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1. Introduction
The Huainan Coalfield is one of the most important coal 
basins in China and has been mined for a long history. Its 
coal-bearing sequences, from old to young, are mainly 
composed of the Late Carboniferous Taiyuan Formation, 
the Early Permian Shanxi and Lower Shihezi Formations, 
and the Late Permian Upper Shihezi Formation. The 
coal seams of the Taiyuan Formation, however, were 
only partially developed, and their economic values are 
not so competitive. Nevertheless, the coexistence of coal 
and shale provides a large possibility in the preservation 
of coal bed gases in the Taiyuan Formation. Therefore, 
understanding the depositional paleoenvironment of 
the Taiyuan Formation is critical important for resource 
exploration. The aluminous argillite layers are commonly 
used as marker beds for stratigraphic correlation in 
complicated depositional settings. Consequently, the 
geochemical characterization of aluminous argillites 
could be potentially used to constrain coeval depositional 
environments.

Geochemical parameters have been applied successfully 
to trace the depositional environments and paleoredox 
conditions of ancient sedimentary rocks such as shales, 
argillites, and sandstones (Clavert and Pedersen, 1993; 
Jones and Manning, 1994; Nath et al., 1997; Dobrzinski et 
al., 2004; Ghabrial et al., 2012; Dhannoun and Al-Dlemi, 
2013; Meinhold et al., 2013). Chemical compositions 
of sedimentary rocks are influenced by various factors 
including source materials and their weathering degrees, 
transportation dynamics of clastic materials, depositional 
environments, and postdepositional processes (Taylor 
and McLennan, 1985; Hayashi et al., 1997; El-Bialy, 2013). 
Thus, geochemical parameters of the sedimentary rocks 
can be used, in turn, to trace the source materials, the 
degrees to which the source materials were weathered, and 
the contemporary depositional conditions. For example, 
Harnois (1988) and McLennan et al. (1993) showed that 
the Al2O3/TiO2 values of sandstones and argillites are 
basically conserved from their parent rocks and could be 
applied in identifying the source materials. Several specific 
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trace elements and rare earth elements (REEs) have been 
used to establish discrimination diagrams for provenance 
analyses (Floyd and Leveridge, 1987; Floyd et al., 1991; 
Zimmermann and Bahlburg, 2003; Armstrong-Altrin et 
al., 2004).

The present study investigates the geochemical 
characterizations of Upper Carboniferous aluminous 
argillites from the Taiyuan Formation, Huainan Coalfield, 
with an aim of tracing their source materials, weathering 
degrees of source rocks, and coeval depositional 
environments.

2. Geologic setting
The Huainan Coalfield is located in the southeastern North 
China Plate (Figure 1). The stratigraphic succession of this 
area includes, from oldest to youngest, the Cambrian, 
Lower-Middle Ordovician, Upper Carboniferous, 
Permian, Lower and Upper Triassic, Jurassic, Cretaceous, 
Tertiary, and Quaternary. Due to the Middle Caledonian 
movement, the Huainan basin began to lift at the end of 
the Early-Middle Ordovician and then underwent a long-
term denudation until the Late Carboniferous. This caused 
an absence of strata of the Upper Ordovician, Silurian, 
Devonian, and Lower and Middle Carboniferous. At the 
early stage of the Late Carboniferous, Huang-Huai seawater 
invaded the neighboring Huaibei area, and a transitional 
face named the Benxi Formation was deposited (Figure 2). 
Because the southern uplift of the Bengbu strata slowed 
down the southern seawater transgression, no sediments 
were preserved in the Huainan area until the late stage of 
the Late Carboniferous, when a transitional sedimentary 
facies named the Taiyuan Formation was formed. 
Following the Taiyuan Formation, the Shanxi Formation 
and Lower Shihezi Formation of the Lower Permian and 
the Upper Shihezi Formation and Shiqianfeng Formation 
of the Upper Permian were continuously deposited (Sun et 
al., 2010; Chen et al., 2011; Yang et al., 2011).

