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1. Introduction
South-central Anatolia hosts two major units, namely 
the Central Anatolian Crystalline Complex (CACC) 
to the north and the Central Taurides to the south. The 
Bolkar Mountains, part of the Central Taurides, which are 
bounded by the Ecemiş Fault to the east and the Kırkkavak 
Fault to the west (Blumenthal, 1960; Özgül, 1984), and the 
CACC juxtaposed following the subduction of the Inner 
Tauride Ocean during the Late Cretaceous-Eocene (Görür 
et al., 1984; Dilek et al., 1999a; Clark and Robertson, 2002; 
Pourteau, 2011; Robertson et al., 2012; Parlak et al., 2013; 
Sarıfakıoğlu et al., 2013; Pourteau et al., 2014). The collision 
between the Arabian platform and the Taurides occurred 
during the Oligocene-Miocene, resulting in shortening, 
thickening, and uplifting in east Anatolia and westward 
extrusion of central and western Anatolia. Thus, the 
Central and Eastern Anatolian plateaus span a transition 
from crustal shortening in the east to westward block 
extrusion and extension, accommodated mostly along 
the North and East Anatolian faults (Şengör and Yılmaz, 
1981; Şengör et al., 1985; Yılmaz, 1993; Yılmaz et al., 2007; 
Okay et al., 2010; Elitok and Dolmaz, 2011; Schildgen 
et al., 2014; Karaoğlan et al., 2015). The thickened crust 

reaches as high as 3–3.5 km above sea level in east and 
central Anatolia along the suture zones, where the Central 
Anatolian Plateau reaches elevations of about 500–1500 
m (Tezel et al., 2013). The westward escape of Anatolia 
compounded the convergence and collision with the Afro-
Arabian plate along the Bitlis-Zagros Suture Zone (Dewey 
et al., 1986; Jolivet and Faccenna, 2000; McClusky et al., 
2000; Robertson and Mountrakis, 2006; Smith, 2006; Allen 
and Armstrong, 2008; Ring et al., 2010; Elitok and Dolmaz, 
2011; van Hunen and Allen, 2011) (Figure 1).

The exhumation of the CACC exhibits distinct features 
at its margins. The exhumation of the northern part of 
central Anatolia was related to the collision of Eurasia 
and Anatolia during the early-middle Paleocene, while 
the eastern part of the CACC was exhumed as a result of 
the Tauride-Arabia collision during the Oligocene (Boztuğ 
and Jonckheere, 2007). The fission-track data suggest that 
the southern margin of central Anatolia, linked with 
Central Taurides, was exhumed at 17–11 Ma in a yo-yo 
tectonic regime (Fayon and Whitney, 2007; Umhoefer et 
al., 2007; Whitney et al., 2008). 

South-central Anatolia first emerged above sea level 
during the Eocene, where the southern flank of the Taurides 
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still remained under sea level (Aksu et al., 2005a; Jaffey and 
Robertson, 2005). The emergence of the Bolkar Mountains 
was a part of the regional south-central Anatolian uplift, 
as a result of complex mantle processes (subduction roll-
back, slab break-off, slab tearing) that resulted from the 
north-dipping southern branch of the Neo-Tethys Ocean 
beneath the Anatolide-Tauride continent during the 
Oligo-Miocene (Barazangi et al., 2006; Dilek and Sandvol, 
2009; van Hinsbergen et al., 2009; Ring et al., 2010; Biryol 
et al., 2011; van Hunen and Allen, 2011; Cosentino et 
al., 2012; Schildgen et al., 2012a, 2012b, 2014). The uplift 
of the Bolkar Mountains within the Central Taurides 
shows temporal discrepancies against the exhumation of 
the CACC. The Bolkar Mountains appear to have been 
exhumed slightly earlier then the CACC during the late 
Eocene-early Miocene (Dilek et al., 1999b; Lefebvre et al., 
2015). The available low-temperature thermochronologic 
data suggest that the uplifting is propagated from south 
to north or the paleogeothermal gradient was located at a 
higher position in the south, where the Central Taurides 
were already at maximum height during the Oligocene-
Miocene (Dilek et al., 1999b; Fayon and Whitney, 2007; 
Umhoefer et al., 2007; Lefebvre et al., 2015). During the late 
Miocene-Pleistocene, the crustal uplift rate changed and 
the late Miocene marine sediments uplifted up to 1.5–2 km 
(Schildgen et al., 2012a, 2012b). The field, biostratigraphic, 
and cosmogenic dating data from CACC and the Central 
Taurides suggest that the continuing slab break-off and/
or slab tearing led to the fast uplifting of south-central 
Anatolia and emergence above sea level starting at ~7 
Ma ago (Cosentino et al., 2012; Schildgen et al., 2012a, 
2012b). Recent studies show that the Arabia-Africa and 
Eurasia collision was responsible for the Oligocene-
early Miocene exhumation and/or uplifting, whereas the 
mantle processes beneath south-central Anatolia were 
responsible for the high uplift rates within the CACC and 
Central Taurides (Cosentino et al., 2012; Schildgen et al., 
2012a, 2014; Cipollari et al., 2013; Radeff et al., 2015). The 
latest Miocene-Recent uplifting of the Central Taurides 
and CACC is well documented (Cosentino et al., 2012; 
Schildgen et al., 2012a, 2014; Yildirim et al., 2013; Radeff et 
al., 2015); however, the Oligocene-early Miocene history 
is still under debate in the frame of timing of exhumation 
and the effect of subduction and collisional events on the 
Central Taurides. 

