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1. Introduction
Western Turkey is a well-known seismically active and 
rapidly deformed intraplate continental extensional area 
(McKenzie, 1972; Jackson and McKenzie, 1984; Eyidoğan 
and Jackson, 1985; Ambraseys, 1988, 1998; Le Pichon et 
al., 1995; Reilinger et al., 1997; McClusky et al., 2000). The 
recent extension direction is approximately NNE-SSW, 
driven by a complex system managed by slab pull force of 
the Aegean-Cyprus arc (McKenzie, 1978; Le Pichon and 
Angelier, 1979; McClusky et al., 2000; Reilinger et. al., 
2006; Brun and Sokoutis, 2010; Jolivet et al., 2010) and 
the southwestern motion of Anatolia (Dewey and Şengör, 
1979; Mercier et al., 1989; Koçyiğit et al., 1999). The 
complex patterns of extensional systems are commonly 
attributed to complex geological structures and history 
with various extensional directions, as in western Turkey 
(Şengör et al., 1985; Seyitoğlu and Scott, 1991; Barka and 
Reilinger, 1997; Koçyiğit et al., 1999; Koçyiğit, 2000). In 
the system, there are a number of extensional features 
such as normal faults, listric faults, growth faults, relay 
ramps, and horst and graben systems (Koçyiğit et al., 
2000; Bozkurt, 2001). Although relay structures can be 
formed in different tectonic regimes, most of the examples 
given in the literature have been identified in extensional 
systems.   

The term “relay ramp” was first used by Goguel (1952) 
to define “relais des failles” or relay structures. Although 
Gibbs (1984) used the term “transfer fault” to describe 
the link between 2 adjacent normal faults, he did not 
mention the term “relay ramp” specifically. Moreover, 
some other authors clarified transfer zones having the same 
deformation pattern of relay ramps that have been created 
by transfer faults (Chadwick, 1986; Morley et al., 1990; 
Peacock et al., 2000). Relay ramps and their formation 
stages in extensional systems are defined in the literature 
by different authors in different areas (Bristol, 1975; Bristol 
and Treworgy, 1979; Rosendahl and Livingstone, 1983; 
Gabrielsen and Robinson, 1984; Peacock and Sanderson, 
1991, 1994; Childs et al., 1995; Ferrill and Morris, 2001; 
Peacock and Parfitt, 2002; Acocella et al., 2005; Çiftçi and 
Bozkurt, 2007). Moreover, some specific terms to define the 
stage of relay ramp formation are “soft-linked” and “hard-
linked” (Larsen, 1988). The term “soft-linked” is used to 
describe the stage before the breaking of the ramp (without 
a breaching fault), and “hard-linked” defines the stage after 
the formation of a breaching fault that cuts and displaces 
the ramp (Figure 1). Soft-linked and hard-linked stages are 
connected to each other by the formation of the breaching 
fault in the evolutionary manner of the relay ramp (Peacock 
and Sanderson, 1994). The primary factors controlling the 
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breaching of a relay ramp can be underlined as slip vectors 
and displacement gradients of overlapping faults that 
bound the ramp area (Ferrill and Morris, 2001). Another 
key term in relay ramp formation is “linkage”, which was 
described as the process by which, or the conditions in 
which, 2 originally separate faults become connected 
(Pollard and Aydin, 1984; Peacock et al., 2000). This term 
is used to define the relationship between 2 normal faults 
that are dipping in the same direction.

