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1. Introduction
The Lar Cu-Mo prospect located 22 km north of 
Zahedan, southeast Iran, at the border with Pakistan and 
Afghanistan is proximal to Saindak and the giant Reko Diq 
copper deposits of Pakistan (Figure 1a). The Lar Cu-Mo 
prospect mainly occurs in syenitic to monzonitic igneous 
rocks of the Lar igneous complex (LIC). Although the LIC 
has been subject of several petrological and geochemical 
studies (Chance, 1981; Bagheri and Bakhshi, 2001; Nakisa, 
2002; Karimi, 2002; Boomeri, 2004; Ghafari-Bijar, 2009; 
Farokh-Nezhad, 2011; Soltanian, 2013), the host rock 
characteristics of the Lar Cu-Mo prospect were the subject 
of few studies (Karimi, 2002; Nakisa, 2002; Dushangani, 
2015). The Lar Cu-Mo prospect has been explored and 
drilled by the National Iranian Copper Industries Co. 
(Nakisa, 2002). The mineralization covers an area of 0.75 
km2 and contains several million tons of mineralized 
rocks averaging 0.2% Cu and 0.01% Mo (Nakisa, 2002; 
Dushangani, 2015). Although the mineralization 
is considered as a subeconomical mineralization 

(Dushangani, 2015), infill drilling to a nominal 250 m led 
to understand that the mineralization continues in deeper 
depths.

In general, the chemical compositions of minerals 
provide valuable information on the origin and nature 
and postsolidus modifications of the magmas, as well as 
the nature of the ore fluids associated with the magmas 
(Imai, 2000; Boomeri et al., 2009, 2010; Xianwu et al., 
2009; Siahcheshm et al., 2012; Einali et al., 2014). Studying 
the chemistry of mineral assemblages and compositions of 
igneous rocks can assist in understanding the temperature, 
pressure, and fugacity ratios of a magma process (Idrus et 
al., 2007; Panigrahi et al., 2008; Einali et al., 2014).

Chemical compositions of rock-forming minerals in 
the Lar Cu-Mo prospect igneous rocks have not yet been 
determined. In this study, we present data on the mineral 
chemistry of primary minerals in igneous host rocks 
from the Lar Cu-Mo prospect. With data obtained from 
these minerals and by employing geothermobarometric 
methods, pressure, temperature, and oxygen fugacity 
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Figure 1. Geological maps of the a) main tectonostratigraphic units of Iran (Stöcklin, 1968), b) geological subdivisions of the SSZ and its principal 
igneous rock units (modified from Camp and Griffis, 1982; Tirrul et al., 1983). Faults are: BF, Bandan fault; EN, East Neh fault; WN, West Neh fault; ZF, 
Zahedan fault; KF, Kahurak Fault. Place names are: Sefidabeh (S), Nosratabad (NO). Intrusions are: Zahedan granites (ZG), Lar igneous complex (LIC), 
Kuh-e Malek Siah (KM), Kuh-e Seyasteragi (KS), Kuh-e Assagie (KA), Kuh-e Janja (KJ), Zahedan-Nehbandan magmatic belt (ZNMB). c) Geological 
maps of the Lar area (based on Behrouzi, 1993).
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values were calculated. All these helped constrain the 
crystallization conditions and evolutions of the Lar Cu-
Mo prospect.

