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1. Introduction
The study area includes the Tayfur and Cumalı villages, 
which are located in the central part of the Gelibolu 
peninsula in NW Turkey (Figure 1). This area forms the 
southwestern part of the Thrace basin, which contains a 
significant amount of the coal and natural gas reserves of 
Turkey (Tuncalı et al., 2002; Hoşgörmez and Yalçın, 2005). 
This basin is, therefore, very extensively studied (e.g., 
Lebküchner, 1974; Sümengen and Terlemez, 1991; Siyako, 
2006). The presence of coals in the Gelibolu peninsula has 
already been reported in previous studies (Saner, 1985; 
Önal, 1986; Sümengen and Terlemez, 1991; Temel and 
Çiftçi, 2002; Akgün et al., 2013). However, all of them 
have focused on the geology of the coal-bearing strata 
and there is no study regarding the coal petrographic and 
palynological properties of these coals.

The aim of this paper is to determine the maceral and 
palynological composition of the two different coal-bearing 
formations, which are the Late Oligocene Osmancık and 

Middle Miocene Gazhanedere (Figures 1 and 2). We 
also aim to determine the depositional conditions of the 
coals using coal petrography, including maceral ratios, by 
the contribution of sedimentological, palynological, and 
paleontological evidence. 

Petrographic indices and diagrams, using maceral 
ratios, were widely applied to the coal samples in 
order to determine the depositional conditions of peat 
accumulation (e.g., Diessel, 1986; Mukhopadhyay, 
1989; Calder et al., 1991; Diessel, 1992). However, some 
authors (e.g., Dehmer, 1995; Wüst et al., 2001; Scott, 2002; 
Moore and Shearer, 2003) who studied modern peat 
deposits reported difficulties in using maceral ratios by 
themselves as an environmental indicator. It is considered 
that coal petrography is a scientific tool that should 
be supported by other geologic disciplines including 
palynology, sedimentology, and organic geochemistry 
(Scott, 2002; Suárez-Ruiz et al., 2012). This study is based 
on petrographic indices and diagrams, including the 
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gelification index (GI), tissue preservation index (TPI), 
ABC ternary diagram, and palynology.

2. Materials and methods
The coal samples were collected from two coal zones in 
an abandoned open pit, each approximately 5 m thick and 
consisting of thin coal seams separated by intercalation of 
clastic materials (Figure 3). The samples were not assigned 
a specific level; they were collected perpendicular to 
the bedding of the coal zones within the Osmancık and 
Gazhanedere formations (Figures 1 and 2).

For organic petrographic analysis, sample preparation 
and reflectance measurements were performed at the 
General Directorate of Mineral Research and Exploration 
(Turkish acronym: MTA) according to International 
Committee for Coal and Organic Petrology (ICCP) 
methods (1993, 2001). Ten coal samples were examined 
under a microscope using reflected white light as well 
as blue-light excitation according to the nomenclature 
adopted by the ICCP (ICCP, 1993; Sýkorová et al., 2005). 
At least 500 points were counted to determine the maceral 
composition and mineral matter content of the ten coal 

samples. The reflectance values and coal petrographic 
composition of the samples were determined using a Leitz 
MPV microscope and the MPV-Geor software program 
with reflected white light. 

Five of the 10 samples were analyzed by point counting 
for the palynological studies. The number of species 
counted ranged from 45 to 233 and the counting results 
were converted into percentages. TILIA software was used 
to calculate the sporomorphs according to composition 
of the pollen spectra, and TILIGRAPH was used to plot 
the sporomorph diagrams (Grimm, 1994). Selected 
palynomorphs were illustrated with the help of a Leica DM 
3000 microscope.

