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1. Introduction
The geology and especially the tectonic style of Iran are 
highly influenced by the history and evolution of the 
Tethyan oceans. The Iranian crust is divided into several 
geotectonic units, namely the Zagros, Makran, Sanandaj-
Sirjan Zone, Urmia-Dokhtar Magmatic Assemblage 
(UDMA), Central Iran block, and Sistan Suture Zone 
(Figure 1). Each unit is characterized by a relatively unique 
record of stratigraphy, magmatic activities, metamorphism, 
orogenic events, tectonics, and overall geological style. The 
Zagros Orogen is part of the Alpine-Himalayan mountain 
chain. From the northeast to the southwest, the Zagros 
Orogen consists of four parallel tectonic zones: (i) the 
UDMA, (ii) the Sanandaj-Sirjan Zone, (iii) the Zagros 
Fold Thrust belt, and (iv) the Mesopotamian-Persian gulf 
foreland basin (Stöcklin, 1968; Berberian and King, 1981; 
Alavi, 1994; Mohajjel and Fergusson, 2000). 

The metamorphic and igneous zone of the Zagros 
Orogen, the Sanandaj-Sirjan Zone, was named by Stöcklin 
(1968). The Sanandaj-Sirjan Zone extends ~1500 km from 
the northwest (Sanandaj) to southeast (Sirjan) with a 
width of 150–200 km, parallel to the Zagros Fold Thrust 

belt. Compared to the high Zagros Mountains, most of the 
Sanandaj-Sirjan Zone has a relatively low relief, typically 
no more than 1400 m. The Zagros Main Thrust bounds 
the southern margin of the Sanandaj-Sirjan Zone and 
separates it from Zagros. Central Iran is separated from the 
Sanandaj-Sirjan Zone by a belt of steep and straight faults 
including the Tabriz and Nain-Baft Faults (Şengör, 1979). 
Overall, the scarcity of Tertiary volcanic rocks, the high 
volumes of Mesozoic (and somewhat Tertiary) intrusions, 
the relatively high abundance of Paleozoic volcanic rocks 
(Silurian, Devonian, and Permian), and metamorphism 
due to Cimmerian movements are the main features of the 
Sanandaj-Sirjan Zone (e.g., Aghanabati, 2006; Ghasemi 
and Talbot, 2006). These characteristics indicate that the 
Sanandaj-Sirjan Zone cannot be assigned to any other 
geological and structural subdivision of Iran.

The geodynamic evolution of the Sanandaj-Sirjan 
Zone was controlled by the opening and subsequent 
closure of the Neotethys Ocean at the northeastern margin 
of Gondwana (Alavi, 1994). Two main opinions are 
postulated on whether the Sanandaj-Sirjan Zone was part 
of the Iranian or Arabian plate during the formation of the 
Neotethys:
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1) The Sanandaj-Sirjan Zone has been interpreted as 
an active continental margin of the Neotethys, separated 
from the passive Arabian continental margin by the Zagros 
suture (e.g., Dewey et al., 1973; Haynes and McQuillan, 
1974; Berberian and King, 1981; Dercourt et al., 1986; 
Şengör, 1984). According to this model, the Neotethys 
opened and closed along the southwestern margin of the 
Sanandaj-Sirjan Zone, while the Paleotethys is placed to 
the north of the Sanandaj-Sirjan Zone. Based on similar 
sedimentary and tectonic history and common magmatic 
and metamorphic activities, the Sanandaj-Sirjan Zone 
is conventionally considered as a subzone of the Iranian 
plate. There are two interpretations regarding the position 
of the Paleo- and Neotethys:

i) The Sanandaj-Sirjan Zone was detached from Central 
Iran (Şengör, 1979, 1990; Stampfli and Borel, 2002) ever 
since they both separated from Gondwana in the Upper 
Permian.

ii) Ghasemi and Talbot (2006) suggested that the 
Central Iranian Microcontinent (CIM), the Sanandaj-
Sirjan Zone, and the North West Iranian Plate (NWIP) 
formed one single block, the Iranian plate. The Sanandaj-
Sirjan Zone was situated to the south of Central Iran and is 
considered as the active continental margin of the Iranian 
plate. The Paleotethys was located to the north of the 
NWIP, which itself borders the northern side of the CIM. 
These three blocks separated only after the Paleotethys 
closure during the Jurassic.

Figure 1. Main tectonic elements of Iran (modified after Stöcklin, 1968). Na: Nain, Ba: Baft, Kh: Khoy, 
Ny: Neyriz, Ke: Kermanshah, Sa: Sabzevar, M: Makran, and Bi: Birjand Ophiolites.
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2) In this scheme, the Sanandaj-Sirjan represents the 
northeastern extension of the Arabian passive continental 
margin (Falcon, 1969; Haynes and McQuillan, 1974; 
Alavi, 1980, 1994) based on similar structural trends 
and deformation patterns in Zagros and the Sanandaj-
Sirjan Zone. The Neotethys suture thus runs along the 
northeastern border of the Sanandaj-Sirjan Zone.

Obviously, the Sanandaj-Sirjan Zone is an important 
tectonic unit of Iran that remains poorly documented. 
However, it is crucial to understand this part of the 
Zagros belt, and especially to model the relationship 
between Central Iran and Arabia through Precambrian 
to Cenozoic times. Understanding its geological evolution 
could unravel the regional correlation to adjacent areas 
such as North West Iraq, South East Turkey, and the 
eastern continuation of the Alpine-Himalayan orogenic 
belt. We integrated existing data from sedimentary, 
igneous, and metamorphic rocks and structural features 
and characteristics of the related ophiolites in this paper 
to compare the various existing geodynamic models. 
We discuss the situation of the Paleo- and Neotethys 
with respect to the Sanandaj-Sirjan Zone and propose a 
regional scenario that may help understand this part of the 
Tethyan domain.

2. Geological setting
The Sanandaj-Sirjan Zone is a NW-SE trending belt of 
mainly metamorphic and igneous rocks, located at the 
northeastern extension of the Zagros Orogen (Figure 1). 
To the northeast, it is bordered by Central Iran and the 
UDMA, and to the southwest by the Zagros Fold Thrust 
belt (Alavi, 2004). 