In extensional regimes, low strain is an essential 
preliminary condition in the formation of a relay ramp 
structure. However, in the advancing stages, high strain 
and increasing displacement are required to break the 
relay area and the formation of the breaching fault (Larsen, 
1988). Relay geometry and style of evolution are controlled 
by the local geological settings. Four stages for the evolution 
of relay ramps are defined in the literature (Peacock and 
Sanderson, 1991, 1994). In stage 1, subparallel, stepping 
faults are isolated; they do not interact with each other and 
they propagate over time (Figures 2a and 2b). In stage 2, 
the relay ramp forms when the 2 faults start an interaction, 
causing tilting of the bedding or the surface between them 
(Figure 2c). Stage 3 marks the onset of fracturing inside 
the ramp (Figure 2d) and stage 4 is characterized by the 
linkage of the 2 faults to form a breaching fault (Figure 
2e). This model of relay ramp evolution has proven to be a 
good guide for the structural interpretation of relay ramps, 
even though dissimilarities have been reported between 
relay ramps at different scales (Peacock and Sanderson, 
1994; Peacock et al., 2000; Çiftçi and Bozkurt, 2007). 
According to Peacock and Sanderson (1994), 3 stages for 
the relay process were identified by using the sandbox 
experience. These stages are immature, interaction, and 
linkage, corresponding to stages 1, 2, and 3–4 stages of 
Peacock and Sanderson (1994), respectively.   

In this paper, a newly defined structure of 2 relay ramps 
along the northern boundary of the Erdoğmuş-Yenigediz 

graben are presented. The main scope of this paper is to 
illustrate an example for different formation processes 
of 2 oppositely dipping relay ramps (SAR-I and SAR-II) 
between 3 normal faults based on geological field data. 
Moreover, the effects of fault propagation, interaction 
and linkage mechanisms, and variation in the slip-plane 
data along the breaching faults are discussed to reveal 
this configuration in an active normal fault system.  

2. Geological settings 
The study area is located along the northwestern master 
fault of the Erdoğmuş-Yenigediz graben (Gürboğa et 
al., 2013), formed in the western section of the Akşehir-
Simav fault system (Koçyiğit and Özacar, 2003), which 
is a major extensional structure in western Turkey. 
The Erdoğmuş-Yenigediz graben is about 6–10 km 
wide, 15 km long, approximately ENE-trending, and 
actively growing (Gürboğa et al., 2013) (Figure 3a). 
This is also shown by geological field work and the 
Abide earthquake (1944.06.24, Ms = 6.0) (Eyidoğan 
and Jackson, 1985; Eyidoğan et al., 1991) and Gediz 
earthquake (1970.03.28, Mw = 7.2) (Ambraseys and 
Tchalenko, 1972). The graben is bounded by 4 fault 
zones: the Şaphane fault zone in the NW, Muratdağı 
fault zone in the SE, Simav fault zone in the SW, and 
Yeşilova fault zone in the NE (Figure 3b). These fault 
zones are composed of numerous fault segments and 
single faults that are 2–15 km long and closely spaced 
(Gürboğa et al., 2013). The main interest of this paper is 
the Şaphane fault zone, which consists of 3 single faults 
(Şaphane, Gürlek, and Yumrutaş), and there are 2 relay 
structures (SAR-I and SAR-II) on their overlapping 
areas. These faults juxtapose pre-Miocene recrystallized 
limestone either with Plio-Quaternary terrace deposits 
or Early Miocene-Early Pliocene volcano-sedimentary 
sequences. 
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Figure 1. Block diagrams of soft-linked (a) and hard-linked (b) relay structures between 2 normal faults (Larsen, 
1988; Peacock and Sanderson, 1991, 1994).
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2.1. Stratigraphical sequence
There are 3 main groups of stratigraphic units. 1) The 
basement is represented by recrystallized limestone 
Pre-Miocene in age. The unit is widely exposed at both 
the southern and northern margins of the Erdoğmuş-
Yenigediz graben. It is overlain with the unconformity of 
2 groups of graben infill. Based on the lithology, age, and 
deformation style, 2 groups of graben infill are observed: 
2) Miocene-Middle Pliocene premodern graben infill 
(Arıca formation) and 3) Plio-Quaternary modern graben 
infill (Erdoğmuş formation). 