2. Geology
The study area is located in the N–S trending 700-km-
long Sistan Suture Zone (SSZ) (Figures 1a and b) that 
extends from Iran to Afghanistan and Pakistan. The 
SSZ is considered to have been a remnant of the late 
Cretaceous oceanic basin as a branch of the Neotethys. 
The SSZ was divided into the Neh-Ratuk accretionary 
prism and the Sefidabeh forearc basin (Figure 1b). Based 
on Camp and Griffis (1982) and Tirrul et al. (1983), the 
SSZ is characterized by the following features: A) the 
presence of Late Cretaceous ophiolites that are the oldest 
igneous rocks of this area and are the remnants of the 
Sistan oceanic crust between the Lut and Sistan blocks; 
B) flysch-type rocks that are the most dominant rocks 
in the SSZ and composed of Cretaceous to Paleocene 
sedimentary, metasedimentary, and siliceous clastic rocks; 
and C) nonophiolitic igneous rocks that are different in 
age, composition, and genesis and can be divided based 
on their age as follows: 1) Eocene calc-alkaline rocks of the 
accretionary prism that are related to subduction events 
in the area (Camp and Griffis, 1982); 2) Late Eocene 
Zahedan calc-alkaline I, rare S, and hybrid-type granitoids 
that are related to subduction and collision events in the 
area (Camp and Griffis, 1982; Sahebzadeh, 1996; Hosseini, 
2002; Boomeri et al., 2005; Kord, 2005; Sadeghian, 2005; 
Sadeghian et al., 2005; Sadeghian and Valizadeh, 2007; 
Rahnama-Rad et al., 2008; Ghasemi et al., 2010; Moradi 
et al., 2014); 3) Oligocene to Middle Miocene alkaline and 
calc-alkaline igneous rocks of the Zahedan-Nehbandan 
narrow magmatic belt (ZNMB) (Camp and Griffis, 1982) 
(Figure 1b), where the alkaline magmatism is closely 
related to major transcurrent faults, which were important 
postcollisional structural features (Camp and Griffis, 
1982); 4) Quaternary volcanic rocks like Mount Taftan 
that are related to the Makran active subduction of the 
Oman oceanic lithosphere under the Makran accretionary 
prism and the SSZ (Farhoudi and Karig, 1977). Although 
subduction, collision, and postcollisional events in the 
SSZ were confirmed by the majority of researchers, the 
mechanism and timing of the opening and closing of 
the oceanic basin has been differently discussed, i.e. 
subduction of the SSZ beneath the Afghan block (Camp 
and Griffis, 1982; Tirrul et al., 1983), subduction of the SSZ 
beneath the Lut block (Zarrinkoub et al., 2012), two-sided 
subduction of the SSZ beneath the Afghan and Lut blocks 
(Arjmandzadeh et al., 2011), and intraoceanic subduction 
by the east (Saccani et al., 2010).

The Lar Cu-Mo prospect in the west and southwest 
of the LIC is a part of the ZNMB at the southeastern 

extension of the SSZ (Figure 1b). The ZNMB is composed 
of alkaline, shoshonitic, and calc-alkaline extrusive and 
intrusive units where country rocks are represented by 
the flysch that accumulated in the accretionary prism 
setting. A number of igneous rocks were identified in the 
ZNMB such as the LIC and Malek Siah, Seyasteragi, and 
Janja intrusions and Assagie volcanic mountain. Pang et 
al. (2013) investigated igneous rocks in the north part 
of the ZNMB where magmatism was active from the 
middle Eocene (~46 Ma) to the late Oligocene (~25 Ma). 
The igneous rocks are calc-alkaline, high-K calc-alkaline 
(HKCA), and shoshonitic, triggered by convective removal 
of the lithosphere and resultant asthenospheric upwelling 
during postcollision extensional collapse of the SSZ in the 
Eocene-Oligocene (Pang et al., 2013).

The LIC is a late Oligocene elliptical (about 40 km2 
in size) igneous complex, hosted by flysch-type rocks of 
the Sefidabeh forearc (Figure 1c). Its bigger diameter is 
parallel to the Zahedan fault system in the western and 
southwestern parts. The main body of the LIC includes gray 
to dark-gray extrusive rocks such as lava and pyroclastic 
breccias, which were intruded by stocks, subvolcanic ring 
dykes, masses, and veins. The main igneous rocks of the 
LIC consist of trachyte, trachyandesite, andesite, tuff, 
volcanic breccia, hornblende-bearing porphyritic diorite, 
syenite, monzonite, latite, and calc-alkali to shoshonitic 
lamprophyres like minette, olivine minette, shonkinite, 
spessartite, and vogesite, which have been formed from 
shoshonitic and HKCA magmas (Chance, 1981; Bagheri 
and Bakhshi, 2001; Ghafari-Bijar, 2009; Farokh-Nezhad, 
2011; Soltanian, 2013). Structurally, there are at least two 
main fault systems in the Lar Cu-Mo prospect with NW-
SE and NE-SW trends (Karimi, 2002). The NW-SE system 
is mainly associated with mineralization and has been 
displaced by the younger NE-SW system.