2.1. The Sanandaj-Sirjan Zone
The Sanandaj-Sirjan Zone consists mainly of Late 
Proterozoic–Mesozoic metamorphic rocks, such as 
metacarbonates, schists, gneisses, and amphibolites 
(Figure 2). They are overlain by Phanerozoic shallow-water 
sediments of a passive continental margin and intruded by 
large gabbroic to granitic Mesozoic plutons (e.g., Dilek et 
al., 2010). 

Similar geological characteristics suggest a westward 
extension of the Sanandaj-Sirjan Zone into the Bitlis-
Puturge Zone in Turkey (Dilek et al., 2010). Both these 
zones consist of Precambrian crystalline basement, Late 
Proterozoic–Mesozoic metacarbonates, schist, gneiss, 
and amphibolites that are intruded upon by deformed to 
undeformed granitoid plutons.

U-Pb dating of detrital zircons of Phanerozoic 
sedimentary rocks from several localities across Iran and 
the presence of inherited zircons in younger intrusions 
indicate that the bulk of the crystalline basement of Iran 

(both in Central Iran and the Sanandaj-Sirjan Zone) is 
Precambrian in age (Horton et al., 2008). However, the vast 
exposure of Paleozoic and Mesozoic metamorphic rocks 
makes this zone different from other Iranian geotectonic 
units. 

Deformation recorded in the metamorphic rocks of 
the Sanandaj-Sirjan Zone and the I-type nature of plutons 
are related to the subduction of the southern Neotethys 
sea floor northeastwards beneath the continental blocks 
(Mohajjel, 1997).

2.2. Zagros
The Zagros Fold Thrust belt forms the less exposed 
external part of the orogen. This belt consists of folded and 
faulted mainly Paleozoic and Mesozoic successions of 4–7 
km thick overlain by Cenozoic siliciclastic and carbonate 
rocks of 3–5 km thick, resting on highly metamorphosed 
Proterozoic Pan-African basement that was affected by 
Late Neoproterozoic–Cambrian Najd strike-slip faults 
(Alavi, 2004). The Zagros Mountains gradually rise 
northeastward from an unfolded shelf, extending through 
a fold belt into a thrust belt and imbricated zone (Berberian 
and King, 1981). 

2.3. Central Iran
Central Iran is located between the convergent Arabian 
and Eurasian plates. Central Iran comprises two major 
crustal domains: the NWIP and the CIM. The NWIP 
comprises the region north of the Darouneh and Tabriz 
Faults. The CIM (Takin, 1972) comprises terrain limited 
by the Sistan, Nain-Baft, Makran, and Sabzevar Ophiolites 
(Şengör, 1990) and is affected by a complex system of 
active continental strike-slip faults causing an intensive 
N-S dextral shearing (Zanchi et al., 2009).

2.4. The Urmia-Dokhtar Magmatic Assemblage
The 150-km-wide UDMA is a distinctively linear and 
voluminous magmatic arc of the active Iranian margin in 
the Tertiary (Arvin et al., 2007; Omrani et al., 2008). It is 
composed of tholeiitic, calc-alkaline, adakitic, and K-rich 
alkaline intrusive and extrusive rocks with associated 
pyroclastic and volcanoclastic successions (Omrani et al., 
2008). The UDMA comprises various plutonic lithologies 
including gabbros, diorites, granodiorites, and granite 
bodies of different sizes. It also contains widely distributed 
basaltic lava flows, trachybasalts, ignimbrites, and 
pyroclastic rocks, mostly tuffs and agglomerates (Alavi, 
1994). Extrusive volcanism in the UDMA began in the 
Eocene and continued for the rest of that period, with a 
climax in the Middle Eocene (Berberian and King, 1981). 
The youngest rocks are lava flows and pyroclastics related 
to Pliocene to Quaternary volcanic cones with adakitic 
composition (Omrani et al., 2008).
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3. Stratigraphy records
3.1. The Sanandaj-Sirjan Zone
The oldest rocks of the Sanandaj-Sirjan Zone are 
amphibolites, gneisses, and amphibole schists with 
Precambrian protolith ages (Aghanabati, 2006; Nutman 
et al., 2014). The Golpaygan quadrangtle (Figure 3) is 
characterized by extensive outcrops of Precambrian 
metasandstones and various schists (Thiele et al., 1968). 
Along the northeastern border of the Sanandaj-Sirjan 
Zone, northeast of Eglid (Figure 3; Hushmandzadeh et al., 
1978) and Golpaygan (Figure 3; Thiele et al., 1968), and 
in the Takab Region (Figure 3; Alavi-Naini et al., 1982), 
nonmetamorphosed Late Precambrian–Early Paleozoic 
sections of shallow marine coastal, deltaic, and fluvial 
and also carbonate facies rocks are exposed (Mohajjel, 

1997). These successions are stratigraphically equivalent 
to the shallow marine sediments in Central Iran. A white 
quartzite layer often covers the Precambrian metamorphic 
rocks in the Sanandaj-Sirjan Zone (Aghanabati, 2006). 
The quartzite layer is comparable to the Cambrian Top 
Quartzite of Central Iran. The Ordovician-Carboniferous 
sediments are often missing in the Sanandaj-Sirjan Zone 
and most other parts of Iran, which is attributed to 
epeirogenic movements associated with the Caledonian 
and Hercynian orogenies in Europe and North West Africa 
(Stöcklin, 1968; Berberian and King, 1981; Aghanabati, 
2006). However, in the southern part of the Sanandaj-
Sirjan Zone occur sporadic assemblages of various 
types of Paleozoic rocks. Dolomitic marble, mica schist, 

Figure 2. Geological map of the highly deformed part of the Sanandaj-Sirjan Zone (simplified after NIOC, 1975).
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quartzite, and black slate constitute the Middle Cambrian 
to lower Silurian rocks (Aghanabati, 2006). Late Devonian 
units contain basaltic fragments with alkaline nature 
(Aghanabati, 2006). 

The Late Carboniferous to lower Permian units consist 
of sandstone, shale, pillow lava, limestone, chert, submarine 
acidic rocks, and metamorphic rocks (Aghanabati, 
2006). In some parts, Carboniferous detrital limestone, 
containing corals and gastropods, is interbedded with 
quartz sandstone (Alavi and Mahdavi, 1994).