The premodern graben infill (Arıca formation) 
consists of 3 packages in the nature of a coarsening upward 
sequence; these, from bottom to top, are: 1) a lower detrital 
sedimentary package, 2) a central volcano-sedimentary 
package, and 3) an uppermost clastic sedimentary package. 
The modern graben infill (Erdoğmuş formation) is exposed 

in most parts of the study area. It overlies different facies 
of the Arıca formation with an angular unconformity. The 
modern graben infill consists of 3 different lithofacies: 1) 
terrace deposits, 2) travertine, and 3) recent axial plain 
deposits. All of these units were deformed by the different 
faults and their deformation patterns are clearly identified 
in many parts of the graben.  
2.2. Faults 
As stated before, the Erdoğmuş-Yenigediz Graben is 
controlled by 4 fault zones: the ENE-WSW-trending 
Şaphane fault zone in the NW, ENE-WSW-trending 
Muratdağı fault zone in the SE, WNW-ESE-trending 
Simav fault zone in the SW, and NW-SE-trending Yeşilova 
fault zone in the NE (Figure 3b). These are all high-angle 
normal faults with dip amounts ranging between 55° and 
75°. One of them is addressed in this paper because of its 
characteristic features, SAR-I and SAR-II. 
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Figure 2. Diagrams indicating evolutionary phases of a relay ramp (Peacock and 
Sanderson, 1991; Çiftçi and Bozkurt, 2007).
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3. Şaphane relay ramps (SAR-I and SAR-II)
Two relay ramps, named SAR-I and SAR-II, are diagnostic 
structures that developed along the Şaphane fault zone. 
The Şaphane fault zone is a zone of deformation about 
1–4 km wide, 36 km long, and E-W to NE trending 
in the nature of normal faulting. It is a convex-shaped 
structure controlled by 2 breaching faults. This special 
shape is produced by 2 breaching faults (F-I and F-II) on 
the relay ramps under the control of single faults. These 
are the Şaphane, Gürlek, and Yumrutaş faults from west 
to east, which define the WNW boundary of the graben. 
Digital elevation models of the Şaphane fault zone and the 
cross-sections along the Gürlek Fault (1) and breaching 
faults (F-I (2) and F-II (3)) have obviously indicated the 
altitude differences in the topography created by vertical 
displacement on the normal faults (Figures 4a–4d). Thus, 
a detailed geological map of the Şaphane fault zone and 
near vicinities apparently indicates an example of the well-
developed 2 relay structures between these faults (Figure 5). 

The Şaphane fault is about 6 km long, a nearly E-W- 
to ENE-WSW-trending southerly dipping normal fault. 
It determines and controls the N-NW margin of the 
Erdoğmuş-Yenigediz Graben and controls the formation 
of the mountain front of the Şaphane horst (Figure 5). 
Steeply sloping fault scarp (Figure 6a), sudden break in 
slope, intensely crushed and pulverized fault rocks, fault-
parallel-aligned water springs (Figure 5), colluvial wedge 
deposits (Figure 6a) accumulated along the mountain 
fronts, tectonic juxtaposition of older rocks with younger, 

and well-developed and preserved slickensides (Figure 
6b) are common morphotectonic features used for the 
recognition of the Şaphane fault. The stereographic plot of 
slip-plane data (Figure 6c) on Schmidt’s lower hemisphere 
net (Angelier, 1990, 1994) indicates that it is a dip-slip 
normal fault of ~88° with rake causing a NNE-SSW 
extension direction. 

The second normal fault, the Gürlek fault, has created 
relay structures on both its edges with different normal 
faults. The western and eastern continuation of the 
fault overlaps with the Şaphane and Yumrutaş faults, 
respectively. The Gürlek fault is a normal fault of about 
3.5 km long, NE-SW trending and southeasterly dipping 
with a minor left-lateral strike-slip component (Figures 4b, 
7a, and 7b). It is an oblique-slip normal fault according 
to the measured and analyzed stereographic plot of the 
slip-plane data and suggests a NNW-SSE directed tension 
(Figure 7b). 