3. Mineralization and alteration
The Lar Cu-Mo prospect is situated in the western and 

southwestern parts of the LIC (Figures 1a, 2a, 2b, and 3). 
The northeastern and eastern parts of the mineralized area 
consist of intermediate igneous rocks, and its southwestern 
and western parts consist of flysch type rocks (Figure 2a). 
The geology of the mineralized area consists of hornfels, 
shale, volcanic rocks, and syenitic to monzonitic igneous 
rocks. The flysch-type rocks such as siltstone and shale in 
the eastern side of the mineralized area are moderately 
to strongly recrystallized or metamorphosed to hornfels 
due to contact metamorphism effects of the Lar igneous 
rocks. The syenitic to monzonitic igneous rocks were also 
intruded by microsyenitic veins, quartz alkali feldspars 
syenite dykes, and silicic veins and veinlets (Figures 4a 
and b). Large blocks of the hornfels and metavolcanic 
rocks are common with syenitic to monzonitic igneous 
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rocks, especially in the eastern side. The intrusive rocks 
that outcrop in the mineralized area are pinkish in color 
due to supergene alteration that obscures primary textures 
and mineralogy, especially in the upper levels. The Cu-
Mo mineralization is primarily associated with silicic 
veins and veinlets (Figure 4c) that occur within syenite 
and monzonite and include chalcopyrite, bornite and 
molybdenite, magnetite, and hematite as well as supergene 
oxidation products of chalcocite, native copper, enargite, 
limonite, malachite, and azurite (Figures 4d–4f). 
Disseminated bornite and chalcopyrite only occur in 
the host rocks that are near the silicic veins and veinlets. 
The grades closely correlate with the density of the veins. 
Generally, the mineralized veins and veinlets show low 

density across the study area. Therefore, the host rocks 
mainly contain minor or no amounts of the mineralized 
silicic veins or veinlets. 

The alteration zones in the study area are not regular 
and pervasive. They are often associated with tectonized 
locations, and they are more intense in the direction of the 
main faulted and fractured zones. Therefore, the fractures 
and faults play a significant role in the control of alteration 
and mineralization focus. As the main primary mineral of 
the host rocks is orthoclase, it is difficult to characterize 
the potassic alteration. This alteration type is characterized 
by the veins containing biotite and potassium feldspar 
associated with bornite, chalcopyrite, and/or molybdenite. 
It seems that some plagioclase was replaced by potassium 

Figure 2. a) Geological map of the Lar Cu-Mo prospect (modified from Kan Iran Engineering, 1999), b) map location of bore 
holes with mineralized silicic veins in the Lar Cu-Mo prospect.
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feldspar. Propylitic alteration is more widespread in 
peripheral parts of the mineralized area, especially in the 
hornfels and metavolcanic rocks. Epidote, calcite, chlorite, 
and minor sericite partially replaced magmatic pyroxene, 
hornblende, and biotite. Minor actinolite forms along the 
cleavage of the primary amphibole in a few samples. There 
are no distinct alteration zones of the phyllic and argillic 
in the studied parts of the mineralized area. However, 

the majority of the feldspars are partially replaced by 
sericite and clay minerals. Pyrite is a rare mineral in the 
mineralized area. The quartz veins and veinlets that are 
the most prominent character of the mineralized area may 
not be related to the phyllic alteration. Argillic alteration 
locally occurs in outcrops and shallow depths. This 
alteration type, which is characterized by clay minerals, 
iron hydroxide, and Cu carbonates, was probably formed 
by supergene processes.

Figure 3. Field photograph of the Lar igneous complex and the Lar Cu-Mo mineralized area.

Figure 4. Field photographs of a) microsyenite vein in the porphyry syenite, b) quartz alkali feldspars syenite dyke, c) mineralized 
silicic vein, d) dispersed ore minerals in syenite. Photomicrographs of e) the same paragenesis of chalcocite, bornite, and 
chalcopyrite; f) molybdenite. Bn: Bornite, Cct: chalcocite, Ccp: chalcopyrite, Cv: covellite, Mol: molybdenite.
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4. Materials and methods
One hundred samples were collected from fresh and 
mineralized rocks from the surface and drill holes. 
The samples were examined by polarized microscope 
for petrographic and mineralographic descriptions at 
the University of Sistan and Baluchestan. Twelve thin-
polished sections were chosen from less-altered syenitic to 
monzonitic igneous rocks with granular and porphyritic 
textures and tuff for electron microprobe analysis in order 
to determine their mineral composition. 

In general, there are several generations of minerals 
in the Lar Cu-Mo prospect, but our analyzed minerals are 
magmatic feldspars, biotite, amphibole, and clinopyroxene. 
The selected magmatic minerals are commonly euhedral 
and subhedral in shape and show no evidence of having 
been replaced. Their modal percentages are based on 
visual estimates.