Limestone, sandstone, silty claystone, and aluminous 
argillite are the main lithological constituents of the 
Taiyuan Formation, accompanied by unworkable coal 
seams and carbonaceous claystone. The thickness of 
the Carboniferous Taiyuan Formation in the Huainan 
Coalfield is 100–130 m, comprising 11–13 layers of 
limestone (Figure 3). The Taiyuan Formation stratum in 
the present study is 129 m in thickness and comprises 48 
m of limestone and 19 m of aluminous argillite.

3. Sampling and analysis
Two bauxitic argillites (Z-1 and Z-2), 8 aluminous 
argillites (Z-3, Z-4, Z-5, Z-6, Z-7, Z-8, Z-9, and Z-10), and 
3 limestone samples (Z-11, Z-12, and Z-13) were collected 
from the ZJBY1 borehole (32°46′38″N, 116°29′45″E) 
during the exploration stage of the Zhangji Coal Mine at 

the Huainan Coalfield. Aluminous argillites were collected 
from 3 layers of aluminous argillite, A1, A2, and A3, 
overlying limestone layers of L4, L7, and L11, respectively 
(Figure 3). The upper 0.3 m of A1 is a thin layer of bauxite 
where 2 bauxitic argillites were collected. Z-3, Z-4, Z-5, 
and Z-6 were collected from the lower part of A1; Z-7 
and Z-8 were collected from A2; and Z-9 and Z-10 were 
collected from A3. Z-11, Z-12, and Z-13 were collected 
from the limestone layers of L4, L7, and L11, respectively 
(Figure 3).

Bulk samples were manually grinded in a quartz 
mortar and then sieved through a 230 mesh screen to 
obtain homogenized samples. An aliquot of ~0.2 g of 
powdered sample was accurately weighed and then was 
fully digested with mixed acids (HNO3 : HCl : HF = 3:1:1) 
in a microwave digestion instrument (Multiwave 3000, 
Anton Paar GmbH).

Major oxides of the samples were determined by XRF. 
Loss on ignition (LOI) of the samples was determined 
gravimetrically by calculating the mass difference between 
1000 °C calcined sample residual and the original 2 g 
of sample. Selected trace elements (B, Mn, Ni, and Zn) 
were determined by inductively coupled plasma optical 
emission spectrometry (ICP-OES; Optima 7300 DV, 
PerkinElmer), while other trace elements (V, Cr, Co, Sr, Ba, 
Pb, Zr, Nb, Hf, Ta, and Th) and REEs were determined by 
inductively coupled plasma mass spectrometry (ICP-MS; 
X Series 2, Thermo Fisher Scientific). The uncertainties for 
most of the elements determined, as evaluated by various 
certified reference materials, were within 5%.

4. Results
4.1. Major oxides
In the 3 layers of aluminous argillite samples, SiO2 and 
Al2O3 are the dominant constituents, with their contents 
ranging from 33.1% to 64.9% and from 24.3% to 30.5%, 
respectively (Table 1). Iron oxides (expressed as TFe2O3) 
and TiO2 are the secondary components in aluminous 
argillite, varying from 1.5% to 17.6% and 0.9% to 1.6%, 
respectively. Alkalis and alkali earth oxides (Na2O: 0.3%–
1.2%; K2O: 0%–2.8%; MgO: 0%–0.7%; CaO: 0.1%–0.7%) 
are present at low concentrations in aluminous argillite. 
Similar to the aluminous argillites, bauxitic argillites are 
also enriched in Al2O3 and SiO2, and depleted in alkalis 
and alkalis earth oxides. The high Al contents in bauxitic 
argillites (28.5% and 36.9%) are probably caused by 
intense chemical weathering. In the underlying limestone 
samples (Z-11, Z-12, and Z-13), CaO is the predominate 
component with its concentrations varying from 43.1% to 
48.2%. The concentrations of Al2O3, Fe2O3, and SiO2 are 
0.1%–1.8%, 0.4%–1.4%, and 1.2%–4.8%, respectively.