In this study, apatite fission track (AFT) 
thermochronology is applied to a postcollisional 
granitoid, the so-called adakitic Horozköy granitoid, that 
intruded into the Bolkardağ Units (Central Taurides) 
during the early-middle Eocene. This paper discusses 
the thermochronologic (AFT) evidence related to the 
exhumation and uplift of the Bolkar Mountains, located 
to the north of the easternmost Mediterranean Sea (Figure 

1), and the relation between the exhumation/uplifting and 
the mantle processes. 

2. General geology
South-central Anatolia comprises two main tectonic units 
separated by the Inner Tauride Ocean and the CACC to 
the north and the Central Taurides to the south, where the 
Ulukışla Basin formed (Demirtaşlı et al., 1984; Görür et 
al., 1984; Dilek et al., 1999a) (Figure 1). The CACC, first 
described by Göncüoğlu et al. (1991), was formed by 
three metamorphic units, namely the Kırşehir, Akdağ, and 
Niğde massifs, distinguished by their metamorphism. The 
Kırşehir and Akdağ massifs experienced clockwise P/T 
paths at moderate P/T conditions, with upper amphibolite 
(highest) overprint, whereas the Niğde Massif underwent 
two distinct metamorphisms between the Late Cretaceous 
(Göncüoğlu, 1986; Whitney and Dilek, 1997; Whitney et 
al., 2007) and early-middle Cenozoic (Whitney and Dilek, 
1997, 1998, 2000; Fayon et al., 2001; Whitney et al., 2001; 
Dilek and Sandvol, 2009).

The Inner Tauride Suture Zone (ITSZ), bounding 
the southern margin of the CACC, was formed by the 
consuming of the Inner Tauride Ocean in a north-dipping 
subduction beneath the CACC during the Late Cretaceous-
early Cenozoic (Dilek et al., 1999a; Okay and Tüysüz, 1999; 
Parlak and Robertson, 2004; Robertson, 2004; Kadıoğlu et 
al., 2006; Kadıoğlu and Dilek, 2010; Pourteau et al., 2010, 
2013; Parlak et al., 2013; Sarıfakıoğlu et al., 2013). During 
Paleocene (Late Cretaceous?) and Miocene time, above 
the ITSZ, the Ulukışla Basin formed in an E-W trending 
seaway. The Ulukışla Basin contains marine and terrestrial 
sedimentary rocks, evaporites, volcanosedimentary 
rocks, and volcanic and intrusive magmatic units with 
a thickness of up to 5 km (Demirtaşlı et al., 1973, 1984; 
Clark and Robertson, 2002, 2005; Kurt et al., 2008; Engin, 
2013) (Figure 1). To the south, the basal units of the basin 
composed of conglomerates, calcarenite, and limestone 
unconformably rest on the Central Taurides, represented 
by the Bolkardağ Unit (Figure 2). 