Late Permian and Middle Triassic rocks are shelf 
limestone and dolomite in the Sanandaj-Sirjan Zone. The 
Sanandaj-Sirjan Zone had a platform condition during the 
Late Triassic to Lower Jurassic (Aghanabati, 2006). Then 
an active trough condition, occasionally accompanied 
by magmatism, dominated the area (Alavi and Mahdavi, 
1994). This is evidenced by Mesozoic flysch and turbidite 
sediments in the Sanandaj-Sirjan Zone. 

The Cretaceous rocks were deposited in continental, 
shallow marine, and locally marine environments 

Figure 3. Locations, names, and ages of the granitoids in the Sanandaj-Sirjan Zone. Blue numbers are ages in Ma and red numbers 
are references (1: Mazhari et al., 2011; 2: Mazhari et al., 2009; 3: Bea et al., 2011; 4: Mahmoudi et al., 2011; 5: Hassanzadeh et al., 
2008; 6: Azizi et al., 2011; 7: Azizi et al., 2011; 8: Shahbazi et al., 2010; 9: Sepahi et al., 2014; 10: Ahmadi Khalaji et al., 2007; 11: 
Alirezaei and Hassanzadeh, 2012; 12: Esna-Ashari et al., 2012; 13: Chiu et al., 2013; 14: Fazlnia et al., 2007; 15: Fazlnia et al., 2009; 
16: Mousivand et al., 2012; 17: Arvin et al., 2007).
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(Figure 4; Mohajjel, 1997). Apart from alluvium and 
colluvium, Cenozoic successions are largely absent from 
the complexly deformed subzone. These Cretaceous rocks 
are considered to have formed as part of a continuous 
sedimentary basin that developed throughout the 
southwestern border of the Sanandaj-Sirjan Zone and has 
been filled with Paleocene, Eocene, and young sediments 
(Mohajjel, 1997).  

3.2. Zagros
The Precambrian basement of the Arabian plate is exposed 
in the west of the Arabian shield (Konert et al., 2001). In 
Zagros, Precambrian basement is found only as few granite, 

gabbro, basalt, amphibolite, and schist fragments brought 
to the surface by salt diapirs (e.g., Haynes and McQuillan, 
1974; Taghipour et al., 2012). The Hormoz complex (salt, 
anhydrite, dolomite, shale, volcanic, and metamorphic 
blocks) was deposited in evaporitic basins during the Late 
Protozoic–Early Cambrian (Edgell, 1996). During the Early 
Paleozoic, shallow marine and fluvial sandstone, siltstone, 
and shale were deposited on the low-relief erosion surface 
formed either on the Precambrian basement or on the 
Hormuz basins (Lacombe et al., 2007). The large Silurian-
Carboniferous sedimentary gap in Zagros is apparently the 
effect of epeirogenic movements, which led to a regional 
regression and general emerging of the region. The 
regional shallow marine transgression during the Permian 
caused the deposition of shallow subtidal facies on the 
Lower Permian basal costal clastics (Faraghan Formation), 
overlying the Ordovician and Silurian rocks (Berberian 
and King, 1981). In the Zagros basin, the deposition of 
marine sediments continued from the Permian to the 
Miocene (Sherkati and Letouzey, 2004). The Early Triassic 
period in Zagros was characterized by marine carbonate 
sedimentation, which had been persisting throughout 
the Permian (Koop and Stonely, 1982). The Middle-Late 
Triassic of Zagros was occupied by an evaporitic platform 
(Murris, 1980). During the Jurassic to Mid-Cretaceous 
times, sediments were deposited in a steadily subsiding 
basin (Berberian and King, 1981), in which subsidence was 
controlled by vertical movements and flexures along major 
basement faults. The Late Cretaceous to Miocene rocks 
represent deposits of the foreland basin prior to the Zagros 
Orogeny and subsequent incorporation into the colliding 
rock sequences. This sequence unconformably overlies 
Jurassic to Upper Cretaceous rocks (Vaziri-Moghaddam 
et al., 2010). The Miocene Zagros Orogeny controlled the 
sedimentary evolution of the Zagros basin. The Early to 
Middle Miocene formations were deposited in a subbasin 
in the southern part (Ahmadhadi et al., 2007). During Late 
Miocene and Pliocene times, regression of the sea and the 
creation of mountainous relief by folding and thrusting 
resulted in a continental environment (Bahroudi and 
Koyi, 2003; Sheikholeslami et al., 2008). Great quantities 
of clastic material and red beds were developed in adjacent 
synclines (Berberian and King, 1981). Finally, Pliocene–
Pleistocene conglomerates unconformably overlie older 
formations (Berberian and King, 1981).  

3.3. Central Iran
The Chapedony formation in the Sagand region (Figure 1) 
of Central Iran is predominantly composed of high-grade 
gneiss and associated migmatite, schist, amphibolite, 
marble, quartzite, and granite (Hushmandzadeh et al., 
1978), and it is the oldest basement complex in Iran. The 
term “basement complex” is used here for the mostly 
metamorphic or igneous rocks (with the age ranging in 
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most cases from 570 to 550 Ma; Nadimi, 2007) underlying 
the Pan-African unconformity. The “basement complex” 
is successively overlain by the Late Precambrian and 
Early Cambrian Kahar slates and Soltanieh dolomites, 
the Cambrian Zaigun shales and Lalun sandstones, and 
the Upper Cambrian–Lower Ordovician Mila limestones 
and dolomites (Thiele et al., 1968). Following the Late 
Precambrian, Pan-African orogeny, and basement 
consolidation, the Iranian Precambrian craton became 
a relatively stable continental platform with shelf 
deposits dominated by clastic sediments and a lack of 
major magmatism and deformation during most of the 
Paleozoic (e.g., Berberian and King, 1981; Aghanabati, 
2006). The Middle Cambrian to Early Devonian shallow 
marine sediments consist of dolomite, limestone, shale, 
sandstone, and gypsum. Dolomite, limestone, and shale 
(with fragments of alkaline basalt) constitute the Late 
Devonian and Early Carboniferous deposits. In the 
Late Carboniferous, shallow marine and continental 
sediments were deposited in some parts of Central Iran. 
The Upper Carboniferous–Lower Permian transgression, 
documented from various localities in Iran, is represented 
by basal sandstone grading upward into a thick carbonate 
sequence (Aghanabati, 2006; Alavi-Naini, 2009). Late 
Permian sediments are shelf limestones and dolomites. 
The shallow marine to platform sediments were deposited 
during the Mesozoic to Paleogene. The Lower Mesozoic 
sediments contain coal-bearing shale and sandstone, 
which have been deposited in lagoons and environments 
near the shore line, but Upper Mesozoic (up to Late 
Cretaceous) sediments are composed of ammonite-
bearing limestone and marl, ending with red clastic strata 
or evaporate deposits. A major regional stratigraphic gap 
and unconformity at the base of the Cenozoic is covered 
by Oligocene to Miocene limestone (Qom formation). 
Oligocene sediments in most parts of Iran have a shallow 
marine character, turning into marine facies in the Upper 
Oligocene through the Lower Miocene (Rahimzadeh, 
1994).