3. Geological setting
The Gelibolu peninsula, which is in the SW part of 
the Thrace basin, consists of a Cenozoic sequence 
approximately 6000 m thick (Saner, 1985; Sümengen and 
Terlemez, 1991), and the strike of units is parallel to the 
long axis of the peninsula, oriented approximately NE–SW 
(Figure 1). The oldest units are located on the north side of 
the peninsula and the units become younger from north 
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to south. Eocene and Oligocene units strike NE–SW and 
dip towards the NW or SE, whereas Miocene and Pliocene 
units are horizontal or nearly horizontal. The basement 
of the Cenozoic stratigraphic units consists of Upper 
Cretaceous–Paleocene ophiolitic mélange (Şentürk and 
Okay, 1984; Okay et al., 1991; Sümengen and Terlemez, 
1991) and are unconformably overlain by Paleogene units, 
which are subdivided into two parts by an unconformity 
(Siyako et al., 1989; Tüysüz et al., 1998; Temel and Çiftçi, 
2002). The lower part consists of Lower–Middle Eocene 
regressive deposits starting with turbiditic sandstone–shale 
interactions and deltaic sediments (Karaağaç formation; 
Sfondrini, 1961) and gradually passing upward into 
fluvial deposits (Fıçıtepe formation; Sfondrini, 1961). The 
Karaağaç formation does not occur in the study area. The 
upper part is composed of an Upper Eocene–Oligocene 
sequence consisting of transgressive to regressive deposits 
(Sümengen et al., 1987; Tüysüz et al., 1998). It starts with 
a thin neritic limestone (Soğucak formation; Sümengen 
et al., 1987) and passes upward into turbiditic sandstone–
shale interactions and volcanites (Ceylan formation; Ünal, 
1967). The top of this part consists of deltaic and terrestrial 
sediments (Sümengen et al., 1987; Temel and Çiftçi, 
2002). These sediments are represented by the Oligocene 
Mezardere and Osmancık formations (Ünal, 1967). In this 
study, the Armutburnu formation, mentioned in previous 
studies (e.g., Temel and Çiftçi, 2002), is incorporated into 
the Osmancık formation because the boundary between 
these formations is not distinct in the study area. 

Miocene deposits rest on the Oligocene rocks above 
with an angular unconformity in the Gelibolu peninsula 
based on previous studies (Saltık, 1974; Saner, 1985; 
Sümengen et al., 1987); however, the boundary between 
Oligocene and Miocene rocks is not observed due to 
faulting. The fault separates the Oligocene and Miocene 
rocks in the study area and it is a high-angle normal fault. 
The Miocene sediments are divided into three formations, 
which are represented by terrestrial and marine-littoral 
deposits (Saltık, 1974; Şentürk and Karaköse, 1987; 
Sümengen et al., 1987; Siyako et al., 1989). The lower 
part of the Miocene is represented by the Gazhanedere 
formation (Saltık, 1974). This formation passes into the 
Kirazlı formation (Saltık, 1974), which is dominated by 
massive sandstone containing conglomerate and siltstone 
intercalations. The Gazhanedere and Kirazlı formations 
are followed by Alçıtepe formation; its depositional 
environment changes from shallow marine to littoral 
(Şentürk and Karaköse, 1987; Siyako et al., 1989; Temel 
and Çiftçi, 2002). 

The Pliocene Conkbayırı formation identified by 
Şentürk and Karaköse (1987), which is represented 
by alluvial deposits, unconformably overlies all older 
formations. 

3.1. Sedimentology of the coal-bearing formations
The coal zones in the study area are located on the 
southeastern side of Tayfur and the northwestern side 
of Cumalı (Figure 1). They occur in the Late Oligocene 
Osmancık and Miocene Gazhanedere formations. 
The Osmancık formation rests conformably upon the 
Mezardere formation and is composed of yellow to gray 
well-bedded sandstone and conglomerate at the base levels. 
Thin- to thick-bedded conglomerate consist of moderately 
to well-rounded and moderately sorted pebbles, floating 
in a sandy and muddy matrix. The sandstone occasionally 
shows cross-stratification. These coarse clastics pass into 
dark gray lenticular shale and marl deposits towards the 
upper part of formation. This formation also occasionally 
contains channel deposits that consist of sandstone and 
conglomerate. The depositional environment of the 
Osmancık formation indicates delta front and upper 
delta plain conditions (Temel and Çiftçi, 2002; Demirtaş, 
2012). Brotia escheri (Brongniart) and Polymesoda convexa 
(Brongniart) were found in the coal zone (Demirtaş, 2012). 
According to these fossil data, a Late Oligocene age can be 
assigned to the Osmancık formation. This is also consistent 
with the age derived from palynological data (see Section 
4.2). Several coal levels in this formation, with a thickness 
of 7 to 50 cm (Figure 3), are interbedded with mudstone, 
siltstone, and sandstone. This alternation suggests that the 
coal deposition was interrupted by inorganic sediments, 
probably due to small-scale subsidence, high rainfall, and 
intense clastic input to the peat. The coal levels are laterally 
discontinuous. XRD studies on two samples imply that the 
coal contains mostly quartz, pyrite, clinochlore, calcite, 
muscovite, and albite (Demirtaş, 2012). Sedimentological, 
palynological, and organic-petrographic properties of the 
coals indicate that the coal deposition occurred in a limnic 
environment (upper delta plain swamp and flood-plain).