The Bolkardağ Unit, to the south of the CACC, 
comprises carbonate, siliciclastic, and volcanic rocks and 
their metamorphic equivalents with ages ranging from 
Upper Permian to Late Cretaceous (Demirtaşlı et al., 1973, 
1984; Özgül, 1976). This unit is interpreted as a ribbon-
shaped continent rifted off from Gondwana (Özgül, 1976, 
1984; Robertson and Dixon, 1984; Görür et al., 1991; 
Garfunkel, 1998, 2004). The Bolkardağ Unit (Bolkar 
Group of Demirtaşlı et al., 1984) may be divided into 
four formations: 1) the Dedeköy formation (Permian), 
2) Gerdekesyayla formation (Lower-Middle Triassic), 
3) Berendi limestone (Upper Triassic), and 4) Üçtepeler 
limestone (Jurassic-Cretaceous) (Demirtaşlı et al., 1973, 
1984). The lowermost part of the Bolkardağ Unit begins 
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Figure 1. A) Regional topography map (SRTM V4.1 data from Jarvis et al. (2008) showing 
major tectonic boundaries. CACC: Central Anatolian Crystalline Complex; CP: Central 
Pontides; BZSZ: Bitlis-Zagros suture zone; NAF: North Anatolian Fault; EAF: East 
Anatolian Fault; DSFZ: Dead Sea Fault Zone; EFZ: Ecemiş Fault Zone; ES: Eratosthenes 
Seamount; LV: Lake Van. Arrows with numbers inside represent plate movement (mm/
year) with respect to Eurasia (Reilinger et al., 1997); map modified after Schildgen et 
al. (2014). B) Geological map of south-central Turkey. Data from Clark and Robertson 
(2002), Dilek and Sandvol (2009), and Engin (2013).
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with dolomitic limestones intercalated with micaceous 
slates (Dedeköy formation-Upper Permian). The 
Dedeköy formation formed under stable shelf conditions 
and has a thickness of 600 m. Upwards, this unit passes 
into shale and clayey limestone alternation continued 
with limestone, thick-bedded dolomitic limestone, and 
shale and clayey limestone alternation named as the 
Gerdekesyayla formation, which was formed in an open 
marine shelf during the Lower-Middle Triassic. The upper 
part of the Bolkardağ Unit is predominantly represented 
by a thick carbonate sequence including dolomite, fine-
grained limestone, and medium to thick-bedded dolomitic 
limestone, formed in a shallow marine, stable carbonate 
platform during the Upper Triassic (Berendi limestone). 
Upwards, the Berendi limestone passes into partly 

oolitic and dolomitic limestone, dolomite, and limestone 
(Üçtepeler limestone). The formation formed in an open 
marine and deep pelagic sedimentary environment 
during the Jurassic-Late Cretaceous (Demirtaşlı et 
al., 1973, 1984). The Gerdekasyayla formation shows 
greenschist metamorphism, whereas biotite, tourmaline, 
and almandine crystals are formed near the contact zones 
of the Horozköy granitoid (Çalapkulu, 1980). The dykes 
of the Horozköy granitoid intruded into the marbles 
(Çalapkulu, 1980; Çevikbaş et al., 1995). 

The Central Tauride block (including the Bolkardağ 
Unit) was shortened and thickened as a result of folding 
and imbrication along the thrust faults such as the 
Bolkar Frontal Fault (Demirtaşlı et al., 1984; Dilek et al., 
1999b). The obduction of oceanic lithosphere (i.e. Alihoca 

Figure 2. Geological map of Horoz village and surroundings (modified after Çalapkulu, 1980; Çevikbaş 
et al., 1995; Kadıoğlu and Dilek, 2010; Kocak et al., 2011).
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ophiolite) from the north and continuous subduction 
of the northern edge of the Central Taurides (Dilek 
and Whitney, 1997; Dilek and Flower, 2003; Dilek and 
Sandvol, 2009) was responsible for the shortening and 
thickening of the Paleozoic-Jurassic tectonostratigraphic 
units in the Tauride block during the Late Cretaceous 
and Eocene (Dilek et al., 1999b; Dilek and Sandvol, 2009; 
Parlak et al., 2013, 2014). The isostatic rebound of the 
partially subducted continent, as a result of the subduction 
processes, caused the northern edge of the entire Tauride 
block to be gradually uplifted along the normal faults (i.e. 
the Bolkar Frontal Fault) during the Miocene, building 
a southward-tilted asymmetric mega-fault block with a 
rugged, alpine topography (Dilek and Whitney, 1997, 2000; 
Dilek et al., 1999b; Dilek and Sandvol, 2009; Kadıoğlu 
and Dilek, 2010) (Figures 1 and 2). In the study area, the 
Bolkardağ Unit forms a big anticlinorium, where most of 
the anticlines are asymmetrical and overturned towards 
the north along the Bolkar Frontal Fault (Demirtaşlı et al., 
1984) (Figure 2). The Bolkar Frontal Fault has an ENE-
trending left-lateral oblique-slip component and displays 
a top-to-the-north shear sense indicator. The fault system 
has multiple splays within the northern edge of the Tauride 
block and is defined by mylonitic breccia composed of 
ophiolitic and carbonate rocks (Dilek and Whitney, 2000). 
The structural trend of the normal faults is generally ENE-
WSW in the study area (Figure 2).