In summary, the stratigraphic records indicate that the 
Iranian plate and Zagros have similar basements on one 
hand and that the Sanandaj-Sirjan and Central Iran show 
very similar stratigraphic units during the Paleozoic on the 
other hand. The Mesozoic flysch and turbidite sediments 
in the Sanandaj-Sirjan Zone suggest that this zone differs 
from the adjacent Zagros and Central Iran zones.

4. Metamorphism and deformation records
4.1. The Sanandaj-Sirjan Zone
Three main phases of deformation are recognized in the 
Sanandaj-Sirjan Zone (Mohajjel, 1997): 1) Late Jurassic-
Early Cretaceous uplift, intense ductile deformation, 
and local amphibolite facies metamorphism; 2) Late 

Cretaceous–Paleocene regional deformation and 
associated greenschist facies metamorphism; and 3) 
Cenozoic regional thrusting and associated folding. 
These metamorphic and deformation phases are related 
to northeastward subduction of the southern Neotethys 
seafloor beneath the Sanandaj-Sirjan Zone (Berberian and 
King, 1981; Agard et al., 2006; Moritz et al., 2006; Oberhänsli 
et al., 2007; Dilek et al., 2010). The general structural 
fabric is defined by NW-trending and SW-overturned 
folds, SW-vergent thrust faults, and NW-trending reverse 
faults that collectively resulted in crustal thickening (Allen 
et al., 2004; Dilek et al., 2010; Mouthereau, 2011). This 
contractional feature was overprinted by regional-scale, 
right-lateral transpressional deformation indicated by 
pervasive subhorizontal stretching lineation and dextral 
shearing (Mohajjel and Fergusson, 2000). 

The Sanandaj-Sirjan Zone is currently divided at 
the latitude of Golpaygan (Figure 2) into a northern 
and southern portion with different features (e.g., 
Eftekharnejad, 1981). The northern portion was affected 
by younger metamorphic events compared to the southern 
portion. The protoliths of the Mesozoic metamorphic 
rocks exposed in the Muteh area, NE of Golpaygan 
(Figure 2; the northern portion of the Sanandaj-Sirjan 
Zone), suggest that they represent a Paleozoic succession 
consistent in age and composition with the coeval units 
of Central Iran (Rachidnejad-Omran et al., 2002). In 
contrast, a metamorphic complex consisting of garnet–
gneiss, amphibolite, and anatectic granites was identified 
in the southern part of the region by Ghasemi et al. (2002) 
that shows Late Carboniferous ‘Variscan’ Ar–Ar ages 
ranging from 330 to 300 Ma. A possible Late Paleozoic 
event followed by an Eo-Cimmerian deformation was 
reported by Şengör (1990) and Zanchi et al. (2009) in 
the Kor-e Sefid Mountains east of the Neyriz Ophiolites. 
Additionally, to the east of the Neyriz Ophiolites, 
metagabbro and anatectic granite were found in favor of 
the occurrence of a unique Eo-Cimmerian metamorphic 
event (Sheikholeslami et al., 2003). Both metamorphic 
events and young (Upper Cretaceous and Paleogene) 
batholiths are mostly accumulated in the northern portion 
of the Sanandaj-Sirjan zone (Figure 3).  

The Hamedan area (Figure 2) is characterized by 
predominantly metamorphic rocks of sedimentary and 
magmatic origins (Berberian and Alavi-Tehrani, 1977; 
Sepahi, 1999) and the presence of the Alvand granitoid 
complex (Figure 3). A synthetic lithostratigraphic column 
(Figure 4) was established for the Hamedan area by 
Baharifar et al. (2004). The oldest units, pre-Upper Jurassic, 
are medium- and high-grade metamorphic rocks (garnet 
schist, staurolite schists, andalusite schist, and sillimanite 
schists) and low- to very low-grade metamorphic phyllites 
and slates, which contain Arietites bisulcatus (Stahl, 1911), 
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Posodina alpina (Dehghan, 1947), and other ammonoids 
(Geological Survey of Iran, 1977) indicating a Jurassic 
age for the slates. These rocks are metamorphosed in 
amphibolite-greenschist facies during the late Jurassic–
Early Cretaceous (Berberian and Alavi-Tehrani, 1977). 
Field observations have not revealed any structural 
discontinuities between the different pre-Upper Jurassic 
metamorphic units; nevertheless, the existence of two 
thermal discontinuities is indicated along the synthetic 
column (Baharifar et al., 2004; Figure 4). Very different 
ages were proposed for protoliths in the area. From the 
presence of paleontologically dated Jurassic sequences in 
the deformed rocks, it is concluded that a Mesozoic age, 
most probably Jurassic, for the protolith is the best choice 
(Baharifar et al., 2004). Both Jurassic and Cretaceous rocks 
were affected by tectonic phases similar in orientations and 
trends with a younger low-grade metamorphic phase that 
affected pre-Upper Jurassic metamorphic rocks (Baharifar 
et al., 2004). Additionally, the metamorphism extended 
from the slates to Cretaceous sediments, which show clear 
evidence of recrystallization due to metamorphism. As is 
shown in Figure 4, Cretaceous sedimentation stopped in 
the area by the end of Lower Cretaceous, probably due to 
deformation and metamorphism commencement at that 
time.