These minerals were analyzed by the automated 
JEOL JXA-8600 superprobe of Yamagata University with 
accelerating voltage of 15 kV, a beam current of 20 nA, a 
beam diameter of about 5 µm, detection limits of 0.05 wt. 
%, and a maximum 40-s counting interval. The diameter 
of the focused electron beam is about 5 µm. Data were 
processed by an online computer using the oxide ZAF in 
the XM-86 PAC program of JEOL. Calibration standards 
for the mentioned minerals were apatite, wollastonite, 
albite, adularia, synthetic SiO2, TiO2, Al2O3, Fe2O3, MnO, 
MgO, CaF2, and NaCl. In each sample, several grains and 
several points of each mineral were analyzed based on 
textural relations, and an average of the analytical results 
was taken to represent the typical composition of that 
mineral in each sample. Formula calculations of feldspar, 
biotite, amphibole, and pyroxene are based on 32, 22, 
23, and 6 atoms of oxygen, respectively. The amphiboles’ 
ferric/ferrous ratios were calculated using 15-cation 
normalization and charge balance. The magmatic minerals 
in the granular syenitic rocks were used for employing 
geothermobarometric methods in order to determine 
crystallization conditions because these samples were not 
affected by weathering, overprinting, and late granodioritic 
veinlets.

5. Petrography 
The dominant igneous rocks in the Lar Cu-Mo mineralized 
area are syenite and monzonite with lesser amounts of 
granodiorite and pyroclastic rocks. Syenite is dominantly 
medium- to coarse-grained, porphyritic, granular, and 
occasionally cataclastic in texture. There is extreme 
variation in the ratio of phenocrysts to groundmass. The 
groundmass ratio is less than 30% in porphyritic syenite 
and monzonite. The syenite is composed of plagioclase, 
clinopyroxene, and potassium feldspar as main minerals 
that crystallized at first and were followed by amphiboles, 

biotite, and Fe-Ti oxides. A second generation of feldspars 
and biotite can also be observed in some syenitic rock 
types. Moreover, sphene, apatite, zircon, and magnetite are 
common accessory minerals. 

Orthoclase is the most abundant mineral in the syenite 
occurring as phenocrysts (Figure 5a) and groundmass. 
The orthoclase phenocrysts are euhedral to subhedral and 
up to 4 cm in size. Some of the phenocrysts of orthoclase 
poikilitically contain inclusions of biotite, titanite, apatite, 
pyroxene, and opaque minerals. The plagioclase is lath-
shaped, euhedral to subhedral, and shows polysynthetic 
twinning (Figure 5b). 

The biotite occurs as phenocryst (Figure 5c), tiny 
crystals in the groundmass, inclusions in the other 
minerals, and also secondary hydrothermal phases. 
Under the microscope, the biotite phenocrysts are mainly 
brown in color (in plane polarized light), variable in size, 
sometimes showing kink band twinning, with deformed 
cleavage, and have inclusions of apatite, titanite, and 
opaque minerals.

The amphibole occurs as phenocrysts and tiny crystals 
in shape, green in color (in plane polarized light), and 
variable in size (Figure 5d). Based on petrographic studies, 
the amphiboles mainly belong to the primary hornblende 
group and secondary actinolite. Clinopyroxene is the 
other ferromagnesian mineral in the Lar porphyry and 
granular syenitic rocks. Based on microscopic studies, 
greenish clinopyroxene occurs as subhedral to euhedral 
crystals in both phenocrysts (Figure 5e) and groundmass 
with variable size. The monzonite and syenite are 
petrographically similar and show extreme variation in 
the ratio of orthoclase to plagioclase. The monzonite has 
higher proportions of plagioclase relative to syenite.

The volcanic rocks occurred as lava and pyroclastic 
rocks. The volcanic rocks are mainly trachyte, latite, and 
andesite in composition, porphyritic and trachytic in 
texture, and gray and green in color. The phenocrysts are 
about 50% of these rocks and composed of plagioclase, 
potassium feldspar, amphiboles, biotite, and opaque 
mineral. The groundmass is composed of fine-grained 
crystals of feldspar and ferromagnesian minerals. 
Plagioclase and potassium feldspar are variable in size (up 
to 5 mm) and shape (euhedral to subhedral).