Significant correlations can be seen between selected 
major oxides of the argillites (Table 2; Figure 4). SiO2 
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Figure 1. a) Location of Anhui Province and the Huainan Coalfield. b) Tectonic geological map of the Huainan Coalfield and 
location of the Zhangji Coal Mine. 1): Shangyao-Minglongshan thrust fault; 2): Fufeng thrust fault; 3): Shungengshan thrust fault; 4): 
Fuli thrust fault; 5): Shouxian-Laorencang normal fault; 6): Wudian fault; 7): Guzhen-Changfeng fault; 8): Guqiao fault; 9) Chenqiao 
fault; 10): Jiangkouji fault; 11): Wanghutong fault; 12): Zhuji-Tangji anticline; 13): Shangtang-Gengcun syncline; 14): Chenqiao-Panji 
anticline; 15): Xieqiao-Gugou syncline; 16): Lutang anticline.

Figure 2. Lithofacies and paleogeography of the Huainan Coalfield 
during the Late Carboniferous period (modified from the Regional 
Geology Department of Anhui Province).
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positively correlates with Na2O, MgO, K2O, and CaO, 
but negatively correlates with Al2O3, TiO2, and Fe2O3. 
Elements such as Al, Ti, and Fe are immobile and not 
susceptible to chemical weathering processes. Their oxides 
show negative correlations with SiO2. In contrast, the 
oxides of mobile elements such as Na, K, Mg, and Ca show 
positive correlations with SiO2. Nearly all the argillites 
have comparable ratios of SiO2/Al2O3, Fe2O3/Al2O3, and 
TiO2/Al2O3 (Figure 4), suggesting that they were possibly 
derived from the same source materials. However, one 
bauxitic argillite, Z-1, significantly deviates from the 
correlation slopes of SiO2 vs. Al2O3 and Fe2O3 vs. Al2O3 in 
Figure 4, which indicates that it probably suffered a more 
extensive lateritization than other argillite samples. 
4.2. Trace elements
During chemical weathering, variable amounts of mobile 
trace elements, such as Sr, Ba, and Eu can be depleted, while 

ratios between different immobile elements could remain 
stable from parent rocks to final sedimentary rocks (Floyd 
and Leveridge, 1987; Floyd et al., 1991; Zimmermann and 
Bahlburg, 2003; Armstrong-Altrin et al., 2004).

Strontium and Ba are commonly sensitive to the change 
of sedimentary aqueous environments (Francois, 1988; 
Torres et al., 1996; Schmitz et al., 1997). Strontium (4.85–
166.15 µg/g) and Ba (2.76–263.25 µg/g) vary significantly 
in the aluminous argillites, but are significantly lower than 
those in the limestone samples (3728–4985 µg/g for Sr and 
58–114 µg/g for Ba; Table 3).

Nb, Ta, Zr, and Hf are often enriched along with 
the processes of chemical weathering and do not have 
significant variations during subsequent transport and 
deposition processes. There are significant differences 
in Nb, Ta, Zr, and Hf between limestone and aluminous 
argillite samples.

Figure 5 shows the distribution of NASC-normalized 
REEs in the studied aluminous argillite samples. The REEs 
of all the aluminous argillites have LaN/YbN values of less 
than 0.4, indicating a significant enrichment of heavy 
REEs (HREEs) relative to light REEs (LREEs). In addition, 
nearly all the aluminous argillite samples display positive 
Ce anomalies (Ce/Ce* = 1.39, ranging from 1.15 to 1.91, 
except one sample, Z-8, of 0.89) and negative Eu anomalies 
(Eu/Eu*= 0.19, ranging from 0.17 to 0.23). The REE 
parameters of aluminous argillites are very different from 
the underlying limestone samples, which show negative 
Ce anomalies and positive Eu anomalies.

5. Discussion
5.1. Source rocks
5.1.1. Evidence from stratigraphic succession
There are two potential source rocks for the studied 
high-Al argillites: near-field underlying limestone and 
far-field silicate rocks. According to previous studies 
(Liu, 1987; Lan et al., 1988; Sun et al., 2010; Chen et al., 
2011), transgression and regression of seawater occurred 
frequently in the Huainan Coal Basin during the late stage 
of the Late Carboniferous. If these argillites were developed 
as the leaching and weathering products of the underlying 
limestone in a similar manner as karst bauxites, calcite and 
dolomite should contribute substantial proportions to the 
mineral composition of the studied argillites. However, the 
contents of CaO and MgO in aluminous argillite are <1%, 
which is significantly lower than in underlying limestone 
samples (43%–48% for CaO and 3.1%–3.5% for MgO) 
(Table 1). Hence, the potential source material for the 
studied argillites is thought to be the silicate rocks.
5.1.2. Evidence from major oxides
Al2O3 and TiO2 in source rocks are usually preserved in 
the clastic sedimentary rocks, because Al and Ti are not 