4.2. Zagros
Zagros is often cited as one of the regions in the world 
showing the best examples of large-scale detachment folds 
(e.g., Colman-Sadd, 1978). NW-SE trending folds and 
thrusts in the North West Zagros combine with right-lateral 
strike-slip faulting to produce the overall N-S convergence 
(Talebian and Jackson, 2002). The whole Zagros belt 
was folded and uplifted toward the end of Pliocene time 
(James and Wynd, 1965; Stöcklin, 1968). Continental 
collision of Arabia and the Sanandaj-Sirjan Zone (Iranian 
plate) probably began in the Oligocene at the northern 
promontory of the Arabian plate (Yilmaz, 1993) and in 
the Miocene to the southeast (Stoneley, 1981) to create the 
Bitlis-Zagros suture. Deformation in the central part of 
Zagros (Dezful Embayment) began or greatly accelerated 
in the Late Miocene–Early Pliocene (Sherkati et al., 2006). 
The structures are not similar in all parts of Zagros. For 
example, in the central part (Fars region), they are mainly 
E-W trending, whereas in the northern part they are NW-
SE trending. The convergence is still active, in a roughly 
N-S direction at a rate of approximately 25–30 mm year–1 
at the eastern edge of the Arabian plate (Sella et al., 2002; 
Vernant et al., 2004).

4.3. Central Iran
Central Iran in the Sagand area (Figure 1) shows structural 
vestiges of Precambrian deformational and the prevailing 
metamorphism, from low to high grade, during the pre-

Pan-African Orogeny (Nadimi, 2007). Central Iran is an 
area of continuous continental deformation in response 
to the ongoing convergence between the Arabian and 
Eurasian plates. Central Iran was uplifted by NE-SW 
shortening during the Late Jurassic when many continental 
areas emerged from the sea (Stöcklin, 1968). During 
Maastrichtian–Paleocene time, Central Iran underwent 
strong folding, magmatism, and uplift (Ghasemi and 
Talbot, 2006). The rocks were eroded and covered by the 
Late Paleocene–Eocene sediments beneath a pronounced 
transgressive unconformity. 

5. Magmatic records
Paleozoic igneous rocks occur as blocks in the sedimentary 
units of Central Iran and Sanandaj-Sirjan and are absent 
in Zagros. These rocks have a within-plate magmatism 
characteristic (Aghanabati, 2006) and more likely are related 
to the hot spots under this part of the crust. Late Jurassic–
Early Cretaceous granite intrusions are documented in 
Central Iran (Şengör, 1990). Talbot and Ghasemi (2006) 
considered the Mesozoic plutons of Central Iran related 
to the subduction of the Nain-Baft oceanic crust beneath 
Central Iran. In the Cenozoic, magmatism of Central Iran 
occurred mainly in the Urmia-Dokhtar zone as a result of 
the Neotethys subduction. Overall, after the Precambrian, 
magmatism in Central Iran, the Sanandaj-Sirjan Zone, 
and Zagros was different in terms of intensity and the 
type of magmatism. Since the climax of magmatism 
in the Sanandaj-Sirjan zone was during the Mesozoic, 
these rocks are studied in more detail compared to other 
igneous rocks of this zone. In comparison, the studies on 
Mesozoic magmatism in Central Iran (there is no report 
on Mesozoic magmatism in Zagros) are scarce. 

The Sanandaj-Sirjan Zone contains multiple plutonic 
assemblages (Figure 3), whose ages are poorly known. 
Although a few Paleozoic granitoids are reported, most 
have Mesozoic ages (Figure 3). The Mesozoic plutons are 
distributed in a narrow NW-SE trending band delineated 
by ophiolitic-mélange belts (Figure 3; Arvin et al., 
2007). They have been interpreted as magmatic activity 
related to Neotethys subduction (Arvin et al., 2007). 
The southeastern plutons in the Sanandaj-Sirjan Zone 
have mainly Upper Triassic and Upper Jurassic to Lower 
Cretaceous ages, whereas the northwestern plutons show 
Upper Cretaceous ages (Arvin et al., 2007; Hajialioghli 
and Moazzen, 2012). During the Mesozoic, magmatic 
activity was episodic, probably due to changes in plate 
motions and the consumption rate of oceanic crust, with 
climaxed around the Middle Triassic, Late Jurassic, and 
Late Cretaceous (Berberian and Berberian, 1981; Sepahi 
et al., 2014).
5.1. Pre-Triassic magmatism
The Muteh, Khalifan, and Hasanrobat intrusions (Figure 
3) in the Sanandaj-Sirjan Zone are pre-Triassic. The 
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dominant leucogranite and granitic gneiss in the Muteh 
show zircon U-Pb ages of 578 ± 22 and 588 ± 23 Ma 
(Hassanzadeh et al., 2008; Alirezaei and Hassanzadeh, 
2012). The Hasanrobat granite is metaluminous to 
slightly peraluminous and typical of ferroan (A-type) 
granites (Alirezaei and Hassanzadeh, 2012). Zircon grains 
separated from a representative granite sample yielded 
concordant U-Pb ages of 288.3 ± 3.6 Ma (Alirezaei and 
Hassanzadeh, 2012). Khalifan granitoid is a Carboniferous 
A-type peraluminous leucogranite (Bea et al., 2011).

5.2. Late Triassic and Jurassic magmatism 
There were two types of magmatism: that forming mafic/
ultramafic rocks and that forming granites. The Triassic/
Jurassic Sikhoran mafic/ultramafic complex (Ghasemi et 
al., 2002; Ahmadipour et al., 2003), the Upper Triassic tuff, 
andesitic and basaltic lava flows in the Abadeh area (Figure 
2), ultramafic and mafic rocks to the west of Sirjan, and 
silicic volcanism in the Sirjan, Hajiabad, and Dehbid areas 
(Figure 4; Berberian, 1977; Berberian and King, 1981) 
were considered as asymmetric magmatic activity along 
the south Sanandaj-Sirjan Zone related to the opening 
of a narrow transtensional Nain-Baft ocean from the 
Triassic to Jurassic in the active Iranian continent margin 
(Ghasemi and Talbot, 2006). The Siah-Kuh granitoid 
(Figure 3) has a Triassic (199 ± 30 Ma; Arvin et al., 
2007) age. It is a metaluminous to slightly peraluminous 
I-type granite, with calc-alkaline characteristics typically 
found in a continental volcanic arc setting (Arvin et al., 
2007). These observations support the interpretation 
that the Triassic plutonic rocks might form as a result of 
a steeply dipping Neotethys oceanic slab (Mariana-type) 
underneath southeastern Central Iran (e.g., Berberian and 
Berberian, 1981). 