6. Mineral chemistry
6.1. Feldspar
Sixty-four points from six samples on feldspar phenocrysts 
of porphyritic igneous rocks and 31 points from three 
samples on granular igneous rocks were analyzed and 
plotted on the ternary orthoclase-albite-anorthite 
diagram of Deer et al. (1979) (Table 1; Figures 6 and 7). 
The potassium feldspars in the igneous rocks belong 
to sanidine-albite solid solutions in both porphyry and 
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granular igneous rocks (Figures 6 and 7). As petrographic 
studies show that the potassium feldspars are orthoclase, 
variation in Na contents is probably due to invisible 
cryptoperthite and microperthite in low-temperature 
feldspars (orthoclase and microcline) (MacKenzie and 
Smith, 1955). The plagioclases are mostly albite in both 
porphyry and granular rocks (Figures 6 and 7). Albite 
is the most common plagioclase in the syenitic rocks. 
Oligoclase and andesine belong to the late granodioritic 
phase that intruded on the syenite rocks.
6.2. Biotite
Twenty-four points from five samples and 15 points from 
three samples on biotite phenocrysts of porphyry and 
granular igneous rocks were analyzed, respectively (Table 
2). The biotite compositions, when referred to the Al 
versus Fe/(Fe+Mg) (Rieder et al., 1998) diagram (Figure 
8), clearly plot in the biotite field near the biotite and 
phlogopite line boundary. The biotites are the primary 
type (Figure 9), and they have a narrow range in chemical 
composition as SiO2, Al2O3, TiO2, and MgO range from 
38.01 to 39.16, from 14.44 to 15.39, from 3.23 to 3.74, and 
from 14.74 to 15.50, respectively. It seems that the biotite 
is Mg- and Ti-rich and F- and Cl-poor.
6.3. Amphibole
Sixteen points from two samples and 14 points from one 
sample on amphibole phenocrysts of porphyry and granular 
igneous rocks were analyzed, respectively (Table 3). 

According to the classification of Leake et al. (1997), the 
associated amphibole phenocrysts with mineralized area 
are commonly calcic (pargasite to ferro-pargasite, edenite, 
actinolite, and magnesio-hornblende; Figure 10) with igneous 
nature (Figure 11).

In porphyry igneous rocks, amphiboles are chemically 
edenite, actinolite, and magnesio-hornblende with a 
high content of Mg and low content of Al and Ti. The 
actinolites are mainly due to weathering and alteration 
processes. According to Chivas (1981), amphiboles with 
Si of 7.3 (apfu) or less are generally considered magmatic 
and Si higher than 7.3 (apfu) is not a truly magmatic 
amphibole. The average content of Na2O is higher than 
K2O in amphiboles of both porphyry and granular igneous 
rocks. Moreover, based on Al content, the amphiboles 
can be also divided into two groups: low-Al amphiboles 
(actinolite, edenite, and magnesio-hornblende) and high-
Al amphiboles (pargasite and ferro-pargasite) (Table 3).
6.4. Clinopyroxene
Four points from one sample on clinopyroxene phenocrysts 
of porphyritic igneous rocks and 14 points from two 
samples on granular igneous rocks were analyzed (Table 
3). The representative Lar clinopyroxene analyses fall 
within the field of calcic composition. The clinopyroxenes 
have Al2O3 ranges from 2.58 to 3.25, and based on the 
classification of Deer et al. (1979), they are of the diopside 
type.

Figure 5. Cross-polarized light photomicrographs of a) alkali feldspars, b) plagioclase, c) biotite, d) amphibole, e) clinopyroxene. 
Kfs: Potassium feldspar, Pl: plagioclase, Bt: biotite, Amp: amphibole, Cpx: clinopyroxene.
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7. Crystallization conditions
7.1. Temperature
The concentration of Ti and the Ti/ Fe2+ ratio in biotite 
are very sensitive to temperature, making it possible to use 

biotite to obtain reliable temperature estimates in igneous 
and metamorphic rocks (Luhr et al., 1984; Patino Douce, 
1993). We used the empirical Ti/ Fe2+ geothermometer of 
Luhr et al. (1984) to calculate plutonic biotite precipitation 
temperatures in the granular igneous rocks with the 
following equation: 

Calculated temperatures for biotite from granular 
syenitic rocks show an average temperature of 731 °C.