The Gazhanedere formation identified by Saltık (1974), 
which extends in a line shape in the study area (Figure 
1), overlies the Osmancık formation. The formation is 
composed of mainly meandering river and flood-plain 
environment clastic deposits, also containing lacustrine 
sediments and coal levels (Şentürk and Karaköse, 1987; 
Sümengen et al., 1987; Yaltırak et al., 1998; Demirtaş, 
2012). The coarse-grained sedimentary rocks of the 
formation, which contain poorly sorted and moderately 
rounded clasts, laterally and vertically pass into red-brown 
mudstones frequently containing carbonate nodules and 
plant remains. The coal zone of the formation is composed 
of well-bedded and fine-grained clastics such as sandstone, 
claystone, and thin coal level alternations (Figure 2). XRD 
studies on three samples indicate that the coal contains 
mostly calcite, quartz, pyrite, cristobalite, gypsum, and 
kaolinite (Demirtaş, 2012). A lot of mollusks such as 
freshwater Melanopsis sp. and Unio sp. were found in 
the coal zone. The number of productive samples is low, 
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however. Therefore, we were not able to obtain age data 
from the mollusks. A Middle Miocene age can be assigned 
to the Gazhanedere formation based on palynological 
data (see Section 4.2) and previous studies (Şentürk and 
Karaköse, 1987; Sümengen et al., 1987).

4. Results and discussion
4.1. Coal rank and petrographic composition
The rank of coal is determined by reflectance measurements 
from huminite macerals. The mean random huminite 
reflectance values range from 0.42% to 0.50% and indicate 
that the rank of coal is subbituminous according to ASTM 
classification (Stach et al., 1982).

Microscopic studies reveal that maceral distribution of 
the samples is relatively constant and the concentration of 
the maceral groups is similar throughout the coal sections  
(Table 1). Oligocene and Miocene coal samples are similar 
with respect to petrographic composition. The coal 
samples contain high percentages of huminite macerals  
(Figure 4), ranging from 46% to 78% (82% to 88%, mmf). 
Unstructured forms of huminite are more common than 

structured forms. Liptinite and inertinite macerals occur in 
low percentages, according to huminite. The petrographic 
compositions of the samples in terms of maceral and 
mineral matter contents along with mean random 
reflectance values are presented in Table 1. Characteristic 
maceral types of the studied samples are shown in Figures 
5a–5h.

The maceral group of huminite is made up of three 
maceral subgroups; within them, gelohuminite is the 
dominant maceral subgroup, followed by telohuminite 
and detrohuminite. The gelohuminite subgroup 
includes gelinite and corpohuminite macerals derived 
from totally gelified organic matter (Stach et al., 1982). 
Gelinite is the most abundant maceral in all studied 
samples, ranging between 31% and 65% (Table 1;  
Figures 5d and 5e), indicating the high degree of gelification 
of organic matter (Stach et al., 1982). Corpohuminite 
(Figure 5b), the other member of the gelohuminite 
subgroup, was only observed in three samples, representing 
1%. It appears with rounded shape and various sizes.

The telohuminite subgroup, which exhibits cell 
structures, includes the macerals textinite, texto-ulminite, 
and eu-ulminite. Textinite tissues are ungelified and 
still keep the original cell walls, being characterized 
by open cell lumens (Figure 5g). Based on the degree 
of gelification, texto-ulminite (partly gelified) and eu-
ulminite (completely gelified) can be distinguished (Stach 
et al., 1982). In the samples, eu-ulminite is the prevailing 
telohuminite subgroup maceral, varying between 3% and 
8%, and textinite and texto-ulminite are recorded with low 
concentrations. 