Figure 3. Sedimentary sequence of the Late Carboniferous Epoch 
Taiyuan Formation in the Zhangji Coalmine.
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Table 1. Major oxide concentrations (wt. %) for the bauxitic argillites (BA, Z-1, and Z-2) and aluminous argillites (AA, Z-3, to Z-10), 
and the underlying limestone samples (LS, Z-11, to Z-13) of the Taiyuan Formation, Huainan Coalfield.

Sample Lithology Al2O3 SiO2 Fe2O3 TiO2 CaO K2O P2O5 Na2O MgO MnO LOI CIA

Z-1 BA 36.92 42.39 4.44 2.116 0.08 0.10 0.037 0.13 0.15 0.101 11.56 98.75
Z-2 BA 28.52 41.19 12.75 1.326 0.16 0.17 0.055 0.15 0.32 0.045 12.34 97.53
Z-3 AA 26.64 44.22 9.93 1.16 0.16 1.27 0.069 0.32 0.06 0.046 9.25 92.40
Z-4 AA 27.94 45.98 10.41 1.26 0.24 1.34 0.07 0.60 0.18 0.047 9.93 90.67
Z-5 AA 29.93 33.12 17.64 1.55 0.09 0.03 0.049 0.64 0.01 0.005 13.96 95.99
Z-6 AA 30.47 33.37 17.04 1.56 0.07 0.03 0.046 0.52 0.01 0.005 17.90 96.78
Z-7 AA 24.32 62.65 1.51 0.94 0.69 2.73 0.072 1.22 0.60 0.003 3.26 79.64
Z-8 AA 26.28 64.92 1.49 0.99 0.72 2.76 0.067 1.20 0.67 0.003 2.30 80.74
Z-9 AA 29.73 45.17 8.20 1.09 0.19 1.78 0.076 0.65 0.18 0.005 7.93 89.90
Z-10 AA 29.36 44.53 8.25 1.09 0.18 1.78 0.08 0.58 0.18 0.011 14.96 90.15
Z-11 LS 0.11 3.1 0.37 0.01 46.46 0.04 0.071 0.51 3.46 0.031 42.84 0.13
Z-12 LS 0.16 1.24 0.40 0.01 48.18 0.02 0.118 0.52 3.26 0.044 45.05 0.18
Z-13 LS 1.79 4.84 1.44 0.04 43.07 0.45 0.21 0.63 3.12 0.041 42.38 2.19

Table 2. Pearson’s correlation coefficients between major oxides in the studied aluminous argillites.

SiO2 Al2O3 Na2O MgO K2O TiO2 MnO CaO Fe2O3

SiO2 1
Al2O3 –0.85 1
Na2O 0.83 –0.63 1
MgO 0.97 –0.77 0.94 1
K2O 0.95 –0.75 0.71 0.89 1
TiO2 –0.88 0.72 –0.56 –0.77 –0.97 1
MnO –0.13 –0.16 –0.55 –0.33 –0.11 0 1
CaO 0.96 –0.83 0.93 0.99 0.86 –0.74 –0.28 1
Fe2O3 –0.97 0.8 –0.74 –0.91 –0.99 0.96 0.12 –0.89 1

readily mobilized by weathering processes (Harnois, 
1988; McLennan et al., 1993; El-Bialy, 2013; Abedini and 
Calagari, 2014). Hayashi et al. (1997) demonstrated that the 
Al2O3/TiO2 ratios of sandstones and mudstones changed 
insignificantly during the weathering of source rocks and 
the subsequent transportation, deposition, and diagenesis 
of sediments. A discriminating criterion has been applied 
to distinguish different types of parent igneous rocks, with 
Al2O3/TiO2 ratios of 3–8 for mafic igneous rocks (SiO2 
= 45.52%), 8–21 for intermediate igneous rocks (SiO2 = 
53%–66%), and 21–70 for felsic igneous rocks (SiO2 = 
66%–76%). The Al2O3/TiO2 ratios of the studied argillites 
samples range from 19.31 to 27.28 (mean = 23.83; Figure 
6), suggesting that they were possibly derived from felsic 
to intermediate igneous rocks (Amajor, 1987; Imchen et 
al., 2014).