Amphibole thermometry for pargasites and ferro-
pargasites in the Lar granular syenitic rocks was calibrated 
according to the method of Ridolfi et al. (2010) with the 
following equation:

where

The calculations suggest a mean temperature of 831 °C.
The electron microprobe analyses of pyroxene can 

also be used in thermometry based on the method of 

Figure 6. Classification of feldspars in the Lar Cu-Mo prospect porphyry igneous rocks on a ternary orthoclase-
albite-anorthite diagram. Field boundaries from Deer et al. (1979).

Figure 7. Classification of feldspars in the Lar Cu-Mo prospect 
granular igneous rocks on a ternary orthoclase-albite-anorthite 
diagram. Field boundaries from Deer et al. (1979).
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Table 2. Representative average chemical composition (wt. %) and structural formulae of biotite in the Lar igneous rocks.

Rocks Syenite Monzonite Tuff

Textures Porphyry Granular Porphyry Porphyry

Samples L18 L20 L2 L12 L3 L15 L13 L57

Number of grains 2 1 1 2 2 1 2 2

Number of points 6 2 3 6 6 3 6 7

Av. Av. Av. Av. Av. Av. Av. Av.

SiO2 (wt. %) 38.27 38.35 38.94 39.00 38.01 39.16 39.14 38.95
TiO2 3.55 3.68 3.70 3.48 3.66 3.44 3.44 3.23
Al2O3 15.16 14.70 15.09 14.44 15.30 14.51 14.73 15.39
FeO 16.41 16.88 15.96 16.07 16.87 16.83 15.86 16.05
MnO 0.20 0.21 0.28 0.24 0.26 0.20 0.31 0.24
MgO 15.10 14.95 14.94 15.33 14.75 14.74 15.14 15.58
CaO 0.03 0.05 0.03 0.05 0.03 0.14 0.07 0.04
Na2O 0.12 0.14 0.15 0.12 0.18 0.11 0.13 0.23
K2O 9.14 8.16 9.30 8.88 9.33 8.65 8.92 8.55
BaO 0.08 0.26 0.10 0.12 0.10 0.10 0.16 0.22
Cl 0.09 0.08 0.06 0.13 0.07 0.13 0.08 0.03
F 0.31 0.21 0.28 0.23 0.22 0.39 0.41 0.23
Total 98.46 97.67 98.89 98.12 98.79 98.4 98.39 98.74

Numbers of cations on the basis of 22 O

Si (apfu) 5.551 5.598 5.610 5.657 5.519 5.671 5.655 5.600
IVAl 2.449 2.402 2.390 2.343 2.481 2.329 2.345 2.400
T Site 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000
VIAl 0.144 0.128 0.173 0.127 0.138 0.149 0.164 0.209
Ti 0.387 0.404 0.401 0.380 0.400 0.375 0.374 0.349
Fe 1.991 2.061 1.923 1.950 2.049 2.038 1.916 1.930
Mn 0.025 0.026 0.034 0.029 0.032 0.025 0.038 0.029
Mg 3.264 3.253 3.208 3.314 3.192 3.181 3.260 3.338
O site 5.811 5.872 5.745 5.803 5.812 5.768 5.753 5.856
Ca 0.005 0.008 0.005 0.008 0.005 0.022 0.011 0.006
Na 0.034 0.040 0.042 0.034 0.051 0.031 0.036 0.064
K 1.691 1.520 1.709 1.643 1.728 1.598 1.644 1.568
Ba 0.005 0.015 0.006 0.007 0.006 0.006 0.009 0.012
A site 1.730 1.567 1.756 1.685 1.784 1.651 1.692 1.639
Cl 0.011 0.010 0.007 0.016 0.009 0.016 0.010 0.004
F 0.071 0.048 0.064 0.053 0.051 0.089 0.094 0.052
OH 3.918 3.942 3.929 3.931 3.941 3.895 3.897 3.944
XMg 0.621 0.612 0.625 0.630 0.609 0.610 0.630 0.634
T °C 742 726 726

OH is calculated by OH = 4 − (Cl + F); XMg = Mg / (Mg + Fe).
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Dal Negro et al. (1982). They calculated the temperature 
of crystallization for pyroxenes based on the following 
equation:

Here, 

and 

Depending on this calculation, the clinopyroxene 
average temperature from the granular syenitic rocks is 
926 °C.
7.2. Pressure
The barometric method of Nimis (1999) was used for 
pyroxene barometry with following equation:

Here,  and  and 

show volumes corrected for thermal expansivity and 

compressibility at valid P-T conditions. Based on this 
equation, the calculated average pressure of clinopyroxene 
from the granular syenitic rocks is 7.54 kbar.