The detrohuminite subgroup is subdivided into the 
macerals attrinite and densinite (Figure 5a); in the course 
of coalification, attrinite turns into densinite by gelification 
(Sýkorová et al., 2005). The dominance of densinite (up to 
8%) over attrinite (up to 4%) can be easily seen in all samples 
(Table 1). This, along with an abundance of eu-ulminite in 
the telohuminite subgroup, implies increased gelification 
(Stach et al., 1982; Mavridou et al., 2003; Sýkorová et al., 
2005). The macerals of this subgroup originated from the 
herbaceous and arborescent plants through the strong 
decay of parenchymatous and woody tissues of stems and 
leaves (Teichmüller, 1989; Diessel, 1992; Taylor et al., 1998; 
Sýkorová et al., 2005). The presence of these disintegrated 
grains and detrital maceral content may be associated 
with relatively aerobic conditions (Teichmüller et al., 
1998; Iordanidis and Georgakopoulos, 2003). The minor 
amount of this maceral group in the samples indicate that 
aerobic conditions rarely occurred.

The group of liptinite macerals has a range of 
characteristic morphologies and a characteristic 
fluorescence. Through these properties, they can be easily 
recognized during microscopic studies. The content of 
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liptinite in the samples does not exceed 9% and, within 
this group, sporinite, cutinite, alginite (Figure 5h), and 
resinite macerals are present. Sporinite is the most 
abundant liptinite maceral, occurring frequently as folded 
dark gray bodies (Figure 5a). The other members of this 
group, cutinite, alginite, and resinite, are present in minor 
amounts. Cutinite occurring with huminite macerals in 
most of the samples is easily distinguished by its linear 

aspect and toothed surface (Figure 5e), suggesting the 
presence of leafy shrubs or trees in the peat-forming 
environment (Stach et al., 1982). Resinite was only 
observed in three samples, in amounts of 1%, forming 
small rounded to oval-shaped dark-gray bodies (Figure 
5c). It is derived not only from plant resins but also from a 
range of other chemicals such as balsams, latexes, fats, and 
waxes (Teichmüller, 1989; Scott, 2002).

Table 1. Maceral distribution and reflectance values of the samples. 

Sample no. P1 P2 P3 P4 P5 P6 *P7 *P8 *P9 *P10 Range Mean
Macerals
HUMINITE 77 78 72 78 50 56 78 46 67 67 46 – 78 67

(88)** (88) (84) (83) (83) (84) (86) (85) (82) (82) (82) – (88) (84)
Telohuminite 7 15 12 10 8 9 11 9 10 5 5 – 15 10
Textinite 1 2 3 2 1 2 1 2 4 1 1 – 4 2
Texto-ulminite 0 5 4 2 2 3 2 3 2 1 0 – 5 2
Eu-ulminite 6 8 5 6 5 4 8 4 4 3 3 – 8 5
Detrohuminite 4 12 4 4 6 3 2 5 7 4 2 – 12 5
Densinite 3 8 4 4 5 3 2 5 5 3 2 – 8 4
Attrinite 1 4 0 0 1 0 0 0 2 1 0 – 4 1
Gelohuminite 66 51 56 64 36 44 65 32 50 58 32 – 66 52
Gelinite 65 51 55 64 36 44 65 31 49 58 31 – 65 52
Corpohuminite 1 0 1 0 0 0 0 1 1 0 0 – 1 0

LIPTINITE 3 6 9 8 4 7 6 2 8 8 2 – 9 6
(3) (7) (10) (9) (7) (10) (7) (4) (10) 10 (3) – (10) (10)

Sporinite 2 3 5 5 2 4 4 2 3 2 2 – 5 3
Alginite 1 1 2 2 1 2 0 0 2 4 0 – 4 2
Resinite 0 1 0 0 0 1 0 0 0 1 0 – 1 0
Cutinite 0 1 2 1 1 0 2 0 3 1 0 – 3 1

INERTINITE 8 5 5 8 6 4 7 6 7 7 4 – 8 6
(9) (5) (6) (9) (10) (6) (8) (11) (9) (9) (6) – (11) (8)

Macrinite 6 3 4 6 4 3 6 5 5 4 3 – 6 5
Fusinite 0 1 1 1 1 1 1 1 1 2 0 – 2 1
Funginite 2 1 0 1 1 0 0 0 1 1 0 – 2 1

