients between REEs and major 
and minor elements (Table 6). The negative correlation 
between Si and lanthanides (r = –0.25 to –0.39) and 
positive but weak correlation between Al and lanthanides 
(r = 0.16 to 0.30) show that clay minerals are not the 
likely hosts for REEs in the profile. Negative and weak 
correlations between Fe and most of the REEs (r = –0.03 

to –0.12) point to the weak role of Fe-bearing minerals 
for concentrations of REEs in the residual profile. The 
negative correlation coefficients between P and REEs (r 
= –0.15 to –0.44) indicates that the P-bearing minerals 
did not play any role for concentration of lanthanides. 
Although De Carlo et al. (1998), Bau (1999), and Ohta and 
Kawabe (2001) reported that there is a close relationship 
between Ce and Fe and Mn in the weathered systems, Ce 
at Kanigorgeh displays a good correlation only with Mn 
(r = 0.85), indicating the role of Mn-oxides in fixation of 
this element. This high correlation coefficient also shows 
that, analogous to Ce, the variation in redox potential is a 
key factor for distribution of Mn in this profile (Ma et al., 
2007). The existence of a strong and positive correlation 
between Mn and REE (r = 0.71 to 0.98) may also indicate 
the effective role of Mn-oxides in concentration of REEs 
at Kanigorgeh. Mn-oxides also have good and positive 
correlations with Ni, Zn, Tl, and Pb (r = 0.84–0.94), 
which may reflect their significant role in fixation of 
these elements in the system (Ndjigui et al., 2013). The 
positive but weak correlations between Ti and all REEs 
(r = 0.21–0.32) may point to the fact that, despite the 
existence of noticeable quantities of TiO2 in the form of 
rutile and anatase in the ores, these 2 Ti-bearing mineral 
phases did not play a drastic role in the concentration and 
distribution of REEs in the ores at Kanigorgeh.

6. Conclusions
The most important results obtained from these 
mineralogical and geochemical studies of the Ti-rich 
karst bauxite ores in the 10-m-thick Permian bauxite 
horizon at Kanigorgeh are as follows:

1) The studied ores contain ooidic, pisoidic, nodular, 
and collomorphic-fluidal textures. Diaspore along with 
kaolinite, boehmite, smectite, illite, rutile, hematite, 
goethite, chlorite, quartz, and plagioclase are rock-
forming minerals in the ores at Kanigorgeh.
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2) The studied profile (~10 m thick) is divided into 
2 parts by a redox boundary at a depth of 6.5 m. The 
upper part is a leached zone, in which the ores have 
positive Ce anomalies and low values of REEs (174–548 
ppm). In comparison, the lower part of the profile is an 
accumulation zone and separated from the upper part by 
the negative Ce anomalies and high REE values (541–1250 
ppm). The positions of these 2 zones indicate that leaching 

and fixation were 2 important mechanisms principally 
controlling the distribution of REEs in the ores.

3) The positive Ce anomalies in the upper part of 
the profile point to the fixation of Ce4+ under oxidizing 
conditions in the ores. The negative Ce anomalies in the 
lower part of the profile reveal that carbonate ligands 
for complexing with Ce4+ were present in considerable 
quantities in the environment of ore deposition in the 
horizon.

4) The obtained results showed that the relatively 
narrow variations of negative Eu anomalies in the profile 
were controlled chiefly by the degree of feldspar alteration.

5) Incorporation of the results obtained from 
considerations of variation trends of REEs, LREEs, 
MREEs, HREEs, and La/Y along with values of LaN/YbN, 
LaN/SmN, and GdN/YbN in the ores reveal that the degrees 
of leaching, fractionation, and concentration of REE are 
functioned by factors such as variation in chemistry (Eh, 
pH) of ore-forming solutions, degree of accessibility to 
complexing ligands, differences in stability of REE-bearing 
primary minerals, function of carbonate bedrocks as an 
active geochemical barrier, and scavenging by Mn-oxides.

6) Correlation coefficients among elements illustrated 
that Mn-oxides in this deposit played a prominent role in 
concentration and fixation of elements such as Mo, Ni, Zn, 
Tl, and Pb, in addition to REEs.

7) The geochemical processes effective in mobilization, 
distribution, and enrichment of REEs in the bauxite ores 
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Figure 11. Ternary plot for probable geochemical paths according 
to Beauvais (1991) indicating various trends followed during 
the process of bauxitization depending upon whether quartz is 
present or absent in the soft microgranular matrix. The shaded 
portion shows data of ferruginous cuirasses (Tardy, 1997). As 
shown on this plot, the Kanigorgeh bauxite ores resulted from 
deferruginization processes.
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Table 3. An overview of the mean values of selected major oxides and REEs of the Permian bauxite deposit at Kanigorgeh and 
some of the world’s representative bauxitic-lateritic deposits of well-known origin. 