The leucogranitic (trondhjemitic) rocks in the Qori 
metamorphic complex (near Neyriz) (Figure 3), Alvand 
plutonic complex (Figure 3), Aligoodarz granitoid complex 
(Figure 3), and Sirjan andesite-basaltic lavas and tuffs are 
calc-alkaline and formed in a volcanic arc setting in the 
Jurassic (Ghasemi and Talbot, 2006; Rashid Moghadam 
and Esmaeli, 2007; Tahmasbi et al., 2008; Fazlnia et al., 
2009; Shahbazi et al., 2010; Azizi et al., 2011, Esna-Ashari 
et al., 2012). 

5.3. Late Cretaceous magmatism 
Late Cretaceous I-type granitoids in the northern part 
of the Sanandaj-Sirjan Zone are subalkaline and show 
suprasubduction signatures (Athari et al., 2007; Ranin et 
al., 2010; Sepahi et al., 2010). A belt of black and green 
Cretaceous basalts to andesites occurs in the northern part 
of the Sanandaj-Sirjan Zone (Azizi and Jahangiri, 2008). 
The belt appears to be the northern extension of a subzone 
characterized by Cretaceous volcanic rocks and shallow 
marine sediments (Mohajjel et al., 2003). The volcanic 

rocks show calc-alkaline affinity, enrichment in LIL 
elements (Rb, Ba, Th, U, and Pb), and depletion in Nb and 
Ti, indicating a volcanic arc nature (Azizi and Jahangiri, 
2008).

5.4. Cenozoic magmatism 
The main Cenozoic rocks dated in the Sanandaj-Sirjan 
Zone are gabbroic (Leterrier, 1985; Mazhari et al., 2009) 
and granitic intrusions (Rachidnejad-Omran et al., 
2002). The Eocene magmatic pulse was coeval with 
the magmatism in the UDMA (or the Central Iranian 
Volcanic Belt) to the northeast. It should be mentioned 
that there are some differences between these two. The 
magmatism is of plutonic nature in the Sanandaj-Sirjan 
Zone and Cenozoic plutons occur mainly at the northern 
part of the zone, whereas magmatism is mainly volcanic 
in the Urmia-Dokhtar Zone and plutonism occurs at the 
southern part of this zone.  

In summary, the pre-Late Paleozoic magmatisms of the 
Sanandaj-Sirjan Zone, Central Iran, and Zagros are similar 
and show Gondwanan affinity. The Mesozoic plutons 
with Triassic to Upper Cretaceous (or Cenozoic) age are 
related to the subduction. The onset of subduction of the 
Neotethys oceanic crust beneath the Sanandaj-Sirjan Zone 
in the Triassic could account for the suprasubduction zone 
magmatism. Triassic plutonic rocks show tholeiitic or 
transitional nature and formed in a primitive island arc/
continental margin volcanic arc setting, probably close 
to a trench zone (e.g., Arvin et al., 2007). This indicates 
that they probably belong to the early tholeiitic stage of arc 
development (Ringwood, 1974). As the convergence rate 
increased, the supply of arc-related magmas increased as 
larger amounts of slab-derived aqueous fluid were added 
to the mantle wedge. Partial melting of the metasomatized 
mantle led to calc-alkaline magmatism. Therefore, the 
Jurassic igneous rocks of the Sanandaj-Sirjan Zone are 
calc-alkaline and the younger rocks are changed to high-K 
calc-alkaline ones (e.g., Ahadnejad et al., 2013).

6. Ophiolites and tectonic records
The suture between the Sanandaj-Sirjan Zone and Zagros 
is marked by well-exposed Late Cretaceous Ophiolite 
associations: the southeastern Neyriz Ophiolite and the 
northwestern Kermanshah and Piranshahr Ophiolites 
(Figure 1). The Sanandaj-Sirjan Zone is bordered to the 
northwest by the Tabriz Fault and the Khoy Ophiolite and 
to the northeast by the Nain-Baft Fault and the Nain-Baft 
Ophiolitic belt (Figure 1). 

6.1. Kermanshah Ophiolite
The Kermanshah Ophiolite includes isolated and 
dismembered fragments of mantle peridotites, gabbroic 
sequences, a complex dyke, and pillow basalts (e.g., Saccani 
et al., 2013). The associated sedimentary rocks include a 



522

MEHDIPOUR GHAZI and MOAZZEN / Turkish J Earth Sci

variety of Upper Triassic to Lower Cretaceous deep marine 
sedimentary rocks (flysch to radiolarite). Geochemical 
data distinguish two basalt types (Ghazi and Hassanipak, 
1999): subalkaline and alkaline basalt. Alkaline rocks 
mostly generated in the initial rifting stage in the Triassic, 
whereas calc-alkaline arc-type rocks formed in a Lower 
Late Cretaceous intraoceanic suprasubduction zone 
setting (Allahyari et al., 2010; Saccani et al., 2013). Some 
magmatic rocks of the ophiolite show oceanic back-arc 
basin setting characters (Allahyari et al., 2010). 

The northwest of the Kermanshah Ophiolite was 
named the Piranshahr Ophiolite by Hajialioghli and 
Moazzen (2014). Mantle peridotites from this ophiolite 
indicate both mid-ocean ridge and suprasubduction 
components (Hajialioghli and Moazzen, 2014).  