MINERAL MATTER 13 11 14 6 40 33 9 46 18 18 6 – 46 21
Pyrite 3 3 2 1 4 5 4 9 4 7 1 – 9 4
  Framboidal 2 2 2 1 3 4 3 6 3 4 1 – 6 3
  Euhedral 1 0 0 0 1 1 1 2 1 2 0 – 2 1
  Void Filling 0 1 0 0 0 0 0 1 0 1 0 – 1 0
Others 10 8 12 5 36 28 5 37 14 11 5 – 37 17

  Ro % 0.47 0.48 0.45 0.47 0.44 0.46 0.50 0.47 0.42 0.48 0.42 – 0.50 0.46

*Miocene coal samples
**Figures in parentheses on mineral matter free basis.
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The origins of the inertinite group macerals are 
controversial. On the basis of their work on modern charcoal 
assemblages, Scott and Glasspool (2007) reported that the 
proportions of semifusinite, fusinite, and inertodetrinite 
are controlled by a range of factors, including fire type, 
temperature, and transport. In the studied samples, 
inertinite content varies from 4% to 8%, and this group is 
represented by macrinite, fusinite, and funginite macerals. 
Macrinite is the most abundant maceral from this group 
(Table 1; Figure 5f) and is found in all samples at a 
maximum content of 6%. Macrinite has been described as 
a ‘gel-like’ matter that has been ‘fusinitized’ (Taylor et al., 
1998; Scott, 2002) and has been described as an ‘oxidation’ 
product (Scott, 2002). Funginite and fusinite are present in 
most of the samples but their content does not exceed 2%. 
Fusinite macerals were reported as lenses associated with 
huminite (Figure 5f). Funginites tend to associate mostly 
with clay minerals and tend to include inorganic materials, 
such as clay minerals and pyrites, within their cavities as 
in the studied samples. The minor amount of funginite 
indicates that aerobic conditions occurred in the peat for 
short time intervals (Mavridou et al., 2003).

The mineral content of the samples determined under 
a coal petrography microscope is variable; it varies from 
6% to 46% with an average of 21%, similar to that of other 
Turkish coals (Karayiğit et al., 2000; Palmer et al., 2004; 
Toprak, 2009; Gürdal and Bozcu, 2011). It consists of clay 
minerals, quartz, calcite, and pyrite. This mineral input 
is probably related to periodic inundations. The pyrite 
content of the coals varies between 1% and 9%. It is usually 
present in the form of framboidal pyrite and suggests the 
activity of sulfate-reducing bacteria (Teichmüller et al., 
1998).

The sulfur contents of the studied coal zones were 
reported by Demirtaş et al. (2014). According to this 
study, the coals have medium to high sulfur content (with 
only one exception), varying from 0.62% to 4.87% (2.46% 
on average). The sulfur content is closely linked with the 
depositional environment of coal-bearing strata based on 
the literature (e.g., Diessel, 1992; Chou, 2012). In general, 
medium and high sulfur contents are attributed to the 
influence of seawater during peat accumulation, and 
therefore seawater sulfate may be the primary source of 
sulfur in coal (Casagrande et al., 1980; Cohen et al., 1984; 
Given and Miller, 1985; Chou, 2012). On the other hand, 
high sulfur contents in coal deposited in the freshwater 
environment without seawater influence (e.g., Whateley 
and Tuncalı, 1995; Karayiğit et al., 2001; Gürdal and Bozcu, 
2011) could be a consequence of neutral or weakly alkaline 
conditions induced by a calcium-rich environment 
(Teichmüller and Teichmüller, 1982). In the case of the 
studied samples, we did not find any data concerning the 
marine influence in the coal zones. The presence of sulfur 
in the coal samples is probably related to the depositional 
conditions (high water table and high pH).

4.2. Palynology
In this section the palynological properties of the samples 
from the Osmancık and Gazhanedere formations are 
briefly described. Ten samples were collected from these 
formations. However, only five of them were productive 
with respect to palynomorph content. These samples may 
be classified as follows: samples P3, P4, and P5 belong to 
the Oligocene coal zone (Osmancık formation, cluster 
A; Figure 6). Samples P8 and P10 belong to the Miocene 
coal zone (Gazhanedere formation, cluster B; Figure 6). 
Selected palynomorphs were illustrated in Figures 7 and 8.