The fluvial terrace unit, observed in the Horoz valley, 
is slightly tilted to downslope. This unit rests on the 
Horozköy granitoid and seals the normal faults along the 
valley, containing mainly marble and granitoid pebbles 
and blocks with up to 250 m in thickness. The age of 
the terrace unit was reported as Oligocene by Çalapkulu 
(1980); however, Dilek et al. (1999b) proposed a Mio-
Pliocene age for the unit.

2.1. Horozköy granitoid
The Horozköy granitoid outcrops in an area of ~8 km2 
within the Bolkardağ region in the eastern part of the 
Central Taurides, where it took the name of the Horoz 
village (Figure 2). The granitoid body intruded into the 
northern flank of a NE-SW trending anticline including 
the Lower Marble unit and the schists of the Bolkardağ 
unit, whereas a Plio-Quaternary terrace unit overlies the 
southern part. The granitoid, first described by Blumenthal 
(1956), has a contact metamorphic aureole represented 
by hornblende hornfels and garnet fels facies rocks. The 
tonalite and diorite dykes intruded into the wall rocks 
(Demirtaşlı et al., 1973, 1984; Çalapkulu, 1980; Çevikbaş 
and Öztunalı, 1992; Çevikbaş et al., 1995; Kadıoğlu and 
Dilek, 2010). Engin (2013) reported that the dykes of the 
Horozköy also intruded into the Eocene Ulukışla Basin 
units. The unit is composed of two parageneses: the 
granite is composed of quartz, plagioclase, K-feldspar, 

biotite, and hornblende, and the granodiorite is composed 
of quartz, feldspar, biotite, and amphibole (Çalapkulu, 
1980; Çevikbaş et al., 1995; Kadıoğlu and Dilek, 2010). 
Both rock types are intruded by mafic and felsic dykes 
and include mafic microgranular enclaves, indicating that 
magma mixing/mingling processes played an important 
role during crystallization (Kadıoğlu and Dilek, 2010; 
Kocak et al., 2011).

The Horozköy granitoid rocks were interpreted to have 
formed in a postcollisional extensional environment as 
a result of the collision of the Central Taurides with the 
CACC (Kadıoğlu and Dilek, 2010). The earlier suggestions 
for the formation (crystallization) age of the Horozköy 
granitoid were based on cross-cutting relationships with 
the Cretaceous ophiolitic mélange that rests tectonically 
on the Bolkardağ marbles, reported to be post-Lower 
Paleocene to pre-Lower Eocene (Çalapkulu, 1980) and 
pre-Paleocene or Late Cretaceous-Paleocene (Çevikbaş 
and Öztunalı, 1992). Zircon U-Pb dates indicate a slightly 
younger formation age, ranging from 56 to 48 Ma (Dilek 
et al., 1999b; Kadıoğlu and Dilek, 2010; Kuscu et al., 
2010; Engin, 2013; Parlak et al., 2013), whereas the 40Ar-
39Ar cooling ages (hornblende, 47 Ma, and biotite, 54–50 
Ma) yield a similar age range (Kuscu et al., 2010). Dilek 
et al. (1999b) also reported an AFT age of 23.6 ± 1.2 Ma, 
suggesting that the granitoid uplifted during the Miocene. 
The undeformed Mio-Pliocene fluvial terrace unit within 
the incised valley indicates that the Central Taurides were 
already uplifted during this period (Dilek et al., 1999b).

3. Analytical procedure
Four samples were taken from the fresh outcrops across a 
range of altitudes to illustrate the exhumation rate (Table 
1). The mineral separation procedures including crushing, 
sieving, wet sieving, electromagnetic, and heavy liquid 
techniques were performed in the Çukurova University 
Geological Engineering Department (Adana, Turkey). 
The samples were mounted in epoxy resin, ground, and 
polished prior to etching. The samples were etched in 
5.5 M HNO3 medium for 20 s at 21 °C (Donelick et al., 
1999). The mounts were covered with 50-mm uranium-
free muscovite external detectors and irradiated in a BR-1 
research reactor in Belgium. Three age standards including 
the IRMM 540R uranium glass and the c-axis oriented 
Durango apatites, prepared in the same manner as the 
samples, were included in the irradiation can in order to 
ensure that the tracks were counted in the same faces in 
the standard as in the samples and to guarantee minimum 
separation between the standard glasses and apatite age 
standard to avoid possible radial fluence gradients for 
minimizing the systematic error of individual z values 
(Table 2). To calculate the neutron flux, a 1% Al-Co-
monitor (IRMM-528R) of 0.01 mm in thickness was 
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added above each standard in the irradiation can. After 
irradiation, the induced tracks in the external detectors 
were etched in 48% HF for 30 min. 