The A-CN-K triangular diagram proposed by Nesbitt 
and Young (1984) is also commonly used to empirically 
indicate the types of original rocks (Fedo et al., 1995; 
Babechuk et al., 2014). According to the difference 
between the removal rates of Na and Ca from plagioclase 
and of K from microcline, the initial weathering trends of 
igneous rocks are subparallel to the (CaO+Na2O)-Al2O3 
sideline. This trend could change when the difference in 
their removal rates is nonsignificant. The weathering trend 
of our studied argillites is approximately perpendicular 
to the (CaO+Na2O)-K2O boundary, and it points to the 
Al2O3 apex (Figure 7). As pointed out by Fedo et al. (1995) 
and El-Bialy (2013), the source materials can be reliably 
inferred if the studied weathering trend is extrapolated 
backwards to the plagioclase and K-feldspar connecting 
line. Using this extrapolation method, the potential source 
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materials in the studied argillites could be felsic igneous 
rocks (granodiorite and granite) (Figure 7). 
5.1.3. Evidence from trace elements
The ratios between these specific elements (e.g., Zr, Hf, Nb, 
Ta) in sedimentary rocks can be used for the provenance 
analysis. Figure 8 compares the TiO2 vs. Zr of the studied 
aluminous argillite with previously defined source rock 
fields (Jolly, 1980; Stone et al., 1987; Paradis et al., 1988; 
Lafleche et al., 1992; Hayashi et al., 1997). In the TiO2 vs. 
Zr diagram, aluminous argillites fall in the intermediate 
igneous rock field, near the boundary of acidic and 
intermediate igneous rocks. Our studied aluminous 
argillite samples have a mean Zr/Hf ratio of 33.19 (from 
27.64 to 33.77), which is slightly lower than the granite Zr/
Hf value of 33.5–39.8 (Panahi et al., 2000) but higher than 
the basic-ultrabasic rock Zr/Hf value of 18.38 (from 11.38 
to 24.85) (Calagari and Abedini, 2007). This indicates 
again that our aluminous argillites are predominately 
sourced from intermediate igneous rocks.

Nevertheless, it does not exclude the possibility of acidic 
source rocks. From the TiO2-Ni discrimination diagram 
of Floyd et al. (1989) (Figure 9), two of the argillites lie in 
the acidic rock field, although most of the argillites are in 
the intermediate igneous rock field. Our argillites show 
an enrichment of HREEs relative to LREEs, with positive 
Ce anomalies and significant negative Eu anomalies. This 
indicates that the source rocks are not acidic-intermediate 
igneous rocks, in contradiction to the inferences from 
the above elements. We speculate that the REEs in source 
rocks are possibly significantly fractionated by weathering 
processes and postdepositional processes of the argillites. 
However, the significant Eu anomaly is likely imparted 
by source rocks and is less modified by the weathering of 
source rocks to the final deposition of argillites.
5.2. Climate conditions
Weathering indices of sedimentary rocks can be used 
to reconstruct the climate conditions in the source area 
(Jacobson et al., 2003; Esmaeily et al., 2010; Moosavirad et 

Figure 4. Plots of Al2O3 vs. SiO2 (A), vs. Fe2O3 (B), and vs. TiO2 (C) in the studied bauxitic and aluminous argillites.
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Table 3. Trace element concentrations (μg/g) for the aluminous argillites and the underlying limestone samples of the Taiyuan Formation.