The Yumrutaş fault is a normal fault of about 4 km long, 
ENE-WSW-trending and southeasterly dipping (Figure 
8a). Sudden break in slope, steeply sloping fault scarp, 
and crushed-sheared rocks are common morphotectonic 
criteria used for recognition of the fault. The fault also 
displays well-preserved slickenside (Figure 8a). The 
stereographic plot of the slip-plane data indicates a normal 
motion with NNW-SSE tension direction (Figure 8b). 

SAR-I was produced on the overlapping zone of the 
Şaphane and Gürlek faults (Figures 4c and 9). Surface 
topography dips towards the SW with a gentle morphology. 

Figure 3. (a) Simplified map showing the outline of the Erdoğmuş-Yenigediz graben, (b) major margin bounding fault zones 
around the Erdoğmuş-Yenigediz graben (Gürboğa et al., 2013).



619

GÜRBOĞA / Turkish J Earth Sci

Only the surface joint sets could be measured before 
opening the rock pit at that location. A breaching fault 
surface was apparently seen after excavation and along 
the fault surface; 2 groups of fault slip lineation datasets 

were measured. All the fault slip data were analyzed using 
the computational method of Angelier (1990, 1994). The 
stereographic plot of the fault slip data recorded for the 
initial step of the relay structure gives an ENE-WSW 

Figure 4. (a) Digital elevation model of the Şaphane relay ramp (white rectangles indicate downthrown block of the fault), (b) 
cross-section of Gürlek fault, (c) cross-section of breaching fault I (F-I), (d) cross-section of breaching fault II (F-II).
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extension direction (Figures 10a and 10b). On the other 
hand, kinematic analysis of the overprinting second group 
of slip data (left lateral strike-slip motion) recorded for 
the mature step of the relay structure designates ~N-S 

extension direction (Figures 10c and 10d), which is 
conformable with the recent regional extension direction 
in western Turkey. Although Figures 10b and 10d clearly 
indicate a similar extension direction, the locations of 

Figure 6. (a) General view of the Şaphane fault surface (looking N), (b) close-up view 
of the slip data of Şaphane fault, (c) kinematic analysis of slip-plane data along the 
Şaphane fault.

Figure 7. (a) Close-up view of the slip data of Gürlek fault, (b) kinematic analysis of 
slip-plane data along the Gürlek fault.



621

GÜRBOĞA / Turkish J Earth Sci

their dominant stress axes σ1 and σ2 are different from 
each other. Depending on the motion of the Şaphane and 
Gürlek faults, σ1 controls the initial phase of the relay 
structure and σ2 controls the steps after the formation of 
the breaching fault. In such a situation, it is not true to 
think that σ2 appeared in a compressional system as a 
dominant stress axis. As we know from the literature, there 
are many compressional structures that could be formed 
in extensional systems depending on the local variation. 
This is a very good example between the local and regional 
difference for the formation of stress axes.    

SAR-II is located on the overlapping zone of the Gürlek 
and Yumrutaş faults. Surface topography dips to the NE 
with a moderately tilted morphology (Figure 4d). A limited 
part of the fault breaching the SAR-II has been observed 
during field work (Figure 11). Similar to the breaching 
fault of SAR-I, 2 different slip planes have been measured 
along the fault surface (Figures 12a and 12c). The older 
motion is normal with a rake of 65°–85° that overprinted 
by strike-slip motion (right lateral) with rake of 10°–25°. 
Stereographic plots of these motions are approximately 
ENE-WSW and NNW-SSE, respectively (Figures 12b 
and 12d) (Angelier, 1990, 1994). The same configuration 
of slip-plane data and stress axes was observed at SAR-
II as well. Important features of a relay zone include the 
topographic ramp between the faults, tapering slip on the 
faults, and associated fracturing, especially at the top of 
the ramp. Observation of faults and joint relations in the 
Şaphane relay ramps indicates a high angle relationship 
between faulting and resultant joint development. This 
result is similar to the prediction of Anderson (1951), 

Figure 8. (a) Close-up view of the slip data of Yumrutaş fault, (b) kinematic analysis of 
slip-plane data along the Yumrutaş fault.