The track counts were carried out in transmitted light 
at a magnification of 1250× with a Zeiss AxioImager 
microscope. The counting procedure of Jonckheere et al. 
(2003) was followed for counting. During the counting 
the external detectors were repositioned track-side down 
on the mounts, in the same position as during irradiation. 
The fossil tracks were counted by focusing on the apatite 
surface through the muscovite external detector, whereas 
the induced tracks were counted by focusing on the 
underside of the external detector, without moving the 
microscope stage. Three age standards were counted for 
the determination of the z calibration factor. At least 2500 
fossil tracks were counted in the apatite, and over 3000 
induced tracks in the muscovite external detector and 
4000 tracks in the external detector irradiated against 
the uranium glass were counted. The calculation of the z 
calibration factors and the unweighted overall mean z are 
given in Table 2. Approximately 40 grains were counted in 
each sample (only in one sample 14 grains were counted) 
to ensure the total number of fossils and induced fission 
tracks were sufficient for reasonable ages. The results and 
the age calculations are given in Table 1.

The track length measurements were carried out with a 
Zeiss AxioImager microscope at a magnification of 2500× 
equipped with an Autoscan stage and a digitizer connected 
to a computer with Trakscan software. In order to reveal 

a sufficient number of confined tracks, the mounts were 
over-etched with the same medium as etching done at 15 
s prior to measurements. Trackscan software allows users 
to measure not only horizontal but also oriented tracks. 
Between 50 and 100 confined tracks were measured in 
prismatic faces with the selection of only tracks in tracks 
(TINTs) (Table 1). 

The track counts, track lengths with c-axis angles, 
and dpar values were used in the inverse modeling for 
calculating the thermal histories. The thermal histories 
were modeled with computer software HeFTy 1.8 
(Ketcham, 2005). The annealing equations of Donelick et 
al. (1999) and c-axis projection of Donelick et al. (1999) 
were used during inverse modeling calculations. A 
minimum of 50,000 (at least 250 good paths) candidate 
temperature-time (T-t) paths were generated at random 
(Monte Carlo algorithm) for each modeling run. 

4. Analytical results
The combined geo/thermochronologic data suggest a fast 
cooling through 300 °C (McDougall and Harrison, 1999) 
after emplacement, which can be explained by either 
shallow emplacement or fast exhumation above 10 km 
in depth for the Horozköy granitoid (Dilek et al., 1999b; 
Kuscu et al., 2010; Engin, 2013; Parlak et al., 2013). The 
single-grain fission track ages show very low dispersion 
and are consistently younger than the intrusion age 
of granitoid (Table 1; Figure 3). Samples were taken at 
different altitudes of the granitoid around Horoz village 

Figure 3. Field photo of the Horozköy granitoid near Horoz village including sample 
locations with AFT age data.
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Figure 4. Age-elevation diagram of the AFT results. FK91 deviates 
from the normal trend as a result of faulting after exhumation.

(Figure 3) to detect the possible age-elevation profile. AFT 
ages range between 23.7 and 16.1 Ma, where the oldest AFT 
age is similar to the age reported by Dilek et al. (1999b) 
(Table 1; Figure 3). The ages show a clear correlation with 
elevation, except FK91, which is separated from the others 
by a normal fault in the field (Table 1; Figures 3 and 4).

To calculate the cooling or exhumation rate, one can 
perform either the mineral pair method, using one rock 
sample with multiple mineral cooling ages, or the altitude-
dependence method, performing the same dating method 
on two (or more) samples from different altitudes. The 
latter requires no important vertical tectonic displacement 
during or after exhumation. If any tectonic activity 
occurred after the youngest isotopic age, then the linear 
relationship between altitude and age will be disrupted 
(Gallagher et al., 1998; Balestrieri et al., 2003; Gallagher 
et al., 2005). After excluding FK91, the age-elevation plot 
drawn with the ages obtained in this study indicates a slow 
exhumation (nearly steady) of ~0.03 mm/year for the Early 
Eocene-aged Horozköy granitoid between 23 and 16 Ma 
(Early Miocene) (Figures 3 and 4). The AFT age reported 
by Dilek et al. (1999b) cannot be used for the age-elevation 
profile, as the elevation data and the methodology of AFT 
age were not reported. 