6.2. Neyriz Ophiolite
The Neyriz Ophiolite is one of several large allochthonous 
Tethyan Ophiolites exposed in the southwestern edge of 
the Sanandaj-Sirjan Zone, northeast of the Zagros Fold 
Thrust belt (Stöcklin, 1968; Stoneley, 1981). In some 
parts, the Neyriz Ophiolite is tectonically juxtaposed 
with cataclastically deformed island arc volcanic and 
volcanoclastic rocks, which are tectonically intercalated 
with Cretaceous limestone (Babaie et al., 2001). The 
Neyriz Ophiolite is unconformably overlain by Upper 
Cretaceous anhydritic limestone (Tarbur Formation; 
Ricou, 1971). Triassic mafic volcanic and siliciclastic-
carbonate rocks, as well as a thick succession of probable 
deep marine Late Triassic to Jurassic age (Ricou, 1971) 
strata, are stratigraphic evidence for rifting (Berberian and 
King, 1981); neither of these units have been recognized in 
adjoining Central and North West Iran. 

6.3. Nain-Baft Ophiolite
The northeastern contact between the Sanandaj-Sirjan 
Zone, NWIP, and CIM is difficult to establish because 
of widespread Tertiary and Quaternary cover. A series 
of depressions, including Urmia Lake, Gavkhuni, 
and Jazmorian depressions (Figure 1), separate the 
Sanandaj-Sirjan Zone from Central Iran (Aghanabati, 
2006). However, faulted contacts between the Sanandaj-
Sirjan Zone and Central Iranian blocks have been 
recognized in some areas, such as the strike-slip Nain-
Baft Fault (Meyer et al., 2006). This fault is marked by 
the Nain-Baft Ophiolitic Belt, which includes mostly Late 
Cretaceous magmatic and metamorphic and rare Jurassic 
metamorphic rocks (Technoexport, 1984; Hassanipak and 
Ghazi, 2000). It is thought that the Nain-Baft basin formed 
during the uppermost Late Triassic, due to rifting at the 
active continental margin, almost between present-day 
Central Iran and the Sanandaj-Sirjan Zone (Mehdipour 
Ghazi et al., 2011, 2012). The presence of Late Triassic 
magmatic rocks with volcanic arc nature in the southern 

part of the Sanandaj-Sirjan Zone (such as the Siah-Kuh 
stock; Arvin et al., 2007) could be taken as proof for active 
Neo-Tethys subduction during rifting of the Nain-Baft 
basin. The continental back-arc basin existed between the 
Sanandaj-Sirjan Zone and Central Iran during the Jurassic 
and closed in the Late Cretaceous (Mehdipour Ghazi et 
al., 2012).

6.4. Khoy Ophiolite
The Khoy Ophiolite is divided into the eastern Late Triassic 
to Late Cretaceous metamorphosed part and the western 
unmetamorphosed Late Cretaceous part (Khalatbari 
Jafari et al., 2004). The Khoy Ophiolite is located at the 
continuation of the Tabriz fault, which separates the 
Sanandaj-Sirjan Zone from the NWIP (Figure 1; Azizi and 
Jahangiri, 2008; Moazzen et al., 2012). 

Azizi and Jahangiri (2007) considered a basin (along 
the present-day Tabriz Fault), which separated the 
Sanandaj-Sirjan Zone from the NWIP, existing up to 
the Late Cretaceous-Paleocene when it closed. The Late 
Triassic protolith age of metamorphic rocks in the Khoy 
Ophiolite indicates that the basin opened in the Triassic, 
coinciding with the opening of the Nain-Baft basin, 
probably due to tensional condition after the closure of the 
Paleotethys (e.g., Khalatbari Jafari et al., 2004).

Eocene volcanic rocks with active continental margin 
geochemical characteristics at the northern side of the 
Tabriz Fault may have resulted from subduction of the 
oceanic crust of this basin under the north margin of the 
continental crust and closure of the basin in the Upper 
Cretaceous–Paleocene (Azizi and Jahangiri, 2007). This 
idea indicates that there were two subduction zones in 
North West Iran during the Cretaceous, one related to 
the subduction of the Neotethys lithosphere beneath the 
Sanandaj-Sirjan Zone to the south and the other related 
to the subduction of oceanic crust along the present-
day Tabriz Fault beneath the NWIP. The Tabriz Fault is 
probably a continuation of the Nain-Baft Fault. 

7. Discussion
Combining available stratigraphy, geochronology, and 
geochemical data, we present an evolution scenario for the 
Sanandaj-Sirjan Zone and adjacent domains (Figure 5).

The Paleozoic units of the Sanandaj-Sirjan Zone 
are similar to those of Central Iran with Devonian and 
Carboniferous volcanoclastic sandstones of within-plate 
nature pointing to a continental setting from the Silurian to 
Permian (e.g., Thiele et al., 1968; Wendt et al., 2005). There 
is a stratigraphic gap from the Ordovician to Permian 
in Zagros (Aghanabati, 2006), but paleomagnetic data 
indicate that the Sanandaj-Sirjan Zone remained part of 
the Arabian platform until the Early Mesozoic (Berberian 
and King, 1981). Therefore it may be concluded that the 
Sanandaj-Sirjan Zone had similar features to Zagros, at 
least in the Paleozoic. 
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Several rock units with Permian age in the Sanandaj-
Sirjan Zone could be related to the break-up of Gondwana 
and the opening of the Neotethys between the Sanandaj-
Sirjan Zone and Zagros in the Permian (e.g., Alirezaei and 
Hassanzadeh, 2012).

The present-day Paleotethys Suture Zone (and 
conjugate territory) experienced a phase of broad and 
protracted extensional processes in the early to mid-
Paleozoic, which ultimately led to the opening of the 
Paleotethys Ocean (Stampfli and Pillevuit, 1993). The 
northern margin of Gondwana (or southern margin of 
the Paleotethys) from then consisted of Central Iran, the 
Sanandaj-Sirjan Zone, and Zagros from north to the south 
(Figure 5a). Central Iran and the Sanandaj-Sirjan Zone 
were closer to the margin of Gondwana and the main 
extension axis of the Paleotethys as compared to Zagros. 
Alkaline igneous rocks of mid-Paleozoic age in several 
areas of the southern margin of the Paleotethys Suture 

Zone (Central Iran and the Sanandaj-Sirjan Zones) show 
that the extensional regime was probably affected in this 
part, due to extension, which caused the ascending of the 
asthenosphere as alkaline magmatism in these two zones 
(Hassanzadeh et al., 2008; Figure 5a). The extension also 
led to some thinning of the crust in the Central Iran and the 
Sanandaj-Sirjan Zones and created a shallow continental 
shelf basin during the Silurian to Carboniferous, while 
Zagros was located in the hanging wall (towards the 
continent) of this basin (mostly out of the basin), where an 
erosion condition was active similar to the Arabian plate.