The Oligocene coal samples (P3, P4, P5) are rich in 
angiosperms; however, spores and gymnosperms are 
rarely seen. Among the angiosperms, Alnus, Myricaceae, 
and Calamus occur in high quantities (Table 2). Alnus 
reaches its maximum value (58.8%) in sample P5 (Table 
2). Myricaceae reaches a peak abundance of 41.2% 
in sample P4. The percentages of Calamus (morpho-
species of Dicolpopollis kockelii) are about 10% and reach 
13.3% in sample P4. The average content of Castanea is 
about 7%, with a peak abundance of 9.9% in sample P4. 
Additionally, the pollen of Taxodiaceae, Engelhardia, 
Pterocarya, Fagaceae, Cyrillaceae, and indeterminate 
Tricolporopollenites spp. occur in minor quantities. Though 
the pollen and spores defined from the Osmancık formation 
indicate a broad range over the Cenozoic, the pollen of 
Calamus makes an acme zone in the Late Oligocene of 
the Thrace Basin (Nakoman, 1966; Akyol, 1971; Ediger 
et al., 1990; Akgün et al., 2013). Its biostratigraphic 
importance had already been used by several researchers 
for the southwest Anatolian molasse basins (Kale-Tavas, 

Liptinite Inertinite

Huminite
Miocene coals
Oligocene coals

50% 50%

75%25%

25%

25%75%

75%50%

Figure 4. Maceral group distribution of the coal samples.
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Figure 5. Photomicrographs of macerals. All photos in reflected white light except last one. a–c were 
prepared from the samples of the Osmancık formation (Late Oligocene), and d–h from the samples of the 
Gazhanedere formation (Middle Miocene). (a) Detrital huminite (densinite), sporinite, and funginite. 
(b) Corpohuminite. (c) Typical oval resinite macerals. (d) Gelinite maceral and mineral matter (pyrite, 
etc.). (e) Cutinite forms the long, thin dark bands and gelinite. (f) Macrinite and fusinite macerals. 
(g) Textinite and framboidal pyrite. (h) Alginite.
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Çardak-Tokça, İncesu) (Akgün and Sözbilir, 2001; Akkiraz 
and Akgün, 2005; Akkiraz et al., 2011). Because of this, 
a Late Oligocene age may be assigned to the Osmancık 
formation. This age is also confirmed by the mollusk fauna 
evidenced by Brotia escheri (Brongniart) and Polymesoda 
convexa (Brongniart). 

The Miocene coal samples (P8, P10) are rich in 
angiosperms as well (Cluster B), similarly to Oligocene 
coals, but different angiosperms were described with high 
percentages. They also contain high amounts of spores, 
which are represented mainly by Polypodiaceae. They reach 
a peak abundance of 29.3% in sample P10. Angiosperms, 

represented mainly by Poaceae, Myricaceae, Engelhardia, 
Oleaceae, and Cyrillaceae, are present in high percentages. 
The pollen of Oleaceae has a maximum percentage 
(14.6%) in sample P10. Engelhardia reaches 10.5% in 
sample P8 (Figure 6). Components of herbaceous/reed 
vegetation are represented by Poaceae, Polypodiaceae, and 
Chenopodiaceae (Table 2). Average content of Poaceae 
is about 16% with maximum values of 19.5% in sample 
P10 (Figure 6; Table 2). In addition, pollen of Quercus, 
Salix, Chenopodiaceae, and Sapotaceae are represented by 
low percentages (Table 2). The palynological assemblage 
defined here includes the palynomorphs that have mostly 
been observed in the Miocene deposits of Turkey (Akgün 
and Akyol, 1987, 1999; Karayiğit et al., 1999; Akgün et 
al., 2000, 2007; Kayseri and Akgün, 2008; Akkiraz, 2011; 
Akkiraz et al., 2011, 2012). As a detail, the percentages of 
herbaceous pollen such as Poaceae and Chenopodiaceae 
rose during the Late Miocene (Akgün et al., 2000, 2007; 
Akkiraz et al., 2011). Unfortunately, the number of 
productive samples from the Gazhanedere formation 
is small. Mollusk fauna were not obtained in sufficient 
numbers for age determination, and comprise freshwater 
Melanopsis sp. and Unio sp. That is why it is difficult to 
interpret the age. In general, the age may be the end of the 
Middle Miocene (probably the end of the Serravallian). 
However, more precise dating is needed. The age of 
this formation is considered based on previous studies 
(Şentürk and Karaköse, 1987; Temel and Çiftçi, 2002). All 
palynological and mollusk data indicate that deposition 
did occur in a freshwater (lacustrine) environment. The 
existence of freshwater is also supported by Pediastrum.