No. Locations of bauxite/laterite 
occurrences Al2O3 SiO2 Fe2O3 TiO2 MnO ∑REE References

1 Ayrancı (Turkey) 57.70 3.20 23.36 3.13 0.15 618 Yalcin and Ilhan  (2013)
2 Antsirable (Madagascar) 56.80 8.19 8.19 1.69 0.12 304 Berger et al. (2014)
3 Deccan  Traps (India) 21.39 32.29 37.45 3.14 0.14 140 Babechuk et al. (2014)
4 Naupaktos (Greece) 49.28 10.76 24.56 1.40 0.09 465 Laskou (2003)
5 Smerna (Greece) 49.27 7.64 30.00 1.61 0.03 290 Laskou (2003)
6 Pylos (Greece) 51.11 11.91 21.11 1.76 0.05 205 Laskou (2003)
7 Los Pijiguaos (Venezuela) 49.10 11.26 23.48 3.44 0.06 - Meyer et al. (2002)
8 Shahindesh (Iran) 32.31 28.19 24.72 2.92 0.06 266.57 Abedini and Calagari (2013c)
9 Menderes Massif (Turkey) 61.12 4.27 23.11 3.02 0.03 - Aydoğan and Moazzen (2012)
10 Maşatdağı (Turkey) 55.31 11.26 23.48 3.44 0.06 - Temur (2006)
11 Seydişehir/Konya (Turkey) 48.86 8.06 16.74 2.06 0.01 740.35 Karadağ et al. (2009)
12 Biglar (Iran) 32.29 20.89 25.96 5.61 0.04 245.71 Calagari et al. (2010)
13 Kanigorgeh (Permo-Triassic) 38.62 20.55 22.38 4.72 0.06 510.88 Abedini and Calagari (2013b)
14 Jajarm (Iran) 34.00 27.30 21.60 3.60 0.02 703.70 Esmaeili et al. (2010)
15 Sheikh-Marut (Iran) 21.32 41.11 17.69 3.07 0.29 507.10 Abedini an Calagari (2013a)
16 Apulian (Italy) 39.85 7.96 36.32 5.19 0.16 930.70 Mongelli (1997)
17 Northern Ireland 33.78 21.54 25.03 3.99 0.10 - Hill et al. (2000)
18 Olmedo (Italy) 52.00 19.84 10.65 2.71 0.02 - MacLean et al. (1997)
19 Kanigorgeh (Permian) 49.95 22.26 6.69 8.19 0.60 96.78 This study

Table 4. Values of Eu/Eu*, Ce/Ce*, La/Y, REEs, LREEs, MREEs, HREEs, LaN/YbN, LaN/SmN, and GdN/YbN for the 
studied bauxite ores at Kanigorgeh.

R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-8 R-9 R-10

Eu/Eu* 0.42 0.42 0.60 0.49 0.59 0.54 0.47 0.49 0.54 0.49
Ce/Ce* 2.33 2.25 2.73 1.88 2.98 3.01 2.56 1.89 3.13 1.62
La/Y 1.05 1.13 0.19 0.34 0.47 0.16 1.01 0.38 0.25 0.72
∑REELa-Lu 133.98 104.64 20.86 52.58 101.86 15.41 84.68 52.69 36.20 83.84
∑LREELa-Nd 111.34 91.29 18.43 36.29 96.06 13.56 62.90 36.40 27.25 53.66
∑MREESm-Ho 16.95 9.72 1.80 13.66 4.74 1.38 17.64 13.66 7.17 25.53
∑HREEEr-Lu 5.69 3.63 0.63 2.63 1.06 0.47 4.14 2.63 1.78 4.65
LaN/YbN 0.67 1.17 1.18 0.64 1.54 1.00 0.85 0.64 0.44 0.54
LaN/SmN 1.74 4.56 4.93 1.21 3.22 4.53 2.01 1.21 0.80 0.95
GdN/YbN 1.54 0.93 0.19 1.54 0.50 0.14 1.91 1.54 0.76 2.88

R-11 R-12 R-13 R-14 R-15 R-16 R-17 R-18 R-19 R-20

Eu/Eu* 0.57 0.55 0.47 0.65 0.49 0.51 0.42 0.43 0.44 0.52
Ce/Ce* 3.23 2.7 2.06 2.08 0.31 0.61 0.6 0.21 0.24 0.44
La/Y 0.09 0.36 1.15 1.06 6.11 4.58 3.46 4.51 3.71 3.00
∑REELa-Lu 8.91 30.44 96.46 84.41 175.5 200.38 192.17 152.79 151.04 156.93
∑LREELa-Nd 7.63 26.33 74.68 77.01 141.84 167.46 160.23 120.85 120.29 130.19
∑MREESm-Ho 0.95 3.28 17.64 5.51 23.95 24.19 24.18 24.18 23.04 19.75
∑HREEEr-Lu 0.33 0.83 4.14 1.89 9.71 8.73 7.76 7.76 7.71 6.99
LaN/YbN 0.63 1.06 0.85 1.85 1.39 1.46 1.55 1.55 1.52 1.55
LaN/SmN 3.63 2.67 2.02 4.20 5.15 4.29 3.60 3.60 3.82 3.60
GdN/YbN 1.44 2.45 3.18 1.16 1.21 1.34 1.50 1.50 1.46 1.00
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Table 5. Pearson correlation coefficient values among REE in the bauxite ores at Kanigorgeh.