The Paleotethys oceanic crust started to subduct beneath 
Eurasia in the Middle to Upper Paleozoic (Figure 5b; 
Stampfli and Pillevuit, 1993), so that the extensional regime 
in Central Iran and the Sanandaj-Sirjan Zone changed 
to compression and epeirogenic conditions gradually 
(mainly in the Carboniferous). Considering the climax of 
the opening and widening of the Paleotethys during the 

Figure 5. Simple geodynamic model for evolution of the Sanandaj-Sirjan Zone (SSZ: Sanandaj-Sirjan Zone, CI: Central Iran).
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Carboniferous, the adjacent areas experienced epeirogeny. 
Similar carbonate ramp deposit records dominate in all 
three domains during the Permian (Aghanabati, 2006), 
suggesting that these tectonostratigraphic units shared the 
same setting and were most likely connected. 

The Iranian plate drifted from Arabia when the 
Neotethys Ocean opened in the Late Paleozoic or Early 
Triassic and collided with Eurasia (Ricou, 1994) by the 
end of the Late Triassic to complete the Paleotethys closure 
(Figure 5c; Davoudzadeh and Schmidt, 1984; Stampfli and 
Pillevuit, 1993; Stampfli and Borel, 2002). Simultaneously, 
platform conditions terminated in Zagros during the 
opening of the Neotethys Ocean (Berberian and King, 
1981). Stratigraphic evidence for rifting in Zagros includes 
a succession of Triassic mafic volcanic and siliciclastic-
carbonate rocks and a thick succession of deep marine 
sediments of Late Triassic to Jurassic age. Neither of these 
units is recognized in the Iranian plate (CIM, NWIP, 
and Sanandaj-Sirjan Zone; Berberian and King, 1981), 
indicating that it separated from Arabia (Zagros) in the 
Late Permian (Figure 5b). 

A northeast-dipping subduction formed at the 
southwestern boundary of the Sanandaj-Sirjan Zone, 
which became an active continental margin of the Iranian 
plate in the Late Triassic (Figure 5c) and was continuing up 
to the Miocene (e.g., Arvin et al., 2007; Mehdipour Ghazi 
et al., 2012). Neotethys oceanic crust was consumed and 
associated with Late Triassic–Late Cretaceous plutonism 
(Berberian and King, 1981; Figures 5c–5e). The Neotethys 
subduction initiation caused a passive continental margin 
condition during the Late Triassic in Zagros (southern 
margin of Neotethys), whereas it caused the formation of 
a back-arc basin from Nain to Baft and along the Tabriz 
Fault during the Upper Late Triassic times (Figure 5d; 
Mehdipour Ghazi et al., 2012). During the Late Triassic 
to Late Cretaceous the Sanandaj-Sirjan Zone was an 
isolated block and limited by oceanic basins (Figure 5d). 
The closure of the Nain-Baft basin occurred at the Upper 
Cretaceous. There is no evidence so far to show that the 
basin closure was due to subduction of the oceanic crust 
beneath the CIM.  

The closure of the Nain-Baft and Tabriz basins 
occurred in the Late Cretaceous and was probably 
initiated by almost simultaneous formation of the oceanic 
back-arc basin in the Neotethys (Figure 5e; Azizi and 
Moinevaziri, 2009; Allahyari et al., 2010; Mehdipour 
Ghazi et al., 2012; Hajialioghli and Moazzen, 2014). The 
closure of these basins (Nain, Baft, and Khoy basins) was 
associated with emplacement of the Nain-Baft ophiolites, 

the eastern part of Khoy Ophiolite along the Tabriz Fault, 
and the displacement of the active continental arc to the 
north where the UDMA formed (e.g., Omrani et al., 2008). 
The timing of Neotethys extension and location relative 
to the Sanandaj-Sirjan Zone is similar to Model 1 of the 
introduction section as proposed by Şengör (1990) and 
Stampfli and Borel (2002). However, the relation of the 
Neotethys to the Central Iran Block and timing of the 
segmentation of this block, as well as the geodynamic 
evolution, is somewhat different in our model. For example, 
Model 1 does not consider separation of the Sanandaj-
Sirjan Zone from Central Iran in the Upper Triassic.  

The major deformation events in the Sanandaj-
Sirjan Zone are the result of collision with Zagros along 
the southwestern border after Neotethys closure, which 
is considered to have happened in the Miocene (e.g., 
Berberian et al., 1982; Mohajjel et al., 2003; Shahabpour, 
2005; Azizi and Moinevaziri, 2009). 

In summary, the Sanandaj-Sirjan Zone is a subblock 
of the Iranian plate and is partially limited on both sides 
by ophiolites. Compiling and comparing the stratigraphic, 
magmatic, and metamorphic records in the different 
subterrains of Iran in this paper supports a Gondwanan 
affinity for the Iranian plate and its separation from the 
Arabian plate in the Upper-Late Paleozoic. The Sanandaj-
Sirjan Zone was an isolated block during the Jurassic and 
Cretaceous. Subblocks of the Iranian plate jointed each 
other in the Late Cretaceous and the Iranian plate jointed 
the Arabian plate in the Miocene. The evolution of the 
Sanandaj-Sirjan Zone through time (especially from the 
Mesozoic) is complex owing to the continuous change 
of the Neotethys subduction regime and differential 
aggregation of it with adjacent blocks. Since most of the 
rocks in the Sanandaj-Sirjan Zone are metamorphic, 
it is important to identify their protolith age in order to 
conclude the original stratigraphic relations. More studies 
on radiogenic age dating of the igneous rocks will help 
to put constraints on the geodynamic evolution of the 
Sanandaj-Sirjan Zone in the Tethys realm of the Middle 
East. 
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