Elements Z-3 Z-4 Z-5 Z-6 Z-7 Z-8 Z-9 Z-10 Z-11 Z-12 Z-13

V 423 329.45 317.25 395.75 425.25 379.5 421.75 470.25 96 114.98 104.23
Cr 117.9 102.3 115.18 125 77.93 94.18 97.38 104.15 24.22 26.4 45.6
Ni 53.08 44.73 17.02 22.47 28.93 34.18 48.88 52.73 40.6 48.05 81.65
Sr 77.95 113.58 12.05 4.85 96.05 75.73 141.3 166.15 4552.5 3727.5 4985
Ba 93.2 92.45 4.03 2.76 111.2 103.93 263.25 310 64.38 58.18 113.88
Zr 244.6 211.38 170.03 225.8 145.1 174.75 171.35 187.95 7.50 8.69 22.86
Nb 6.45 5.12 5.26 5.31 4.09 4.74 5.57 6.18 0.34 0.54 0.66
Hf 7.37 6.69 5.49 7.82 5.25 5.47 5.4 6.22 0.23 0.34 0.78
Ta 4.03 3.38 2.88 2.30 2.62 2.77 3.54 3.87 0.21 2.22 0.49
Th 393.75 412.25 434 174.8 103.55 228.73 219.2 171 7.29 10.18 46.8
La 6.12 5.81 0.43 0.25 0.78 1.48 3.38 2.68 3.7 4.96 1.86
Ce 16.42 14.7 1.93 0.97 1.69 2.41 8.47 6.82 3.53 4.62 1.95
Pr 1.11 1.04 0.14 0.10 0.16 0.28 0.66 0.21 0.73 0.51 0.32
Nd 32.95 31.98 5.29 3.92 5.48 9.53 20.87 16.23 1.50 3.21 1.07
Sm 5.18 5.01 1.31 0.97 0.99 1.61 3.22 2.58 0.43 0.33 0.20
Eu 0.20 0.19 0.04 0.03 0.05 0.07 0.14 0.12 0.15 0.12 0.08
Gd 5.82 5.31 1.09 0.71 0.99 1.81 4.05 3.04 0.3 0.52 0.1
Tb 0.67 0.63 0.15 0.09 0.11 0.18 0.42 0.32 0.08 0.11 0.06
Dy 0.49 0.46 0.13 0.07 0.11 0.27 0.22 1.63 0.39 0.45 0.23
Ho 2.16 2.12 0.58 0.27 0.35 0.45 1.15 0.92 0.10 0.12 0.08
Er 11.45 11.17 2.94 1.29 1.79 2.24 5.79 4.68 0.44 0.27 0.31
Tm 1.15 1.11 0.30 0.13 0.17 0.20 0.54 0.44 0.05 0.04 0.01
Yb 6.21 5.96 1.65 0.68 0.91 0.99 2.73 2.19 0.41 0.24 0.15
Lu 0.90 0.90 0.25 0.09 0.13 0.12 0.38 0.29 0.09 0.02 0.03
V/Cr 3.59 3.22 2.75 3.17 5.46 4.03 4.33 4.52 3.96 4.36 2.29
V/(V+Ni) 0.89 0.88 0.95 0.95 0.94 0.92 0.90 0.90 0.70 0.71 0.56
Sr/Ba 0.84 1.23 2.99 1.75 0.86 0.74 0.54 0.54 70.72 64.07 43.78
La N/YbN 0.09 0.09 0.02 0.03 0.08 0.14 0.12 0.12 0.85 1.95 1.12
Ce/Ce* 1.49 1.42 1.91 1.5 1.15 0.89 1.35 1.38 0.51 0.69 0.60
Eu/Eu* 0.17 0.17 0.17 0.17 0.23 0.19 0.18 0.21 2.01 1.36 2.49

Ce/Ce* = CeN/(LaN × PrN)1/2, Eu/Eu* = EuN/(PrN × SmN)1/2, where N refers to a NASC-normalized value (see Gromet et al., 1984).

al., 2011). Suttner and Dutta (1986) used a binary diagram 
of SiO2 vs. (Al2O3+K2O+Na2O) to reflect the climate 
conditions in the source area. The studied argillites samples 
are located in the arid and semiarid field, suggesting that 
the weathering of source rocks and deposition of argillites 
occurred in an arid to semiarid climate (Figure 10). 
According to the paleomagnetic data, the North China 
Plate, approximately located at a latitude between 15°N 
and 30°N in the late Carboniferous, was characterized by a 
subtropical to tropical climate (Liu, 1987).
5.3. Chemical weathering
From the incipient to moderate weathering processes, 
Ca, Na, and K of the parent rocks are relatively mobile 
and are easily leached out, resulting in a depletion of 

these elements and an enrichment of immobile elements. 
Nesbitt and Young (1982) presented a chemical index of 
alteration (CIA) to describe the weathering extents of 
rocks by calculating the mole ratios of alumina to alkaline 
elements:

CIA = [Al2O3 / (Al2O3 + CaO* + Na2O + K2O)] × 100,
where CaO* represents the CaO content of the silicate 

phase. The argillite samples have an average value of 91, 
ranging from 80 to 99, with the highest CIA values in 
bauxitic argillites. This indicates that the weathering of 
the parent rocks resulted in more depletion of the labile 
alkalis and alkali earth elements in bauxitic argillites than 
aluminous argillites.
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Figure 6. Provenance diagram of Al2O3 vs. TiO2 in the studied aluminous argillites (after 
Amajor, 1987).

By studying two contrasting basalt profiles, Babechuk 
et al. (2014) suggested that the A-CN-K triangular diagram 
can empirically and kinetically predict the chemical 
weathering direction of rocks. The A-CN-K diagram 
describes the consequence of chemical weathering of the 
upper crust where plagioclase and K-feldspar are dissolved, 

causing depletion of Ca, Na, and K and enrichment of Al 
(Nesbitt and Young, 1984; Nesbitt, 1992; Babechuk et al., 
2014). In Figure 7, the studied argillite samples are located 
around the Al apex, suggesting an extensive weathering of 
source rocks. This is consistent with the CIA interpretation.

Figure 5. NASC (North American Shale Composite)-normalized REE patterns of the studied 
aluminous argillite samples. NASC normalizing values are from Gromet et al. (1984).
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Figure 7. A-CN-K ternary diagram (modified from Nesbitt and Young, 1982; Fedo et al., 
1995; Babechuk et al., 2014) showing weathering trends of studies argillites compared to 
Chhindwara flows (Babechuk et al., 2014).

With the progress of the weathering, Si becomes unstable 
due to desilication of rocks. The SiO2-Al2O3-TFe2O3 (SAF) 
ternary diagram proposed by Schellmann (1981, 1982, 
1986) has been used to quantify the laterization, although 

there is still debate about the definition and classification 
of laterization. Based on the SAF ternary diagram, the 
studied aluminous argillites possibly suffered a weak to 
moderate laterization (Figure 11).

Figure 8. Provenance diagram of TiO2 vs. Zr in the studied aluminous argillites (after 
Hayashi et al., 1997).
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Figure 9. Provenance diagram of TiO2 vs. Ni in the studied aluminous argillites (after Floyd 
et al., 1989).

5.4. Depositional environment
Both Sr and Ba are sensitive to variations of paleosalinity, 
and they are more concentrated in seawater than fresh 
water (Francois, 1988; Torres et al., 1996; Schmitz et 
al., 1997). However, the difference in sedimentary 

environments could separate their correlations. Barium is 
easily precipitated as BaSO4, while Sr can migrate further 
because of its higher solubility than that of Ba (Lucas et al., 
1990; Van Os et al., 1991). Thus, the Sr/Ba ratio is commonly 
used to estimate the changes of paleoenvironments of 

Figure 10. Paleoclimate discrimination diagram of SiO2 vs. (Al2O3+K2O+Na2O) in the 
studied aluminous argillites (after Suttner and Dutta, 1986).
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sedimentary rocks (Lan et al., 1988; Raiswell et al., 1988; 
Van et al., 2003), with Sr/Ba > 1 indicating a marine 
deposition and Sr/Ba < 1 indicating continental deposition 
(Van et al., 2003; Jacquet et al., 2005; Paytan et al., 2007; 
Martinez-Ruiz et al., 2015). The Sr/Ba ratios of the studied 
argillite samples range from 0.54 to 2.99, with an average 
value of 1.19, suggesting that they were possibly deposited 
in an unstable paleodepositional environment that 
alternated between marine and continental depositional 
settings (Van et al., 2003; Jacquet et al., 2005; Paytan et al., 
2007; Martinez-Ruiz et al., 2015).