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Yb

La 1.00

Ce 0.74 1.00

Pr 0.99 0.75 1.00

Nd 0.98 0.75 0.99 1.00

Sm 0.93 0.76 0.96 0.97 1.00

Eu 0.82 0.75 0.85 0.87 0.94 1.00

Gd 0.61 0.57 0.65 0.68 0.81 0.93 1.00

Tb 0.66 0.62 0.71 0.74 0.85 0.96 0.98 1.00

Dy 0.68 0.61 0.71 0.73 0.84 0.96 0.98 0.99 1.00

Ho 0.72 0.65 0.76 0.79 0.88 0.97 0.97 0.99 0.99 1.00

Er 0.89 0.72 0.92 0.93 0.95 0.97 0.87 0.91 0.92 0.94 1.00

Tm 0.95 0.75 0.96 0.97 0.97 0.94 0.80 0.85 0.86 0.89 0.98 1.00

Yb 0.98 0.75 0.98 0.98 0.95 0.90 0.74 0.79 0.80 0.83 0.97 0.99 1.00

Lu 0.97 0.74 0.97 0.98 0.96 0.90 0.74 0.79 0.81 0.84 0.97 0.99 0.99 1.00

10

9

8

7

6

5

4

3

2

1

   0
0 0.5 1

Eu/Eu*

(b)

10

9

8

7

6

5

4

3

2

1

0
0 1 2 3 4

Ce/Ce*

D
ep

th

(a)

G
re

en
ish

 g
ra

y 
   

ba
ux

ite
 o

re

Re
d 

an
d 

br
ow

ni
sh

 re
d

   
  b

au
xi

te
 o

re

 D
ar

k 
gr

ee
n 

 b
au

xi
te

 o
re

Re
d 

an
d 

br
ow

ni
sh

 re
d

   
  b

au
xi

te
 o

re

 D
ar

k 
gr

ee
n 

 b
au

xi
te

 o
re

G
re

en
ish

 g
ra

y 
   

ba
ux

ite
 o

re

Figure 15. Variation of (a) Ce/Ce* and (b) Eu/Eu* values in the 
bauxite ores against depth in the studied profile at Kanigorgeh.
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at Kanigorgeh are similar to the mineralization of REEs in 
Thailand and southern China. 
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Table 6. Pearson correlation coefficient values among REEs and major and minor 
elements in the bauxite ores at Kanigorgeh.

Si Al Fe Ca Mg Na K Ti Mn P

La –0.26 0.22 –0.10 –0.19 –0.02 –0.07 0.05 0.26 0.96 –0.20
Ce –0.39 0.28 –0.08 –0.38 –0.18 –0.25 –0.23 0.31 0.85 –0.44
Pr –0.26 0.25 –0.12 –0.18 0.00 –0.06 0.07 0.27 0.97 –0.18
Nd –0.27 0.26 –0.13 –0.16 0.02 –0.06 0.08 0.29 0.98 –0.16
Sm –0.28 0.30 –0.16 –0.16 0.03 –0.08 0.07 0.32 0.97 –0.15
Eu –0.33 0.20 –0.02 –0.22 –0.06 –0.13 0.02 0.24 0.90 –0.22
Gd –0.29 0.16 0.00 –0.18 –0.08 –0.09 0.03 0.21 0.71 –0.17
Tb –0.36 0.22 –0.03 –0.24 –0.11 –0.17 –0.02 0.28 0.76 –0.22
Dy –0.35 0.19 –0.01 –0.23 –0.12 –0.15 0.00 0.26 0.76 –0.22
Ho –0.37 0.23 –0.04 –0.25 –0.13 –0.17 –0.02 0.30 0.80 –0.23
Er –0.31 0.19 –0.03 –0.21 –0.07 –0.11 0.04 0.26 0.93 –0.22
Tm –0.30 0.20 –0.05 –0.22 –0.06 –0.11 0.03 0.25 0.96 –0.23
Yb –0.27 0.18 –0.04 –0.20 –0.04 –0.08 0.05 0.23 0.97 –0.21
Lu –0.25 0.21 –0.09 –0.16 0.00 –0.05 0.08 0.26 0.96 –0.18
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