On the other hand, geobarometric estimates for 
granular syenitic rocks could be attempted based on Al 
total content in amphibole following the method of Ridolfi 
et al. (2010):

The estimated pressure for pargasite and ferro-
pargasite crystallization in the studied granular syenitic 
rocks is about 7.65 kbar (R2 = 0.99). Although Al2O3 
contents of the Lar pargasites and ferro-pargasites are high 
and we can ascribe this to their crystallization at higher 
pressures, in general Al in amphiboles increases with both 
P and T, and compositional variations (high proportions 
of melt) also seem to influence the partitioning of Al2O3 
in Ca-amphibole (Ali, 2012). Since the parental magma of 
the Lar Cu-Mo prospect igneous rocks is shoshonitic in 
nature and high Al contents are one of the main characters 
of this kind of magma, the high Al contents in the studied 
amphiboles depend on Al contents in the melt.
7.3. Oxygen fugacity (ƒO2)
Ridolfi et al. (2010) proposed an empirical universal 
amphibole sensor to estimate ƒO2 parameters with the 
following equation:

where

Figure 8. Plot of Fe / (Fe + Mg) versus ΣAl showing the 
classification of biotite. Field boundaries from Rieder et al. 
(1998). Similar symbols as in Figures 6 and 7.

Figure 9. Chemical composition of biotite crystals using the 
(FeO + MnO) – 10TiO2 – MgO ternary diagram (Nachit et al., 
2005). Similar symbols as in Figures 6 and 7.
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Table 3. Representative average chemical composition (wt. %) and structural formulae of pyroxene and amphiboles in the Lar igneous 
rocks.

Rocks Syenite Rocks Syenite

Minerals Amphibole Minerals Clinopyroxene

Textures Porphyry Granular Textures Porphyry Granular

Samples L44 L20 L2 Samples L18 L2 L3

Number of grains 1 3 1 Number of grains 1 1 3

Number of points 2 14 10 Number of points 4 4 10

Av. Av. Av. Av. Av. Av.