Three T-t paths were calculated using HeFTy 
computer software by inverse modeling to reconstruct 
the exhumation of the samples in the partial annealing 
zone (PAZ) (Ketcham, 2005). The number of track 
lengths within sample FK90 was insufficient to provide 
a statistically meaningful result. The T-t path of sample 
FK88, calculated by inverse modeling, indicated similar 
results with measured ages (Figure 5). The sample was 
cooled below 100 °C after 25 Ma and remained in the PAZ 
until 2–3 Ma (Figure 5). The probability of the chi-square 
test (P(χ2) = 30.70) for this sample indicates a uniform 
age distribution between intergrains. The track length 
(TL) distribution of FK88 shows a unimodal distribution 
with a mean length of 14.80 µm and standard deviation of 
2.15 µm (Table 1; Figure 5). The TL distribution implies 
a slow cooling rate in the PAZ, which is consistent with 

the age-elevation and cooling history. Sample FK89 was in 
the total annealing zone before 25 Ma and has a cooling 
history similar to that of FK88. The grains ages of FK89 
are concordant (P(χ2) = 24.85) and the confined TL shows 
a unimodal distribution, ranging between 10 and 17 µm 
with a mean length of 17.19 µm (Table 1). The very high 
standard deviation of the TL implies that the samples 
remained long enough in the PAZ to shorten the old 
tracks, which is consistent with the slow cooling suggested 
by the age-elevation profile. This sample spans a more or 
less steady uplift in the PAZ, cooled below ~90 °C slowly 
after 7–8 Ma, and afterward the cooling rate of the sample 
increased (Figure 5). The age of sample FK91 indicates that 
normal faulting was active after the early Miocene, when 
the samples had been exhumed above the PAZ. In contrast 
to this early Miocene cooling age, the T-t modeling based 
on track length data indicates a rapid undercooling from 
the PAZ to the total stability zone in a time span between 
6 and 8 Ma (Figure 5) (Wagner and Van den Haute, 1992; 
Van Den Haute and De Corte, 1998). 

5. Discussion 
The accumulating low-temperature data from central and 
eastern Anatolia cluster into three groups (Dilek et al., 
1999b; Fayon et al., 2001; Boztuğ and Jonckheere, 2007; 
Umhoefer et al., 2007; Boztuğ et al., 2008, 2009a, 2009b, 
2009c; Okay et al., 2010; Karaoğlan, 2012; Karaoğlan 
et al., 2015). The oldest age group is Paleocene-Eocene 
from the granitoids, located to the northern edge of the 
CACC, related to the closure of the northern branch of 
the Neo-Tethys Ocean and the collision between Eurasia 
and the CACC (Boztuğ and Jonckheere, 2007; Boztuğ 
et al., 2008, 2009c), whereas there are also Oligocene 
cooling ages from the metamorphic rocks of the CACC 
(Fayon et al., 2001). The second age group is Eocene-
Oligocene, related to the first collision of the Anatolide-
Tauride platform and the Arabian platform, which is also 
related to the third and the youngest age group (Miocene) 
(Fayon and Whitney, 2007; Umhoefer et al., 2007; Okay 
et al., 2010; Karaoğlan et al., 2015) (Figure 6). According 
to the complexity of the collision events in the Anatolian 
peninsula, one must use these data with care. The previous 
fission-track data from south-central Anatolia indicate an 
Early-Late Miocene cooling/uplift for this region (Dilek et 
al., 1999b) (Figure 6). The Niğde Massif and the Tauride 
block collided following the subduction of the Inner 
Tauride Ocean during the Late Cretaceous-Eocene (Dilek 
and Whitney, 1997; Kadıoğlu and Dilek, 2010; Parlak et 
al., 2013). Following the deposition of the Ulukışla Basin 
above the suture zone, the Bolkar Mountains and the 
Ulukışla Basin remained under sea level, whereas high 
levels of the Niğde Massif emerged and eroded during the 
Eocene. During this stage the Ecemiş Fault activated and 
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Figure 5. On the left, the time-temperature (T-t) paths for samples FK88, FK89, and FK91 modeled by HeFTy (Ketcham, 2005) 
using a Monte Carlo algorithm are shown. The software plots envelopes in a T-t space from the paths, for which all statistical 
parameters of the models are either greater than 0.50, corresponding to “good” (purple area) fit, or above 0.05, corresponding to 
“acceptable” (green area) fit. The solid black line shows the best-fit curve. On the right, the measured track-length distributions 
are shown. ‘Model Age’ is the fission-track age predicted by HeFTy. ‘Measured Age’ is the pooled age from the measured data. 
‘Model TL’ is the mean and standard deviation of the track-length distribution predicted by HeFTy. ‘Measured TL’ is the mean 
and standard deviation of the measured track length distribution. ‘GOF’ defines the value of the goodness-of-fit between the 
model and measured ages and length distribution.
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Figure 6. AFT age data from central and southeast Turkey. Inset map: Turkey, with dashed line box showing the outer map (map 
data from Yılmaz, 1993; Boztuğ et al., 2004, 2009b and AFT data from Dilek et al., 1999b; Fayon et al., 2001; Boztuğ et al., 2004, 2008, 
2009a, 2009b, 2009c; Boztuğ and Jonckheere, 2007; Umhoefer et al., 2007; Okay et al., 2010; Karaoğlan, 2012).