4.3. Coal facies indices and depositional conditions
Depositional environments such as lake, lagoon, delta, 
and flood-plain, in which organic matter may accumulate, 
have specific chemical and physical conditions. With 
respect to these environments, coals have variable contents 
(maceral and inorganic matter) (Stach et al., 1982; 
Diessel, 1992). Based on this view, some researchers (e.g., 
Diessel, 1986; Mukhopadhyay, 1989; Calder et al., 1991; 
Kalkreuth et al., 1991; Lamberson et al., 1991; Diessel, 
1992) have established relationships between petrographic 
composition (maceral and mineral matter) of the coals and 
peat-forming environments. They developed indices and 
diagrams to explain the conditions during peat formation. 
There are several indices and diagrams based on maceral 
ratios (see Suárez-Ruiz et al., 2012). In this study, among 
these indices and diagrams, the TPI and GI of Diessel 
(1986) and the ABC ternary diagram of Mukhopadhyay 
(1989) are applied to the coal samples. 

The TPI and GI were developed by Diessel (1986) 
and were modified for low rank coal by Kalkreuth et al. 
(1991). The TPI may provide information on the degree of 
humification of plant material and the type of vegetation 

Table 2. Percent data for palynomorph taxa.

Taxa      Sample no.      
SPORE P3 P4 P5 *P8 *P10
Osmundaceae 1.9 3.9 0.0 0.0 0.0
Polypodiaceae 0.0 1.3 2.0 0.0 29.3
Selaginellaceae 0.0 0.0 0.0 0.0 2.4
GYMNOSPERM          
Taxodiaceae 1.9 2.2 0.0 0.0 2.4
Cupressaceae 0.0 1.7 0.0 0.0 0.0
Pinaceae 0.0 1.3 0.0 2.1 2.4
Pinus diploxylon type 0.0 0.0 0.0 0.0 2.4
ANGIOSPERM          
Poaceae 0.0 0.0 0.0 13.7 19.5
Chenopodiaceae 0.0 0.0 0.0 0.0 2.4
Calamus 7.4 13.3 11.8 0.0 0.0
Myricaceae 7.4 41.2 0.0 24.2 4.9
Engelhardia 3.7 3.0 3.9 10.5 0.0
Carya 1.9 0.9 2.0 4.2 0.0
Carpinus 1.9 0.0 0.0 0.0 0.0
Pterocarya 5.6 0.0 0.0 0.0 0.0
Alnus 57.4 13.7 58.8 0.0 0.0
Ulmaceae 0.0 0.0 0.0 0.0 2.4
Fagaceae 3.7 0.9 5.9 2.1 0.0
Tricolpopollenites sp. 0.0 0.0 0.0 1.1 0.0
Salix 0.0 0.0 0.0 4.2 0.0
Quercus sp. 0.0 0.0 0.0 3.2 0.0
Nyssaceae 0.0 0.0 0.0 1.1 0.0
Oleaceae 0.0 0.0 0.0 6.3 14.6
Castanea 3.7 9.9 5.9 2.1 2.4
Araliaceae 0.0 0.0 0.0 2.1 0.0
Cyrillaceae 1.9 3.0 7.8 13.7 4.9
Tricolporopollenites sp. 1.9 3.9 2.0 7.4 4.9
Sapotaceae 0.0 0.0 0.0 2.1 2.4
Pediastrum 0.0 0.0 0.0 0.0 2.4
Total 100 100 100 100 100

*Miocene coal samples
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Figure 6. Simplified pollen diagram of the samples from the Osmancık and Gazhanedere formations.

(Diessel, 1992). The GI may provide information on the 
relative position of the water level and/or pH, as gelification 
requires continuous presence of water and microbial 
activity requires low acidity (Dehmer, 1989; Kolcon and 
Sachsenhofer, 1999). In the studied samples, GI values are 
variable and always higher than 5, due to a high amount 
of gelinite. TPI values are low, less than 1, as a result of a 
lack of structured macerals. A plot of the TPI index versus 
the GI index of all samples from both coal zones indicates 
that coals were deposited in a limnic (lacustrine or pod) 
environment (Figure 9). 