SiO2  (wt. %) 55.00 54.51 40.79 SiO2  (wt. %) 52.62 51.81 52.74

TiO2 0.25 0.39 2.09 TiO2 0.35 0.43 0.37

Al2O3 1.88 2.32 12.62 Al2O3 2.58 3.25 2.67

FeO 8.97 9.82 17.69 FeO 7.41 7.42 8.06

MnO 0.26 0.33 0.42 MnO 0.40 0.30 0.34

MgO 18.75 17.31 9.99 MgO 13.78 13.29 13.29

CaO 12.55 13.52 11.44 CaO 22.61 21.84 22.88

Na2O 0.75 0.80 2.22 Na2O 0.96 1.11 1.05

K2O 0.22 0.20 1.90 K2O 0.01 0.06 0.01

Total 98.41 99.00 97.26 Total 100.72 99.51 101.41

Numbers of cations on the basis of 23 O Numbers of cations on the basis of 6 O

Si (apfu) 7.728 7.673 6.144 Si (apfu) 1.942 1.933 1.940

Al (iv) 0.272 0.327 1.856 Al (iv) 0.058 0.067 0.060

T Site 8.000 8.000 8.000 T site 2.000 2.000 2.000

Al (vi) 0.040 0.058 0.384 Al (vi) 0.054 0.076 0.055

Fe3+ 0.000 0.000 0.000 Ti 0.010 0.012 0.010

Ti 0.026 0.041 0.237 Mg 0.694 0.671 0.676

Fe2+ 1.054 1.156 2.228 Fe2+ 0.229 0.232 0.248

Mn 0.031 0.039 0.054 Mn 0.013 0.009 0.011

Mg 3.928 3.633 2.243 M1 site 1.000 1.00 1.000

Ca 1.889 2.039 1.846 Mg 0.064 0.068 0.053

C + B site 6.968 6.966 6.992 Ca 0.894 0.873 0.902

Na 0.204 0.218 0.648 Na 0.069 0.080 0.075

K 0.039 0.036 0.365 K 0.000 0.003 0.000

A site 0.244 0.254 1.013 M2 site 1.027 1.024 1.030

XMg 0.788 0.759 0.502 XMg 0.768 0.761 0.746

T (°C) - - 831 T (°C) - 924 928

P (kbar) - - 7.65 P (kbar) - 6.84 8.23

XMg = Mg / Mg + Fe
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According to this equation, the value of log ƒO2 
calculated for granular syenitic rocks is –11.1 (maximum 
error: 0.41 log units).
7.4. Nature of the magma and geotectonic environment
Mineral chemistry can be used to discriminate magmatic 
series and the tectonic environment of igneous rocks (e.g., 
Le Bas, 1962; Leterrier et al., 1982; Nachit, 1986; Abdel-
Rahman, 1994; Molina et al., 2009). According to the 
biotite, amphibole, and pyroxene discrimination diagrams 
of Abdel-Rahman (1994), Molina et al. (2009), and Le Bas 
(1962) respectively, the biotite, amphibole, and pyroxene 
from the Lar Cu-Mo prospect igneous rocks plot in the 
calc-alkaline fields (Figure 12). The diagrams based on the 
mineral chemistry do not discriminate the calc-alkaline, 
HKCA, and shoshonitic magmatic series. According to 

Bagheri and Bakhshi (2001), the Lar igneous rocks are 
HKCA and shoshonitic in magmatic series, which is real 
nature of the studied rocks.

Although the main magmatism in the Lar area is 
HKCA and shoshonitic and this kind of magma can occur 
in a subduction setting (Müller and Groves, 1997), the 
determined age of the LIC using the K/Ar isotopic system 
on biotite and whole rock yields ages ranging from 27.8 to 
32 Ma (Camp and Griffis, 1982), younger than the collision 
time (33 Ma) of Sistan and Lut blocks in the southeastern 
part of Iran, indicating a postcollisional tectonic setting 
for the Lar magmatism. Generally, K-rich magmatism in 
postcollisional tectonic settings is associated with strike-
slip faults. The strike-slip faults are able to channel mantle 
material and indirectly provide heat that can induce melting 
of lithospheric material and create a space for magmas 
that mantle melts injected beneath strike-slip faults, as a 
result of decompression melting (Pirajno, 2010). This is in 
compliance with the location of the LIC that was formed in 
the southern side of the Zahedan strike-slip fault system.

8. Summary and conclusion
Based on the field studies of the rock units in the Lar Cu-
Mo prospect, from older to younger are hornfels, lava and 
pyroclastic rocks, syenitic to monzonitic stocks, aplitic 
veins, the late granodioritic phase, and nonmineralized 
and mineralized silicic veins, respectively. Moreover, 
petrographic studies show that potassium feldspar, 
plagioclase, and clinopyroxene crystallized first, followed 
by amphiboles, biotite, and Fe-Ti oxides, which may 
be surrounded by narrow rims of ilmenite that may 
additionally occur as discrete, subhedral to anhedral grains 
together with a second generation of feldspars.

Figure 10. Plot of microprobe analyses showing the compositional range of the 
amphiboles. Field boundaries from Leake et al. (1997). Similar symbols as in Figures 
6 and 7.

Figure 11. Plot of Si versus Na + Ca + K to discriminate igneous 
and metamorphic amphiboles (Sial et al., 1998). Similar symbols 
as in Figure 7.
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The mineral chemistry analyses indicate that the 
Lar prospect clinopyroxenes are mainly diopside in 
composition and they were crystallized in a magma 
chamber at a temperature and pressure from 926 °C and 
7.54 kbar, respectively. Moreover, all of the amphiboles in 
the mineralized area are calcic. In contrast to the barren 
igneous rock amphiboles in the Lar area that are edenite 
in composition (Farokh-Nezhad, 2011), the amphiboles 
in the mineralized area are pargasite to ferro-pargasite, 

edenite, actinolite, and magnesio-hornblende and this 
is an important criterion for distinguishing mineralized 
igneous rocks from the barren type. The representative Lar 
biotite analyses fall within the field of biotite composition 
that crystallized at 731 °C. It seems that this is the lowest 
emplacement temperature of the Lar igneous rocks. The 
mineral composition of the Lar Cu-Mo mineralization is 
consistent with crystallization from calc-alkaline oxidized 
magma.

Figure 12. Composition of biotite, amphibole, and pyroxene in the discrimination magmatic affinity diagrams of a) Abdel-
Rahman (1994), b) Molina et al. (2009), and c) Le Bas (1962). Similar symbols as in Figures 6 and 7.
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