remained active to recent times (Toprak and Göncüoğlu, 
1993; Tatar et al., 2000; Jaffey and Robertson, 2001, 2005; 
Gautier et al., 2002). After the formation of the Ulukışla 
Basin, the Niğde Massif units experienced a burial event 
starting at the Middle Eocene, which raised temperatures 
to over 120 °C, causing a resetting of AFT ages (Whitney et 
al., 2003, 2008; Fayon and Whitney, 2007) (Figure 6). The 
Anatolide-Tauride platform underwent an extensional 
collapse during the Oligocene-Miocene. South-central 
Anatolia emerged above sea level during the Oligocene, 
as demonstrated by the deposition of Oligocene terrestrial 
sediments in the Ulukışla Basin between the CACC and 

Bolkar Mountains, Ecemiş Fault Zone, and Karsantı Basin 
in the east, and the Bucakkışla region in the west and Mut 
Basin and Adana Basin in the south (Yetiş and Demirkol, 
1986; Görür, 1992; Dilek et al., 1999b; Clark and Robertson, 
2002, 2005; Jaffey and Robertson, 2005; Şafak et al., 2005; 
Alan et al., 2007; Derman and Gürbüz, 2007; Cosentino 
et al., 2012; Esirtgen, 2014). Following the emergence, the 
ophiolitic rocks, which were emplaced onto the Bolkar 
Mountains during the Late Cretaceous, eroded in the first 
order and fed the adjacent basins (i.e. Ecemiş Basin) (Jaffey 
and Robertson, 2001, 2005). Braided rivers transported 
the ophiolitic sediments to the Oligocene-Early Miocene 



74

KARAOĞLAN / Turkish J Earth Sci

35 – 15 Ma

Niğde
Core Complex

Taur ide Block

MO
HG

EFBFF

UB
AHO

Bolkar Mnts .

Lower Mantle

S N

Miocene Sea
(i.e. Adana basin)

Early Miocene:
accretion thickens overriding 
plate causing upli� in the Tauride. 

(A)

15 – 5 Ma

Niğde
Core Complex

Taur ide Block

MO

HG ÜG
EFUB

AHO
Collapsing
Bolkar Mnts .

Lower Mantle

S N

Miocene Sea
(i.e. Adana basin)

Latest Miocene–Pleistocene:
break–of   and/or slab tear led to 
mantle upwelling causing upli� in 
the Tauride.

(B)

(C)

Arabian 

Platform

Today Mediterranean Sea

B l a c k          
      S e a

0

–200

–400

–600

D
ep

th
 (k

m
)