The trace elements in the sediment rocks could also be 
used to infer the depositional environment (Mongenot et 
al., 1996). Vanadium is usually preserved in porphyrins 
of organic matter and concentrated in the reducing 
depositional environments (Calvert and Pedersen, 1993; 
Jones and Manning, 1994; Tribovillard et al., 2006). Jones 
and Manning (1994) suggested that the enrichment 
pattern of Cr is always related to the clastic depositional 
fraction. Cr mainly exists as Cr6+ in oxic environments and 
as Cr3+ in anoxic conditions. Jones and Manning (1994) 
proposed to use V/Cr ratios to estimate the paleoredox 
depositional conditions, with V/Cr < 2 indicating an 
oxidizing condition, 2 < V/Cr < 4.25 indicating a poor 
oxygen sedimentary environment, and V/Cr > 4.25 
indicating a reducing environment. The V/Cr ratios of 
the studied aluminous argillites range from 2.75 to 5.46 
with an average value of 3.88, suggesting that the studied 

aluminous argillites were deposited in a suboxic to anoxic 
depositional environment. The paleoredox depositional 
environment can also be identified by the V/(V+Ni) 
ratio (Dill et al., 1988; Hatch and Leventhal, 1992; Jones 
et al., 1994). The V/(V+Ni) ratio of 0.46 is considered as 
the transition boundary from oxic to suboxic and anoxic 
depositional environments. The V/(V+Ni) ratios of the 
studied argillites range from 0.88 to 0.95, with an average 
value of 0.92, suggesting an anoxic environment. Similarly, 
the redox-sensitive element Ce can also be used to indicate 
the redox environments (Wilde et al., 1996; Yang et al., 
1999; Feng et al., 2000). In an oxidizing environment, 
Ce3+ can be oxidized to Ce4+ and then preserved by the 
precipitation of cerianite (CeO2). In contrast, other 
trivalent REEs are commonly leached out due to their 
relatively high solubility (Braun et al., 1990). The positive 
Ce anomalies in our studied aluminous argillites suggest 
that they were deposited in an oxic environment. However, 
this contradicts the suboxic to anoxic environments as 
inferred from V/Cr and V/(V+Ni). We speculate that these 
argillites were initially weathered under anoxic conditions. 
The subsequent suboxic to anoxic condition redistributed 
the relationship between trace elements rather than REEs. 
One of the aluminous argillites (Z-8) shows a slightly 
negative Ce anomaly of 0.89, which was probably caused 
by postdepositional processes such as the leaching of 
argillites by groundwater or hydrothermal fluids.

Figure 11. Triangular diagram of SiO2-Al2O3-Fe2O3 for the aluminous argillites (modified 
from Schellmann, 1986 and ZK3402 Bauxite and ZK14904 Bauxite data taken from Wang 
et al., 2013).
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6. Conclusions
In this study, we investigated the elemental geochemistry 
of argillites layers from the Late Carboniferous Taiyuan 
Formation, Huainan Coalfield, and the following 
conclusions were obtained:

1) The studied argillites are mainly composed of Al2O3 
and SiO2. The LaN/YbN values of all the aluminous argillites 
are less than 0.4, exhibiting a significant enrichment of 
HREEs relative to LREEs. All aluminous argillites show 
positive Ce anomalies (Ce/Ce* = 1.39) and negative Eu 
anomalies (Eu/Eu* = 0.19, ranging from 0.17 to 0.23).

2) The oxides and trace elements suggest that the studied 
aluminous argillites from different layers derived from 
the same sedimentary sources. The TiO2 vs. Ni, Al2O3 vs. 
TiO2, and A-CN-K triangular diagrams indicate that these 
aluminous argillites were probably sourced from felsic to 
intermediate igneous rocks.

3) The binary diagram of SiO2 vs. (Al2O3+K2O+Na2O) 
indicates that the studied argillites were probably formed 
under an arid to semiarid climate. The CIA values and the 
A-CN-K diagrams suggest that these argillites were formed 
by extremely chemical weathering products.

4) A series of geochemical indices including the Sr/
Ba, V/Cr, and V/(V+Ni) ratios and the Ce anomalies show 
that the aluminous argillites were deposited in a suboxic to 
anoxic environment.
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