Figure 9. Close-up view of the breaching fault surface of SAR-I. 
SSM: Younger strike-slip motion, NM: older normal motion.
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who suggested a perpendicular relationship between the 
attitudes of breaching faults and their joints (Figure 13e).

Soft-linked and hard-linked processes are used to 
describe the stages before and after the breaching (Figure 
1). In SAR-I and SAR-II, a hard-linked process was 
arranged and topographic ramp, slip data on the breaching 
fault, and fractures (Figures 14a–14d) at the top of the 
ramp were observed during field study. 

4. Fault linkage evolution
A hard-linked interaction process was identified in SAR-I 
and SAR-II by means of field data such as formation of 
breaching fault, different motion direction from the slip 
plane on the breaching fault surface, and fault–joint 
relationship. The formation mechanism of the relay 
structure or fault linkage process occurred in 2 different 

ways: 1) plane-to-plane and 2) tip-to-plane linkage. For 
plane-to-plane linkage, 2 overlapping fault segments are 
linked by 1 or more connecting faults. For tip-to-plane 
linkage, 1 segment is curved towards the other segment 
to connect with it at a branch point (Peacock and Parfitt, 
2002; Kristensen et. al., 2008). A plane-to-plane linkage 
process took place to form Şaphane relay structures SAR-I 
and SAR-II. After the formation of the breaching fault, the 
overlapping part of the main faults to create the ramp area 
was abandoned. 

The Şaphane relay ramps are characterized by 2 main 
breaching and ramp-related faults and fracture zones 
that exhibit significant orientation shifts from the ~E-W-
trend of the bounding fault zone (Figure 3b). Based on the 
regional stress field, fault data (slickenlines), and fractures 
(Figures 13b and 13d) acquired from the breaching faults, 
roughly E-W-oriented structures are conformable with 
the ~N-S-, NNW-, and NNE-oriented extension (Figures 
6c, 7b, and 8b). All the field evidence indicates that the 
formation of the Şaphane relay ramps occurred in 3 stages. 
In the first stage, there was no interaction between the 
Şaphane, Gürlek, and Yumrutaş faults. Stereographic plots 
of their slip data indicate similar extension direction with 
regional stress direction (~N-S) (Figures 6c, 7b, and 10b). 
In the progressive time of the first stage, the faults started 
to propagate and interact with each other (Figure 14a). 
There was no change in the stress direction. In the next 
stage, 2 relay ramps developed to transfer the displacement 
among the growth of faults. The initiation of fracturing that 
resulted from accumulated strain between faults segments 
(Figure 14b) occurred just before the formation of the 
breaching fault. In the last stage, accumulation of strain 
resulted in the formation of breaching (transfer fault) faults 
(F-I and F-II) and all faults moved together (Figure 14c). 

Figure 10. (a) Close-up view of the slip plane (normal motion) recorded along SAR-I, (b) stereographic plot of older 
normal motion, (c) close-up view of the slip plane (strike-slip motion) recorded along SAR-I (SSM: younger strike-slip 
motion, NM: older normal motion), (d) stereographic plot of younger strike slip motion (solid lines are strike lines and 
dashed lines are slip lines).

Figure 11. Close-up view of the breaching fault surface of        
SAR-II.
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In the evaluation of stress distribution and formation 
of the structures during the construction of relay ramps, 3 
stages can be obviously distinguished from each other with 
stress fields. The stress anomalies can also be categorized 
into 3 groups: 1) before interaction of faults, local stress 
directions are conformable with regional stress; 2) during 
the interaction of overstepping faults and formation of 
relay ramp breaching faults, created local stress variations 
in the overlapping zone can be different from the regional 
stress direction (Figures 10b and Figure 12b); 3) after 
formation of breaching faults, overstepping normal faults 

and the breaching faults start moving together. For this 
configuration, local stress anomalies are conformable with 
the regional stress direction along the overstepping normal 
faults. On the other hand, there can be some deviations 
from the local stress direction along different parts of the 
breaching faults because of the changing in trend.