Trench

Trench

Cyprus

Cyprus

Figure 7. A) The geodynamic model of south-central Anatolia during the Oligo-Miocene. B) 
Geodynamic model of south-central Anatolia during the Latest Miocene-Pleistocene (data from 
Dilek and Whitney, 1997; Fayon and Whitney, 2007; Whitney et al., 2008; Kadıoğlu and Dilek, 
2010). C) Today’s mantle conditions beneath Anatolia. The slab break-off initiated beneath eastern 
Anatolia during the Oligocene and propagated toward the west. During the Latest Miocene, 
combination with slab-tear led to asthenospheric upwelling beneath south-central Anatolia, 
causing uplift in the region (Biryol et al., 2011; van Hunen and Allen, 2011; Cosentino et al., 
2012; Schildgen et al., 2012a, 2012b, 2014) (MO: Mersin Ophiolite, HG: Horozköy Granitoid, 
BFF: Bolkar Frontal Fault, AHO: Ali Hoca Ophiolite, UB: Ulukışla Basin, EF: Ecemiş Fault, ÜG: 
Üçkapılı Granitoid). A and B modified after Kadıoğlu and Dilek (2010), C modified after Schildgen 
et al. (2014).
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basins. During the early-middle Miocene, the Niğde Massif 
and the Bolkar Mountains were uplifted as a result of 
mantle processes (slab-rollback, slab break-off, and/or slab 
tear) beneath south-central Anatolia and fed the adjacent 
basins (Şengör and Yılmaz, 1981; Jaffey and Robertson, 
2005; Biryol et al., 2011; Cosentino et al., 2012; Robertson 
et al., 2012; Schildgen et al., 2012a, 2012b, 2014) (Figure 
7). Western Anatolia and the Aegean region, similar to the 
Bolkar Mountains, experienced a limited exhumation of 
the metamorphic rocks along the margins and the opening 
of the Aegean Sea Basin during the early Miocene (Ring et 
al., 2010). To the north of the Bolkar Mountains, the Niğde 
Massif was exhumed as result of strike-slip faulting in a yo-
yo tectonic regime with a high rate (>1 mm/year) between 
20 and 10 Ma (Fayon et al., 2001; Fayon and Whitney, 2007; 
Umhoefer et al., 2007; Whitney et al., 2008). To the south 
of the Bolkar Mountains, the island of Cyprus was already 
uplifted above sea level during the Miocene (Robertson, 
1977, 2002, 2012; Kinnaird et al., 2011). Besides the fast 
exhumation of the Niğde Massif during the Early Miocene, 
the Bolkar Mountains were exhumed very slowly (<0.5 
mm/year) during this period (Figures 4–6). The Bolkar 
Mountains may have been shaped by erosion during this 
stage; however, the paleogeothermal gradient was high 
enough that the AFT data do not record an important 
exhumation phase (Figure 5). While the compressional 
events were responsible for the Oligo-Miocene slow uplift 
of the region, multiple sources such as slab break-off, slab 
tearing, and/or collision of a continental fragment with 
the subduction zone south of Cyprus were uplifted in the 
region with high uplift rates during the latest Miocene-
Pleistocene (Cosentino et al., 2012; Schildgen et al., 
2012a, 2012b, 2014). The Bolkar Mountains reached their 
maximum elevation by 8–5 Ma, as a result of continued 
crustal uplift along the Bolkar Frontal Fault (Dilek et al., 
1999b; Schildgen et al., 2012a, 2014). The fast erosion of 
the Bolkar and Aladağ mountains, related to the mantle 
processes, caused uplifting of this region as high as 
~2000–3000 m, where the Horozköy granitoid outcropped 
during 15–5 Ma and the sediments from the Horozköy 
granitoid were transported to the adjacent terrestrial and 
marine environment (i.e. Adana Basin, south of the Bolkar 
Mountains) by the late Miocene (Gürbüz, 1993; Gürbüz 
and Kelling, 1993; Jaffey and Robertson, 2005; Ilgar et al., 
2013). Recent studies showed that the uplift of the Central 
Taurides started at 7–8 Ma and since that time the marine 
sedimentary units uplifted ~2 km high in the region, which 
is consistent with a fast cooling profile as constrained by 
the AFT data obtained in this study (Cosentino et al., 
2012; Schildgen et al., 2012a, 2012b, 2014; Cipollari et al., 
2013; Radeff et al., 2015). 

6. Conclusion
Suturing of the ITSZ and the juxtaposition of the CACC and 
Central Taurides caused folding, thrusting, and regional 
emergence above eustatic sea level and ended the Tethys-
related marine sedimentation in the Central Taurus in Late 
Eocene time. The uplifting of the Central Taurides during 
the late Tertiary was closely associated with mountain-
building processes in a collided continental collision zone. 
The collision of Africa-Arabia to the south and Eurasia to 
the north caused high uplift in eastern Anatolia, whereas 
the Anatolide-Tauride platform underwent an extensional 
collapse during the Oligocene-early Miocene (Şengör and 
Yılmaz, 1981; Şengör, 1985; Şengör et al., 1985, 2003; Dewey 
et al., 1986; Jolivet and Faccenna, 2000; Aksu et al., 2005b; 
Bozkurt and Mittwede, 2005; Ring et al., 2010; Elitok and 
Dolmaz, 2011). The late Miocene of the region witnessed 
a high uplift of the mountain belt and subsidence in the 
foreland as a result of the slab break-off and/or the slab tear 
within the subducted slab beneath this region (Cosentino 
et al., 2012; Schildgen et al., 2012a, 2012b, 2014; Cipollari 
et al., 2013) (Figure 7).

The AFT data obtained in this study suggest:
1)	 The Horozköy granitoid was emplaced in a shallow 

depth and reached 2–3 km in depth corresponding 
to the PAZ of AFTs during the early-middle Miocene. 
This period was most likely vertically stable in the 
region such that the Horozköy granitoid was exhumed 
very slowly (<<0.5 mm/year) and remained in the PAZ 
(2–3 km in depth) until ~10 Ma.

2)	 After ~10 Ma, during the late Miocene-early 
Pleistocene, the region uplifted very fast together with 
the unroofing of the Horozköy granitoid (>1 mm/
year), as a result of slab break-off and slab tearing of 
the oceanic lithosphere linked to the African plate 
beneath south-central Anatolia, which is consistent 
with biostratigraphic and field evidence from the 
Oligocene terrestrial and Miocene marine and 
terrestrial sediments.
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