A low TPI is explained in different ways in the literature. 
One is the significant contribution of herbaceous plants 
as a source, considering that herbaceous plants tend to 
decompose more quickly than woody plants (Diessel, 
1992; Taylor et al., 1998; Kolcon and Sachsenhofer, 1999). 
However, angiosperm woods can also display poor tissue 
preservation (Teichmüller et al., 1998). In addition, it is 
concluded that gymnosperm (coniferous) forest coals 
display better preservation than angiosperm plants (Shearer 
and Moore, 1994). The other is depositional conditions 
that lead to strong decomposition of organic matter via 
microbial activity (Diessel, 1992). The palynological data 
revealed that the coals are rich in angiosperm plants 
and partly herbaceous/sedge plants (e.g., Polypodiaceae, 
Chenopodiaceae, Poaceae), especially in the Miocene 
coals. However, decay-resistant gymnosperms (conifers) 
such as Taxodiaceae, Cupressaceae, and Pinaceae were 
rarely recorded in the samples (Table 2). Poor tissue 
preservation in the samples is probably related to both the 
vegetation type (a high angiosperm/gymnosperm ratio 
and herbaceous plants) and to favorable conditions (high 
pH and wet conditions) for microbial destruction of plant 

remains. The high GI values and relatively high pyrite 
content (1%–9%) in the samples, especially the framboidal 
type, also indicate high bacterial activity and high pH 
conditions in the peat-forming environment (Diessel, 
1992; Teichmüller et al., 1998).  

Mukhopadhyay (1989) proposed a ternary diagram, 
based on maceral ratios (Figure 10), which provides 
information on the paleovegetation type and oxic/anoxic 
conditions dominant during peat accumulation. The ABC 
ternary plot indicates bacterial activity and dominant 
reed-marsh vegetation for all studied samples. Moreover, 
it indicates oxic to anoxic conditions (Figure 10). 

Consequently, the overall petrographic composition of 
samples from the Late Oligocene Osmancık and Miocene 
Gazhanedere formations reveals that the Gelibolu coals 
are humic coals that were formed from terrestrial plant 
material. The mean random huminite reflectance values 
vary from 0.42% to 0.50% Ro and the rank of the coals 
is therefore subbituminous according to the ASTM 
classification system. On the other hand, the studied 
samples from both coal zones seem to have similar coal 
petrographic properties. The coals are characterized by 
high huminite content, which is dominated by gelinite 
macerals. Gelinite is indicative for a high degree of 
gelification of organic matter, and low liptinite and low 
inertinite contents. The mineral content, inferred from 
microscopic studies, is variable but generally high and 
consists mostly of clay minerals, quartz, calcite, and pyrite. 
Both coal zones contain high amounts of framboidal-
type pyrite, suggesting the existence of bacterial activity 
and oxic to anoxic conditions during coal deposition, 
as also indicated by the ABC ternary plot. Based on the 
palynological studies, the type of vegetation from which 
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Figure 7. Selected palynomorph photomicrographs at the same scale (see 10-µm bar in the figure). This figure was 
prepared from the samples of the Osmancık formation (Late Oligocene). 1–3. Calamus, 4–6. Myricaceae, 7. Engelhardia, 
8. Carya, 9–11. Alnus, 12. Tricolporopollenites sp., 13. Fagaceae, 14,15. Castanea, 16. Cyrillaceae.
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Figure 8. Selected palynomorph photomicrographs at the same scale (see 10-µm bar in the figure). This 
figure was prepared from the Gazhanedere formation (Miocene). 1,2. Polypodiaceae, 3. Taxodiaceae, 4. 
Pinus diploxylon type, 5. undifferentiated Pinaceae, 6–8. Poaceae, 9. Myricaceae, 10. Carya, 11. Engelhardia, 
12. Ulmaceae, 13. Salix, 14. Oleaceae, 15. Nyssaceae, 16. Araliaceae, 17. Sapotaceae.
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the coals were formed was mainly angiosperm plants 
and spores (the Miocene coal samples in particular), 
whereas gymnosperm (conifer) plants are rarely seen in 
the samples. A diagram of TPI versus GI and palynological 
data of the two coal zones indicate that all of the coals were 
deposited in a limnic (lacustrine or pond) environment.
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