5. Discussion and conclusion
Relay ramps are a common feature formed in normal fault 
systems. There are some previous works that explained 
the formation mechanism of the relay structures and their 

Figure 12. (a) Close-up view of the slip plane (normal motion) recorded along SAR-II, (b) stereographic plot of older normal 
motion, (c) close-up view of the slip plane (strike-slip motion) recorded along SAR-II (SSM: younger strike-slip motion, NM: older 
normal motion), (d) stereographic plot of younger strike slip motion (solid lines are strike lines and dashed lines are slip lines).
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Figure 13. Azimuth frequency diagrams of the major ~NNW-SSE breaching fault (a) and its relevant 
joints (b) at SAR-I and the ~N-S breaching fault (c) and its relevant joint (d) at SAR-II. (e) Main fault and 
relevant joint set relations suggested by Anderson (1951).
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stress perturbations (Crider and Pollard, 1998; Kattenhorn 
et al., 2000; Maerten et al., 2002; Soliva et al., 2008).  

The present study explains a possible formation 
mechanism for the 2 observed relay ramps that developed 
between 3 parallel en-echelon faults in a normal fault zone 
located in western Turkey. The strike variations across the 
relay structure may be the result of stress perturbations in 
the Şaphane relay structures. In this research, 2 overlapping 
zones between the Şaphane, Gürlek, and Yumrutaş normal 
faults along the northwestern margin of the Erdoğmuş-
Yenigediz graben located in Kütahya, Turkey, are presented 
for the first time. SAR-I and SAR-II are typical examples 
of such structural features in the huge extensional system 
here.

There are various scales of fractures and faults striking 
oblique to the major faults in both SAR-I and SAR-II. The 
observed field data in the study area clearly show that the 
stress field at the relay ramp displays temporal and spatial 
variations resulting from the formation of breaching 
faults. The variations have been controlled by the local and 
regional strain accumulations. 

Various scales of faults and cracks, different types of 
slip-plane data, and detailed mapping of the study area 
indicate that SAR-I and SAR-II are the configuration of 
2 relay structures at stage (e) in Figure 2. At this level, 
breaching faults on both relay structures have connected 
the 3 normal faults and cause the moving of the Şaphane 
fault zone as a single fault with 2 main bends created by 
the ramps. Although slip-plane data measured along 
the Şaphane, Gürlek, and Yumrutaş faults represent the 
regional stress direction, the local stress direction obtained 
from 2 breaching faults (F-I and F-II) shows some diversity. 
Progressive evolution of the relay structures controlled by 
the crustal scale extensional regime in western Turkey in 
the large view is probably the reason for diversity in stress 
directions.     

According to the formation mechanism, plane-to-
plane linkage of 2 overlapping fault segments (Peacock and 
Parfitt, 2002; Kristensen et. al., 2008) took place in SAR-I 
and SAR-II. Abandoned continuation of the Şaphane, 
Gürlek, and Yumrutaş faults was detected as inactive 
cracks during the field study. Moreover, the presence of the 
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(b) formation of 2 relay ramps with topographic tilting; (c) depending on the accumulation 
of strain, relay ramps are broken by breaching faults. Recent slip data analysis: 1. Figure 6c; 2. 
Figure 10d (left-lateral motion); 3. Figure 7b; 4. Figure 12d (right-lateral motion); 5. Figure 8b.
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cracks and/or breaching faults across the relay ramps can 
indicate that these 3 faults probably were not connected at 
the initial steps of the formation of SAR-I and SAR-II, but 
in further stages they connected and moved together at the 
surface and deeper parts of the faults.
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